A mixing operator T for which (T, T^2) is not disjoint transitive

by

YUNIED PUIG (Milano)

Abstract. Using a result from ergodic Ramsey theory, we answer a question posed by Bès, Martin, Peris and Shkarin by exhibiting a mixing operator T on a Hilbert space such that the tuple (T, T^2) is not disjoint transitive.

1. Introduction. Let X be a separable topological vector space. Denote by $\mathcal{L}(X)$ the set of bounded linear operators on X. From now on, unless otherwise specified, an *operator* is a member of $\mathcal{L}(X)$. An operator T is called *hypercyclic* provided that there exists a vector $x \in X$ such that its orbit $\{T^n x : n \geq 0\}$ is dense in X; then x is called a *hypercyclic vector* for T. Hypercyclic operators are one of the most studied objects in linear dynamics; see [9] and [1] for further information concerning concepts, results and a detailed account on this subject. More generally, a tuple (T_1, \ldots, T_N) of operators is said to be *disjoint hypercyclic* (*d-hypercyclic* for short) if

$$\{(T_1^n x, \dots, T_N^n x) : n \in \mathbb{N}\}$$

is dense in X^N for some $x \in X$.

If X is an F-space, then thanks to Birkhoff's theorem [1], T is hypercyclic if and only if T is topologically transitive, i.e. for any non-empty open sets U, V in X, the return set $N(U, V) := \{n \ge 0 : T^n(U) \cap V \ne \emptyset\}$ is non-empty. If N(U, V) is cofinite for any non-empty open sets U and V, then T is said to be mixing.

The notion of disjoint transitivity, a strengthening of transitivity, is defined as follows: a tuple (T_1, \ldots, T_N) of operators is *disjoint transitive* (d-transitive for short) if for any (N + 1)-tuple $(U_i)_{i=0}^N$ of non-empty open sets in X,

 $N_{U_1,\dots,U_N;U_0} := \{k \ge 0 : T_1^{-k}(U_1) \cap \dots \cap T_N^{-k}(U_N) \cap U_0 \neq \emptyset\}$

Published online 9 March 2017.

²⁰¹⁰ Mathematics Subject Classification: Primary 47A16; Secondary 05D10. Key words and phrases: mixing operators, disjoint transitive operators. Received 26 September 2016.

is non-empty. In particular, if $N_{U_1,\ldots,U_N;U_0}$ happens to be cofinite for any $(U_i)_{i=0}^N$ as above, then (T_1,\ldots,T_N) is said to be *disjoint mixing* (*d-mixing* for short). A connection between *d*-hypercyclicity and *d*-transitivity can be found in [8].

Bès, Martin, Peris and Shkarin [5] showed the following: if T is an operator on X satisfying the Original Kitai Criterion, then the tuple (T, \ldots, T^r) is d-mixing for every $r \in \mathbb{N}$. As a consequence, a bilateral weighted shift T on $l^p(\mathbb{Z})$ $(1 \leq p < \infty)$ or $c_0(\mathbb{Z})$ is mixing if and only if (T, \ldots, T^r) is d-mixing, for any $r \in \mathbb{N}$. Nevertheless, they remarked that this phenomenon does not occur beyond the weighted shift context, by providing an example of a mixing Hilbert space operator T such that (T, T^2) is not d-mixing. This is a partial answer to the following question posed in [5].

QUESTION 1.1. Does there exist a mixing continuous linear operator Ton a separable Banach space such that (T, T^2) is not d-transitive?

Our aim is to give a positive answer to Question 1.1 (Theorem 1.6 below).

1.1. Preliminaries and main results. For $A \subseteq \mathbb{N}$, |A| stands for the cardinality of A. Let \mathscr{F} be a set of subsets of \mathbb{N} . We say that \mathscr{F} is a *family* on \mathbb{N} provided (I) $|A| = \infty$ for any $A \in \mathscr{F}$ and (II) $A \in \mathscr{F}$ and $A \subset B$ implies $B \in \mathscr{F}$. From now on \mathscr{F} will be a family on \mathbb{N} .

In a natural way we generalize the notion of disjoint transitivity by introducing what we call \mathscr{F} -disjoint transitivity (or $d-\mathscr{F}$ for short).

DEFINITION 1.2. A tuple $(T_{1,n_k}, \ldots, T_{N,n_k})_k$ of sequences of operators is said to be d- \mathscr{F} if for any (N + 1)-tuple $(U_i)_{i=0}^N$ of non-empty open sets we have

$$\{k \ge 0: T_{1,n_k}^{-1}(U_1) \cap \dots \cap T_{N,n_k}^{-1}(U_N) \cap U_0 \neq \emptyset\} \in \mathscr{F}.$$

In particular, if $T_{i,n_k} = T_i^k$ for any $k \in \mathbb{N}$ and $1 \leq i \leq N$ in the above definition, then the N-tuple (T_1, \ldots, T_N) of operators is said to be d- \mathscr{F} .

Observe that in particular when \mathscr{F} is the family of non-empty sets or the family of cofinite sets, we obtain the notion of disjoint transitivity and disjoint mixing respectively. On the other hand, if N = 1 we obtain \mathscr{F} transitivity: an operator T is called \mathscr{F} -transitive (or an \mathscr{F} -operator for short) if $N(U,V) := \{n \ge 0 : T^n(U) \cap V \ne \emptyset\} \in \mathscr{F}$ for any open U, V. This notion was introduced and studied in [7].

Recall that an operator T is said to be *chaotic* if it is hypercyclic and has a dense set of periodic points ($x \in X$ is a *periodic point* of T if $T^k x = x$ for some $k \ge 1$).

An operator T is said to be *reiteratively hypercyclic* if there exists $x \in X$ such that for every non-empty open set U in X, the set $N(x, U) = \{n \ge 0 : T^n x \in U\}$ has positive upper Banach density, where the upper Banach density of a set $A \subset \mathbb{N}$ is given by

$$\overline{\mathrm{Bd}}(A) = \lim_{s \to \infty} \frac{\alpha^s}{s},$$

and $\alpha^s = \limsup_{k \to \infty} |A \cap [k+1, k+s]|$ for any $s \ge 1$. Reiteratively hypercyclic operators have been studied in [6] and [12].

