A mixing operator T for which (T, T^{2}) is not disjoint transitive

by
Yunied Puig (Milano)

Abstract

Using a result from ergodic Ramsey theory, we answer a question posed by Bès, Martin, Peris and Shkarin by exhibiting a mixing operator T on a Hilbert space such that the tuple $\left(T, T^{2}\right)$ is not disjoint transitive.

1. Introduction. Let X be a separable topological vector space. Denote by $\mathcal{L}(X)$ the set of bounded linear operators on X. From now on, unless otherwise specified, an operator is a member of $\mathcal{L}(X)$. An operator T is called hypercyclic provided that there exists a vector $x \in X$ such that its orbit $\left\{T^{n} x: n \geq 0\right\}$ is dense in X; then x is called a hypercyclic vector for T. Hypercyclic operators are one of the most studied objects in linear dynamics; see [9] and [1] for further information concerning concepts, results and a detailed account on this subject. More generally, a tuple $\left(T_{1}, \ldots, T_{N}\right)$ of operators is said to be disjoint hypercyclic (d-hypercyclic for short) if

$$
\left\{\left(T_{1}^{n} x, \ldots, T_{N}^{n} x\right): n \in \mathbb{N}\right\}
$$

is dense in X^{N} for some $x \in X$.
If X is an F-space, then thanks to Birkhoff's theorem [1], T is hypercyclic if and only if T is topologically transitive, i.e. for any non-empty open sets U, V in X, the return set $N(U, V):=\left\{n \geq 0: T^{n}(U) \cap V \neq \emptyset\right\}$ is non-empty. If $N(U, V)$ is cofinite for any non-empty open sets U and V, then T is said to be mixing.

The notion of disjoint transitivity, a strengthening of transitivity, is defined as follows: a tuple $\left(T_{1}, \ldots, T_{N}\right)$ of operators is disjoint transitive (d-transitive for short) if for any $(N