It is known that there exists a reiteratively hypercyclic operator which is not chaotic (see [1]). However, concerning the converse we have the following result due to Menet.

THEOREM 1.3 ([11, Theorem 1.1]). Any chaotic operator is reiteratively hypercyclic.

Recall that a set $A \subseteq \mathbb{N}$ is syndetic if it has bounded gaps, i.e. if A is increasingly enumerated as $(x_n)_n = A$, then $\max_n(x_{n+1} - x_n) < M$ for some M > 0.

In [5], the authors show that there exists a mixing operator T on a Hilbert space such that (T, T^2) is not *d*-mixing. We show that the same operator has more specific properties.

THEOREM 1.4. There exists $T \in \mathcal{L}(l^2)$ such that T is mixing, chaotic and (T, T^2) is not d-syndetic.

So, our result improves the result of [5] already mentioned but still does not answer Question 1.1. In answering that question, Szemerédi's famous theorem will unexpectedly play an important role. Indeed, using a result of ergodic Ramsey theory due to Bergelson and McCutcheon [4], which is in fact a kind of Szemerédi's theorem for generalized polynomials, we obtain the following result.

THEOREM 1.5. Let $r \in \mathbb{N}$. If T is reiteratively hypercyclic then (T, \ldots, T^r) is d-syndetic or not d-transitive.

Now, from Theorems 1.3–1.5 we can deduce our main result which gives a positive answer to Question 1.1.

THEOREM 1.6. There exists a mixing and chaotic operator T in $\mathcal{L}(l^2)$ such that (T, T^2) is not d-transitive.

2. Proof of Theorem 1.6. As already mentioned, to prove Theorem 1.6 it is enough to prove Theorems 1.4 and 1.5.

2.1. Proof of Theorem 1.4. In [5, Theorem 3.8] the authors give an example of a mixing Hilbert space operator T such that (T, T^2) is not d-mixing. We will show that in addition T is chaotic and (T, T^2) is not d-syndetic. So in particular it is not d-mixing. We follow the proof of [5, Theorem 3.8] with minor modifications. Nevertheless, we describe all the details for completeness. Let $1 \leq p < \infty, -\infty < a < b < \infty$ and $k \in \mathbb{N}$. Recall that the Sobolev space $W^{k,p}[a,b]$ is the space of functions $f \in C^{k-1}[a,b]$ such that $f^{(k-1)}$ is absolutely continuous and $f^{(k)} \in L^p[a,b]$. The space $W^{k,p}[a,b]$ endowed with the norm

$$||f||_{W^{k,p}[a,b]} = \left(\int_{a}^{b} \left(\sum_{j=0}^{k} |f^{(j)}(x)|^{p}\right) dx\right)^{1/p}$$

is a Banach space isomorphic to $L^p[0,1]$. Now, $W^{k,2}[a,b]$ is a separable infinite-dimensional Hilbert space for each $k \in \mathbb{N}$. The family of operators to be considered lives on separable complex Hilbert spaces and is built from a single operator. Let $M \in \mathcal{L}(W^{2,2}[-\pi,\pi])$ be defined by the formula

(2.1)
$$M: W^{2,2}[-\pi,\pi] \to W^{2,2}[-\pi,\pi], \quad Mf(x) = e^{ix}f(x).$$

Denote $\mathscr{H} = W^{2,2}[-\pi,\pi]$ and let M^* be the dual operator of M. Then $M^* \in \mathcal{L}(\mathscr{H}^*)$. For each $t \in [-\pi,\pi]$ we have $\delta_t \in \mathscr{H}^*$, where $\delta_t : \mathscr{H} \to \mathbb{C}$, $\delta_t(f) = f(t)$. Furthermore, the map $t \mapsto \delta_t$ from $[-\pi,\pi]$ to \mathscr{H}^* is norm-continuous. For a non-empty compact subset K of $[-\pi,\pi]$, denote

$$X_K = \overline{\operatorname{span}\{\delta_t : t \in K\}}$$

where the closure is taken with respect to the norm of \mathscr{H}^* .

Now, the functionals δ_t are linearly independent, X_K is always a separable Hilbert space, and X_K is infinite-dimensional if and only if K is infinite. Moreover,

$$M^* \delta_t = e^{it} \delta_t$$
 for each $t \in [-\pi, \pi]$.

Hence, each X_K is an invariant subspace for M^* , which allows us to consider the operator

$$Q_K \in \mathcal{L}(X_K), \quad Q_K = M^*|_{X_K}.$$

The following is taken from [5] and tells us when Q_K is mixing or non-transitive; we omit the proof.

PROPOSITION 2.1 ([5, Proposition 3.9]). Let K be a non-empty compact subset of $[-\pi, \pi]$. If K has no isolated points, then Q_K is mixing. If K has an isolated point, then Q_K is non-transitive.

Now, consider the set

(2.2)
$$K = \left\{ \sum_{n=1}^{\infty} 2\pi\epsilon_n \cdot \frac{1}{2^{6^n}} : \epsilon \in \{0,1\}^{\mathbb{N}} \right\}.$$

Then, as pointed out in [5], the operator $Q_K \in \mathcal{L}(X_K)$ is mixing, but (Q_K, Q_K^2) is not *d*-mixing. In addition, we will show that Q_K is chaotic and (Q_K, Q_K^2) is not *d*-syndetic.

LEMMA 2.2. Let K be the compact subset of $[-\pi,\pi]$ defined in (2.2). Then Q_K is chaotic.

Proof. Since Q_K is mixing by Proposition 2.1, it remains to show that it has a dense set of periodic points. Denote by $Per(Q_K)$ the set of periodic points of Q_K .

Recall that $Q_K^n \delta_t = e^{int} \delta_t$ for any $n \in \mathbb{Z}_+$ and $t \in K$; the details can be found in [5, proof of Proposition 3.9].

Consider the set $A = \{\sum_{n=1}^{k} 2\pi\epsilon_n/2^{6^n} : \epsilon \in \{0,1\}^{\{1,\dots,k\}}, k \in \mathbb{N}\}.$ Observe that $\sum_{n=1}^{k} 2\pi\epsilon_n/2^{6^n} = 2\pi m/2^{6^k}$ for some m and any ϵ in $\{0,1\}^{\{1,\dots,k\}}$. So clearly $\{\delta_t : t \in A\} \subseteq \operatorname{Per}(Q_K)$. Moreover, if $r_1 = 2\pi m_1/2^{6^{n_1}}$ and $r_2 = 2\pi m_2/2^{6n_2}$ are in A, then $Q_K^{2^{6n_1}2^{6n_2}}(\alpha_1\delta_{r_1} + \alpha_2\delta_{r_2}) = \alpha_1\delta_{r_1} + \alpha_2\delta_{r_2}$ for any $\alpha_1, \alpha_2 \in \mathbb{C}$, so span $\{\delta_t : t \in A\} \subseteq \operatorname{Per}(Q_K)$.

On the other hand, since A is dense in K, we deduce that $\overline{\{\delta_t : t \in A\}} =$ $\{\delta_t : t \in K\}$. Indeed, for any $r \in K$ there exists a sequence $(r_n)_n \subseteq A$ such that r_n tends to r. Hence, $\|\delta_r - \delta_{r_n}\| = \sup_{\|f\|=1} |f(r) - f(r_n)|$ tends to 0.

Thus, $X_K = \overline{\operatorname{span}\{\delta_t : t \in K\}} = \overline{\operatorname{span}\{\delta_t : t \in A\}} = \overline{\operatorname{span}\{\delta_t : t \in A\}} \subseteq$ $\overline{\operatorname{Per}(Q_K)}$. So, $\operatorname{Per}(Q_K)$ is dense in X_K .

A set $A \subset \mathbb{N}$ is *thick* if it contains arbitrarily long intervals, i.e. for every L > 0 there exists $n \ge 1$ such that $\{n, n+1, \ldots, n+L\} \subset A$.

Now, in order to obtain a mixing operator T such that (T, T^2) is not d-syndetic, it will be enough to show that the sequence $(2Q_K^{a_n} - Q_K^{2a_n})_n$ of operators is non-transitive along a thick set $A = (a_n)$. We have the following result.

PROPOSITION 2.3. Let K be the compact subset of $[-\pi,\pi]$ defined in (2.2). Then the sequence $(2Q_K^{k_{n,r}} - Q_K^{2k_{n,r}})_{n \in \mathbb{N}, 0 \leq r \leq n}$ of continuous linear operators on X_K is non-transitive, where $k_{n,r} = 2^{\overline{6}^n} - r$ with $0 \le r \le n$, $n \in \mathbb{N}$.

Now we are in a position to prove Theorem 1.4.

We follow [5, proof of Theorem 3.8], but still we give all the details. We need to exhibit a mixing and chaotic operator T such that (T, T^2) is not *d*-syndetic.

Let K be the compact set defined in (2.2). By Proposition 2.1 and Lemma 2.2, Q_K is mixing and chaotic on the separable infinite-dimensional Hilbert space X_K . On the other hand, by Proposition 2.3, $(2Q_K^{a_n} - Q_K^{2a_n})_{n \in \mathbb{N}}$ is nontransitive for some thick set A written increasingly as $A = (a_n)_n$. Hence, there exist non-empty open sets U, V in X_K such that $(2Q_K^{a_n} - Q_K^{2a_n})(U) \cap V$ $= \emptyset$ for any $n \in \mathbb{N}$. In other words,

 $\{n \in \mathbb{N} : (2Q_K^n - Q_K^{2n})(U) \cap V \neq \emptyset\} \cap A = \emptyset,$

i.e. the set $\{n \in \mathbb{N} : (2Q_K^n - Q_K^{2n})(U) \cap V \neq \emptyset\}$ cannot be syndetic. In particular, (Q_K, Q_K^2) is not d-syndetic. Indeed, pick a non-empty open set V_0 such that $2V_0 - V_0 \subseteq V$ (denote by B(x; r) the open ball centered at x in X_K with radius r; pick $x \in X_K$ and $r \in \mathbb{R}_+$ such that $B(x;r) \subset V$; then set $V_0 := B(x;r/3)$). Hence,

$$\{n \in \mathbb{N} : U \cap Q_K^{-n}(V_0) \cap Q_K^{-2n}(V_0) \neq \emptyset\} \subseteq \{n \in \mathbb{N} : (2Q_K^n - Q_K^{2n})(U) \cap V \neq \emptyset\}.$$

Consequently, $\{n \in \mathbb{N} : U \cap Q_K^{-n}(V_0) \cap Q_K^{-2n}(V_0) \neq \emptyset\}$ cannot be a syndetic set and so (Q_K, Q_K^2) is not *d*-syndetic. Since all separable infinite-dimensional Hilbert spaces are isomorphic to l^2 , there is a mixing and chaotic $T \in \mathcal{L}(l^2)$ such that (T, T^2) is not *d*-syndetic. This concludes the proof of Theorem 1.4.

In order to close this subsection, we need to prove Proposition 2.3. We follow [5, proof of Proposition 3.10], except that instead of [5, Lemma A.3], we use Lemma 2.6 below.

To prove Lemma 2.6 we need another two lemmas proved in [5] that we state without proof.

LEMMA 2.4 ([5, Lemma A.1]). Let $f \in W^{2,2}[-\pi,\pi]$, $f(-\pi) = f(\pi)$, $f'(-\pi) = f'(\pi)$, $c_0 = ||f||_{L^{\infty}[-\pi,\pi]}$ and $c_1 = ||f''||_{L^2[-\pi,\pi]}$. Then $||f||_{W^2[-\pi,\pi]} \le \sqrt{3c_1^2 + c_0^2}$.

LEMMA 2.5 ([5, Lemma A.2]). Let $-\infty < \alpha < \beta < \infty$ and $a_0, a_1, b_0, b_1 \in \mathbb{C}$. Then there exists $f \in C^2[\alpha, \beta]$ such that

$$f(\alpha) = a_0, \quad f'(\alpha) = a_1, \quad f(\beta) = b_0, \quad f'(\beta) = b_1, \\ \|f\|_{L^{\infty}[\alpha,\beta]} \le |a_0 + b_0|/2 + |a_0 - b_0|/2 + (\beta - \alpha)(|a_1| + |b_1|)/5, \\ \|f''\|_{L^{2}[\alpha,\beta]}^{2} \le \frac{24|a_0 - b_0|^2}{(\beta - \alpha)^3} + \frac{12(|a_1|^2 + |b_1|^2)}{\beta - \alpha}.$$

LEMMA 2.6. There exists a sequence $(f_{2^{6^n}-r})_{n\in\mathbb{N}, 0\leq r\leq n}$ of 2π -periodic functions on \mathbb{R} such that $f_{2^{6^n}-r}|_{[-\pi,\pi]} \in W^{2,2}[-\pi,\pi]$, the sequence $(\|f_{2^{6^n}-r}\|_{W^{2,2}[-\pi,\pi]})_{n,r}$ is bounded and

$$f_{2^{6^n}-r}(x) = 2e^{i(2^{6^n}-r)x} - e^{2i(2^{6^n}-r)x}$$

whenever $|x - 2\pi m/2^{6^n}| \leq 2/(2^{6^n})^5$ for some $m \in \mathbb{Z}$ and every $n \in \mathbb{N}$ and $0 \leq r \leq n$.

Proof. We slightly modify the proof of Lemma A.3 in [5]. For $n \in \mathbb{N}$ and $0 \leq r \leq n$, let

$$k_{n,r} = 2^{6^n} - r$$
 and $h_{k_{n,r}} = 2e^{ik_{n,r}x} - e^{2ik_{n,r}x}$.

Note that $h_{k_{n,r}}$ is $2\pi/k_{n,r}$ -periodic. Let also

$$\alpha_{n,r} = 2/(2^{6^n})^5 - 2\pi/2^{6^n}$$
 and $\beta_{n,r} = -2/(2^{6^n})^5$.

A mixing operator

By Lemma 2.5, there is $g_{k_{n,r}} \in C^2[\alpha_{n,r}, \beta_{n,r}]$ such that

(2.3)
$$g_{k_{n,r}}(\alpha_{n,r}) = h_{k_{n,r}}(2/(2^{6^n})^5), \quad g_{k_{n,r}}(\beta_{n,r}) = h_{k_{n,r}}(-2/(2^{6^n})^5), \\ g'_{k_{n,r}}(\alpha_{n,r}) = h'_{k_{n,r}}(2/(2^{6^n})^5), \quad g'_{k_{n,r}}(\beta_{n,r}) = h'_{k_{n,r}}(-2/(2^{6^n})^5),$$

$$(2.4) ||g_{k_{n,r}}||_{L^{\infty}_{[\alpha_{n,r},\beta_{n,r}]}} \leq \max\{|h_{k_{n,r}}(2/(2^{6^{n}})^{5})|, |h_{k_{n,r}}(-2/(2^{6^{n}})^{5})|\} + \frac{(\beta_{n,r} - \alpha_{n,r})}{5}(|h'_{k_{n,r}}(2/(2^{6^{n}})^{5})| + |h'_{k_{n,r}}(-2/(2^{6^{n}})^{5})|),$$

$$(2.5) ||g_{k_{n,r}}''||_{L^{2}_{[\alpha_{n,r},\beta_{n,r}]}}^{2} \leq \frac{24|h_{k_{n,r}}(2/(2^{\circ})^{\circ}) - h_{k_{n,r}}(-2/(2^{\circ})^{\circ})|^{2}}{(\beta_{n,r} - \alpha_{n,r})^{3}} + 12\frac{|h_{k_{n,r}}'(2/(2^{6^{n}})^{5})|^{2} + |h_{k_{n,r}}'(-2/(2^{6^{n}})^{5})|^{2}}{(\beta_{n,r} - \alpha_{n,r})}.$$

The equalities (2.3) imply that there is a unique $f_{k_{n,r}} \in C^1(\mathbb{R})$ such that $f_{k_{n,r}}$ is $2\pi/2^{6^n}$ -periodic,

$$f_{k_{n,r}}|_{[\alpha_{n,r},\beta_{n,r}]} = g_{k_{n,r}}$$
 and $f_{k_{n,r}}|_{[\beta_{n,r},\alpha_{n,r}+2\pi/2^{6^n}]} = h_{k_{n,r}}$

 $2\pi/2^{6^n}$ -periodicity of $f_{k_{n,r}}$ and the equality $f_{k_{n,r}}|_{[\beta_{n,r},\alpha_{n,r}+2\pi/2^{6^n}]} = h_{k_{n,r}}$ imply that $f_{k_{n,r}}(x) = 2e^{i(2^{6^n}-r)x} - e^{2i(2^{6^n}-r)x}$ whenever $|x - 2\pi m/2^{6^n}| \le 2/(2^{6^n})^5$, for every $m \in \mathbb{Z}$ with $|2m| \le 2^{6^n}$ and all $n \in \mathbb{N}$ and $0 \le r \le n$. Since $f_{k_{n,r}}$ is piecewise C^2 , we have $f_{k_{n,r}}|_{[-\pi,\pi]} \in W^{2,2}[-\pi,\pi]$. It remains to verify that the sequence $(||f_{k_{n,r}}||_{W^{2,2}[-\pi,\pi]})_{n,r}$ is bounded.

Using the inequality $|e^{it} - e^{is}| \le |t - s|$ for $t, s \in \mathbb{R}$, we get

$$|h'_{k_{n,r}}(2/(2^{6^n})^5)| = |h'_{k_{n,r}}(-2/(2^{6^n})^5)| \le 2(2^{6^n} - r)^2 \cdot 2/(2^{6^n})^5.$$

Hence by (2.4),

$$\|f_{k_{n,r}}\|_{L^{\infty}_{[\alpha_{n,r},\beta_{n,r}]}} \le 3 + 5^{-1} \left(\frac{2\pi}{2^{6^n}} - \frac{4}{(2^{6^n})^5}\right) \cdot 8\frac{(2^{6^n} - r)^2}{(2^{6^n})^5} < 9.$$

Since $||h_{k_{n,r}}||_{L^{\infty}_{[\beta_{n,r},\alpha_{n,r}+2\pi/26^{n}]}} \leq 3$ and $f_{k_{n,r}}$ is $2\pi/2^{6^{n}}$ -periodic, we obtain (2.6) $||f_{k_{n,r}}||_{L^{\infty}_{[-\pi,\pi]}} \leq \max\{3,9\} = 9.$

Next,

$$\begin{aligned} |h_{k_{n,r}}(2/(2^{6^{n}})^{5}) - h_{k_{n,r}}(-2/(2^{6^{n}})^{5})| \\ &= \left|2(e^{i(2^{6^{n}}-r)\frac{2}{(2^{6^{n}})^{5}}} - e^{i(2^{6^{n}}-r)\frac{-2}{(2^{6^{n}})^{5}}}) - (e^{2i(2^{6^{n}}-r)\frac{2}{(2^{6^{n}})^{5}}} - e^{2i(2^{6^{n}}-r)\frac{-2}{(2^{6^{n}})^{5}}})\right| \\ &= \left|4\sin\left(2\cdot\frac{2^{6^{n}}-r}{(2^{6^{n}})^{5}}\right) - 2\sin\left(4\cdot\frac{2^{6^{n}}-r}{(2^{6^{n}})^{5}}\right)\right| \end{aligned}$$

Y. Puig

$$= 4\sin\left(2 \cdot \frac{2^{6^n} - r}{(2^{6^n})^5}\right) \left(1 - \cos\left(2 \cdot \frac{2^{6^n} - r}{(2^{6^n})^5}\right)\right)$$
$$= 16\sin^3\left(\frac{2^{6^n} - r}{(2^{6^n})^5}\right) \cos\left(\frac{2^{6^n} - r}{(2^{6^n})^5}\right) \le 16\left(\frac{2^{6^n} - r}{(2^{6^n})^5}\right)^3 \le \frac{16}{(2^{6^n})^{12}}.$$

On the other hand,

$$\frac{|h'_{k_{n,r}}(2/(2^{6^n})^5)|^2 + |h'_{k_{n,r}}(-2/(2^{6^n})^5)|^2}{\beta_{n,r} - \alpha_{n,r}} \le \frac{32\frac{(2^{6^n} - r)^4}{(2^{6^n})^{10}}}{\frac{2\pi}{2^{6^n}} - \frac{4}{(2^{6^n})^5}} \\ \le \frac{\frac{32}{(2^{6^n})^6}}{\frac{2\pi}{2^{6^n}} - \frac{4}{(2^{6^n})^5}} = \frac{32}{2\pi(2^{6^n})^5 - 4 \cdot 2^{6^n}} \le \frac{32}{2\pi(2^{6^n})^5 - 4(2^{6^n})^5} \le \frac{16}{(2^{6^n})^5}.$$

Hence by (2.5),

$$\|f_{k_{n,r}}''\|_{L^{2}_{[\alpha n,r,\beta n,r]}}^{2} \leq 24 \cdot \frac{\left(\frac{16}{(2^{6^{n}})^{12}}\right)^{2}}{\left(\frac{2\pi}{2^{6^{n}}} - \frac{4}{(2^{6^{n}})^{5}}\right)^{3}} + 12 \cdot \frac{16}{(2^{6^{n}})^{5}}$$
$$\leq 24 \cdot \frac{16^{2} \cdot (2^{6^{n}})^{-24}}{\left(\frac{2\pi}{2^{6^{n}}} - \frac{4}{2^{6^{n}}}\right)^{3}} + 12 \cdot \frac{16}{(2^{6^{n}})^{5}}$$
$$\leq \frac{24 \cdot 16^{2}}{8 \cdot (2^{6^{n}})^{21}} + \frac{12 \cdot 16}{(2^{6^{n}})^{5}} \leq \frac{960}{(2^{6^{n}})^{5}}.$$

Since $|h''_{k_{n,r}}(x)| \le 6(k_{n,r})^2$ for $x \in [\beta_{n,r}, \alpha_{n,r} + 2\pi/2^{6^n}]$, we have

$$\|f_{k_{n,r}}''\|_{L^2_{[\beta_{n,r},\alpha_{n,r}+2\pi/2^{6^n}]}}^2 \le 36 \cdot (2^{6^n}-r)^4 \cdot \frac{4}{(2^{6^n})^5} \le \frac{144}{2^{6^n}}.$$

Hence,

$$\|f_{k_{n,r}}''\|_{L^{2}_{[\alpha_{n,r},\alpha_{n,r}+2\pi/2^{6^{n}}]}}^{2} \leq \frac{960}{(2^{6^{n}})^{5}} + \frac{144}{2^{6^{n}}} \leq \frac{1104}{2^{6^{n}}}.$$

Since $f_{k_{n,r}}''$ is $2\pi/2^{6^n}$ -periodic, we find that

(2.7)
$$||f_{k_{n,r}}''||_{L^{2}_{[-\pi,\pi]}}^{2} = 2^{6^{n}} \cdot ||f_{k_{n,r}}''|_{L^{2}_{[\alpha_{n,r},\alpha_{n,r}+2\pi/26^{n}]}}^{2} \le 1104.$$

Now, by Lemma 2.4 and using (2.7) and (2.6) we obtain

$$\|f_{k_{n,r}}\|_{W^{2,2}[-\pi,\pi]} \le \sqrt{3 \cdot 1104 + 9^2} < 64$$

for each $n \in \mathbb{N}$ and $0 \leq r \leq n$.

2.2. Proof of Theorem 1.5. The main ingredient of the proof of Theorem 1.5 is a result due to Bergelson and McCutcheon concerning essential idempotents of $\beta \mathbb{N}$ (the Stone–Čech compactification of \mathbb{N}), and Szemerédi's theorem for generalized polynomials [4]. So, we first need some background on $\beta \mathbb{N}$.

290

Recall that a *filter* is a family \mathscr{F} invariant by finite intersections, i.e. $A, B \in \mathscr{F}$ implies $A \cap B \in \mathscr{F}$. The collection of all maximal filters (in the sense of inclusion) is denoted by $\beta\mathbb{N}$. Elements of $\beta\mathbb{N}$ are known as *ultrafilters*; endowed with an appropriate topology, $\beta\mathbb{N}$ becomes the Stone– Čech compactification of \mathbb{N} . Each point $i \in \mathbb{N}$ is identified with the principal ultrafilter $\mathfrak{U}_i := \{A \subseteq \mathbb{N} : i \in A\}$, which yields an embedding of \mathbb{N} into $\beta\mathbb{N}$. For any $A \subseteq \mathbb{N}$ and $p \in \beta\mathbb{N}$, the closure cl A of A in $\beta\mathbb{N}$ is defined as follows: $p \in \text{cl } A$ if and only if $A \in p$.

Given $p, q \in \beta \mathbb{N}$ and $A \subseteq \mathbb{N}$, the operation $(\mathbb{N}, +)$ can be extended to $\beta \mathbb{N}$ so as to make $(\beta \mathbb{N}, +)$ a compact right topological semigroup. The extended operation can be defined by: $A \in p+q$ if and only if $\{n \in \mathbb{N} : -n+A \in q\} \in p$. Now, according to a famous theorem of Ellis, idempotents (with respect to +) exist. Let $E(\mathbb{N}) = \{p \in \beta \mathbb{N} : p = p+p\}$ be the collection of idempotents in $\beta \mathbb{N}$. For further details see [10]. Given a family \mathscr{F} , the *dual* family \mathscr{F}^* consists of all sets A such that $A \cap F \neq \emptyset$ for every $F \in \mathscr{F}$. The following is a well-known result.

LEMMA 2.7.

(1) If \mathscr{F} is an ultrafilter, then $\mathscr{F}^* = \mathscr{F}$.

(2) If $\mathscr{F} = \bigcup_{\alpha} \mathscr{F}_{\alpha}$, then $\mathscr{F}^* = \bigcap_{\alpha} \mathscr{F}^*_{\alpha}$.

In particular, whenever \mathscr{F} is a union of some collection of ultrafilters, then \mathscr{F}^* is the intersection of the same collection.

The collection of essential idempotents is commonly denoted by \mathcal{D} .

The collection \mathcal{D} (of *D*-sets) is the union of all idempotents $p \in \beta \mathbb{N}$ such that every member of p has positive upper Banach density. Accordingly, \mathcal{D}^* is the intersection of all such idempotents.

The following result of ergodic Ramsey theory is due to Bergelson and McCutcheon [4]. It is indeed a sort of Szemerédi's theorem stated originally for generalized polynomials, and it will be crucial for proving Theorem 1.5.

THEOREM 2.8 ([4, Theorem 1.25]). Let $F \subset \mathbb{N}$ have positive upper Banach density and $g_1 \ldots, g_r$ be polynomials. Then

$$\left\{k \in \mathbb{N} : \overline{\mathrm{Bd}}\left(F \cap (F - g_1(k)) \cap \cdots \cap (F - g_r(k))\right) > 0\right\} \in \mathcal{D}^*.$$

We can now prove Theorem 1.5.

Fix $r \in \mathbb{N}$. Let T be reiteratively hypercyclic. Then there exists $x \in X$ such that $\overline{\mathrm{Bd}}(N(x,U)) > 0$ for any non-empty open set U in X. First, let us see that

(2.8)
$$N_T(\underbrace{U,\ldots,U}_r;U) = \{k \ge 0: T^{-k}U \cap \cdots \cap T^{-rk}U \cap U \neq \emptyset\} \in \mathcal{D}^*$$

for any non-empty open set U in X. We will show that

$$A_U := \left\{ k \ge 0 : \overline{\mathrm{Bd}} \left(N(x,U) \cap (N(x,U) - k) \cap \dots \cap (N(x,U) - rk) \right) > 0 \right\}$$
$$\subseteq \left\{ k \ge 0 : T^{-k}U \cap \dots \cap T^{-rk}U \cap U \neq \emptyset \right\}.$$

In fact, let $k \in A_U$. Then there exists a set A with positive upper Banach density such that for any $n \in A$ we have $T^{n+ik}x \in U$ for any $i \in \{0, \ldots, r\}$. Consequently, $T^n x \in T^{-k}U \cap \cdots \cap T^{-rk}U \cap U$. Now, by Theorem 2.8, it follows that $A_U \in \mathcal{D}^*$. Thus condition (2.8) holds.

Next, let $(U_j)_{j=0}^r$ be a finite sequence of non-empty open sets in X. Suppose that (T, \ldots, T^r) is *d*-transitive. We must show that $N_T(U_1, \ldots, U_r; U_0)$ is a syndetic set. In fact, there exists $n \in \mathbb{N}$ such that

$$V_n := T^{-n}U_1 \cap \cdots \cap T^{-rn}U_r \cap U_0 \neq \emptyset.$$

Thus V_n is open. Pick non-empty open sets O_1, O_2 such that $O_1 + O_2 \subset V_n$. Then

(2.9)
$$T^{jn}(O_1 + O_2) \subset U_j$$
 for any $j \in \{0, \dots, r\}$.

It is known that \mathcal{D}^* is a filter. Now, by (2.8) we have

$$A := N_T(\underbrace{O_1, \dots, O_1}_r; O_1) \cap N_T(\underbrace{O_2, \dots, O_2}_r; O_2) \in \mathcal{D}^*.$$

In addition, it is well known that each set in \mathcal{D}^* is syndetic [2]. Hence, A is syndetic. Let us show that $A + n \subseteq N(U_1, \ldots, U_r; U_0)$, then we are done because A + n is syndetic, since the collection of syndetic sets is shift invariant.

In fact, let $t \in A + n$. Then $t - n \in A$, which means that

$$T^{-t}T^{n}(O_{1})\cap\cdots\cap T^{-rt}T^{rn}(O_{1})\cap O_{1}\neq\emptyset,$$

$$T^{-t}T^{n}(O_{2})\cap\cdots\cap T^{-rt}T^{rn}(O_{2})\cap O_{2}\neq\emptyset.$$

By the linearity of T we obtain

$$T^{-t}(T^n(O_1+O_2))\cap\cdots\cap T^{-rt}(T^{rn}(O_1+O_2))\cap (O_1+O_2)\neq \emptyset.$$

Then by (2.9) we conclude that

$$T^{-t}U_1 \cap \cdots \cap T^{-rt}U_r \cap U_0 \neq \emptyset.$$

This concludes the proof of Theorem 1.5.

3. Tuple of powers of a weighted shift. In linear dynamics recurrence properties are frequently studied first in the context of weighted backward shifts.

Each bilateral bounded weight $w = (w_k)_{k \in \mathbb{Z}}$ induces a bilateral weighted backward shift B_w on $X = c_0(\mathbb{Z})$ or $l^p(\mathbb{Z})$ $(1 \le p < \infty)$, given by $B_w e_k := w_k e_{k-1}$, where $(e_k)_{k \in \mathbb{Z}}$ denotes the canonical basis of X. Analogously, each unilateral bounded weight $w = (w_n)_{n \in \mathbb{Z}_+}$ induces a unilateral weighted backward shift B_w on $X = c_0(\mathbb{Z}_+)$ or $l^p(\mathbb{Z}_+)$ $(1 \le p < \infty)$, given by $B_w e_n := w_n e_{n-1}, n \ge 1$, with $B_w e_0 := 0$, where $(e_n)_{n \in \mathbb{Z}_+}$ denotes the canonical basis of X.

As previously mentioned, the authors of [5] proved that for any weighted shift B_w , the following holds: B_w is mixing if and only if (B_w, \ldots, B_w^r) is *d*-mixing for all $r \in \mathbb{N}$. The aim of this section is to show that this result extends to some families on \mathbb{N} frequently studied in Ramsey theory.

Let us recall some such families:

- $\mathcal{I} = \{A \subseteq \mathbb{N} : A \text{ is infinite}\};$
- $\Delta = \{A \subseteq \mathbb{N} : B B \subseteq A \text{ for some infinite set } B\};$
- $\mathcal{IP} = \{A \subseteq \mathbb{N} : \exists (x_n)_n \subseteq \mathbb{N}, \sum_{n \in F} x_n \in A \text{ for any finite set } F\};$
- the set A is *piecewise syndetic* $(A \in \mathcal{PS} \text{ for short})$ if A can be written as the intersection of a thick set and a syndetic set.

It is known that \mathcal{I}^* (the family of cofinite sets), Δ^* , \mathcal{IP}^* and \mathcal{PS}^* are filters. In addition, $\mathcal{I}^* \subsetneq \Delta^* \subsetneq \mathcal{IP}^* \subsetneq \mathcal{S}$ and $\mathcal{I}^* \subsetneq \mathcal{PS}^* \subsetneq \mathcal{S}$, where \mathcal{S} denotes the family of syndetic sets. For a rich source of information on this subject we refer the reader to [10].

The main result of this section is the following.

THEOREM 3.1. Let \mathscr{F} be the family Δ^* , \mathcal{IP}^* , \mathcal{PS}^* or \mathcal{S} . Then for any $r \in \mathbb{N}$ the following are equivalent:

- (i) T is an \mathscr{F} -operator;
- (ii) $T \oplus \cdots \oplus T^r$ is an \mathscr{F} -operator on X^r .

In particular, a bilateral (or unilateral) weighted backward shift B_w on c_0 or l^p $(1 \le p < \infty)$ is an \mathscr{F} -operator if and only if (B_w, \ldots, B_w^r) is d- \mathscr{F} .

REMARK 3.2. Obviously, mixing operators are Δ^* -operators, but the converse is not true, as exhibited in [7], and the example is a weighted shift. Therefore, the conclusion of Theorem 3.1 concerning weighted shifts does not necessarily follow from the statement: B_w is mixing if and only if (B_w, \ldots, B_w^r) is *d*-mixing, for any $r \in \mathbb{N}$, shown in [5].

In order to prove Theorem 3.1 we will need the following results.

Recall that any tuple of powers of a fixed backward weighted shift on c_0 or l^p is *d*-transitive if and only if it is *d*-hypercyclic. This follows from [8, Theorem 2.7] and [8, Theorem 4.1]. Now, combining [8, Theorem 4.1] and [13, Theorem 2.5] in its bilateral (or unilateral) version, we obtain the following two propositions.

PROPOSITION 3.3. Let $X = c_0(\mathbb{Z})$ or $l^p(\mathbb{Z})$ $(1 \le p < \infty)$, $w = (w_j)_{j \in \mathbb{Z}}$ a bounded bilateral weight sequence, \mathscr{F} a filter on \mathbb{N} and $r_0 = 0 < 1 \le r_1 < \cdots < r_N$. Then the following are equivalent:

$$\begin{array}{ll} (\mathrm{i}) & (B_w^{r_1}, \ldots, B_w^{r_N}) \text{ is } d \cdot \mathscr{F}, \\ (\mathrm{ii}) & \bigoplus_{0 \leq s < l \leq N} B_w^{(r_l - r_s)} \text{ is an } \mathscr{F} \text{-operator on } X^{N(N+1)/2}, \\ (\mathrm{iii}) & \text{for any } M > 0, \ j \in \mathbb{Z} \text{ and } 0 \leq s < l \leq N, \\ & \left\{ m \in \mathbb{N} : \prod_{i=j+1}^{j+m(r_l - r_s)} |w_i| > M \right\} \in \mathscr{F}, \\ & \left\{ m \in \mathbb{N} : \frac{1}{\prod_{i=j-m(r_l - r_s)+1}^j |w_i|} > M \right\} \in \mathscr{F}. \end{array}$$

Proposition 3.4. Let $X = c_0(\mathbb{Z}_+)$ or $l^p(\mathbb{Z}_+)$ $(1 \leq p < \infty), w =$ $(w_n)_{n\in\mathbb{Z}_+}$ a bounded unilateral weight sequence, \mathscr{F} a filter on \mathbb{N} and $r_0 =$ $0 < 1 \leq r_1 < \cdots < r_N$. Then the following are equivalent:

 $\begin{array}{ll} (\mathrm{i}) & (B_w^{r_1}, \ldots, B_w^{r_N}) \text{ is } d \ensuremath{\mathscr{F}}, \\ (\mathrm{ii}) & \bigoplus_{0 \leq s < l \leq N} B_w^{(r_l - r_s)} \text{ is an } \ensuremath{\mathscr{F}} \text{ -operator on } X^{N(N+1)/2}, \\ (\mathrm{iii}) & \text{for any } M > 0, \ j \in \mathbb{Z}_+ \ and \ 0 \leq s < l \leq N, \end{array}$ $i \perp m(r_1 \perp r_1)$

$$\left\{m \in \mathbb{N} : \prod_{i=j+1}^{j+m(i-i,s)} |w_i| > M\right\} \in \mathscr{F}.$$

The following results of Ramsey theory concern preservation of certain notions of largeness in products.

PROPOSITION 3.5 ([3, Corollary 2.3]). Let $l \in \mathbb{N}$ and I be a subsemigroup of \mathbb{N}^l .

(a) If B is an \mathcal{IP}^* -set in N, then $B^l \cap I$ is an \mathcal{IP}^* -set in I.

(b) If B is a Δ^* -set in \mathbb{N} , then $B^l \cap I$ is a Δ^* -set in I.

PROPOSITION 3.6 ([3, Corollary 2.7]). Let $l \in \mathbb{N}$ and I be a subsemigroup of \mathbb{N}^l . If B is a \mathcal{PS}^* -set in \mathbb{N} , then $B^l \cap I$ is a \mathcal{PS}^* -set in I.

We are now finally able to prove Theorem 3.1.

Proof of Theorem 3.1. If $T \oplus \cdots \oplus T^r$ is an \mathscr{F} -operator on X^r for some $r \in \mathbb{N}$, then obviously T is an \mathscr{F} -operator. Conversely, let T be an \mathscr{F} operator, $r \in \mathbb{N}$ and U, V non-empty open sets. We need to show that $N(U, V) \in t\mathscr{F}$ for any $t = 1, \ldots, r$.

Denote

(3.1)
$$A = \{m, 2m, \dots, rm : m \in \mathbb{N}\} \cap (\underbrace{N(U, V) \times \dots \times N(U, V)}_{r \text{ times}}).$$

By Proposition 3.5, if N(U, V) is an \mathcal{IP}^* -set $[\Delta^*$ -set] in \mathbb{N} , then A is an \mathcal{IP}^* set $[\Delta^*$ -set] in $\{m, 2m, \ldots, rm : m \in \mathbb{N}\}$. Analogously, by Proposition 3.6, if N(U, V) is a \mathcal{PS}^* -set in \mathbb{N} , then A is a \mathcal{PS}^* -set in $\{m, 2m, \ldots, rm : m \in \mathbb{N}\}$.

294

(Dr.

Denote by Π_i the projection onto the *i*th coordinate. It is not difficult to see that $\Pi_1(A) \in \mathscr{F}$ for $\mathscr{F} = \Delta^*, \mathcal{IP}^*, \mathcal{PS}^*$, which is equivalent to

$$B = \{m \in \mathbb{N} : tm \in N(U, V)\} \in \mathscr{F}$$

for any $t = 1, \ldots, r$.

Hence, $tB \subseteq N(U, V)$ and $B \in \mathscr{F}$. Then $N(U, V) \in t\mathscr{F}$ for any $t = 1, \ldots, r$. Since $\mathscr{F} = \Delta^*, \mathcal{IP}^*, \mathcal{PS}^*$, it is a filter, and it is not difficult to see that $T \oplus \cdots \oplus T^r$ is indeed an \mathscr{F} -operator on X^r .

If B_w is a weighted shift on c_0 or l^p and $\mathscr{F} = \Delta^*, \mathcal{IP}^*, \mathcal{PS}^*$, then by Proposition 3.3 (or Proposition 3.4), we deduce that B_w is an \mathscr{F} -operator if and only if (B_w, \ldots, B_w^r) is d- \mathscr{F} for any $r \in \mathbb{N}$.

Finally, let \mathscr{F} be the family of syndetic sets. Just recall that T is syndetic if and only if T is a \mathcal{PS}^* -operator [7]. Hence T is syndetic if and only if $T \oplus \cdots \oplus T^r$ is a \mathcal{PS}^* -operator on X^r , for any $r \in \mathbb{N}$. If B_w is a weighted shift, then B_w is syndetic if and only if (B_w, \ldots, B_w^r) is d- \mathcal{PS}^* , for any $r \in \mathbb{N}$. This concludes the proof of Theorem 3.1.

Acknowledgements. We would like to thank the referee for her/his careful reading of the manuscript.

References

- F. Bayart and E. Matheron, *Dynamics of Linear Operators*, Cambridge Tracts in Math. 179, Cambridge Univ. Press, Cambridge, 2009.
- [2] V. Bergelson and T. Downarowicz, Large sets of integers and hierarchy of mixing properties of measure preserving systems, Colloq. Math. 110 (2008), 117–150.
- [3] V. Bergelson and N. Hindman, Partition regular structures contained in large sets are abundant, J. Combin. Theory Ser. A 93 (2001), 18–36.
- [4] V. Bergelson and R. McCutcheon, Idempotent ultrafilters, multiple weak mixing and Szemerédi's theorem for generalized polynomials, J. Anal. Math. 111 (2010), 77–130.
- [5] J. Bès, O. Martin, A. Peris and S. Shkarin, *Disjoint mixing operators*, J. Funct. Anal. 263 (2012), 1283–1322.
- [6] J. Bès, Q. Menet, A. Peris and Y. Puig, *Recurrence properties of hypercyclic oper*ators, Math. Ann. 366 (2016), 545–572.
- [7] J. Bès, Q. Menet, A. Peris and Y. Puig, *Strong transitivity properties for operators*, preprint.
- [8] J. Bès and A. Peris, *Disjointness in hypercyclicity*, J. Math. Anal. Appl. 336 (2007), 297–315.
- [9] K.-G. Grosse-Erdmann and A. Peris, *Linear Chaos*, Universitext, Springer, London, 2011.
- [10] N. Hindman and D. Strauss, Algebra in the Stone-Čech compactification. Theory and Applications, Expositions Math. 27, de Gruyter, Berlin, 1998.
- Q. Menet, Linear chaos and frequent hypercyclicity, Trans. Amer. Math. Soc., online (2017); doi: 10.1090/tran/6808.
- [12] Y. Puig, Linear dynamics and recurrence properties defined via essential idempotents of βN, Ergodic Theory Dynam. Systems, online (2016); doi: 10.1017/etds.2016.34.

Y. Puig

[13] H. N. Salas, Hypercyclic weighted shifts, Trans. Amer. Math. Soc. 347 (1995), 993– 1004.

Yunied Puig Dipartimento di Matematica "Federigo Enriques" Università degli Studi di Milano Via Saldini 50 20133 Milano, Italy E-mail: puigdedios@gmail.com

296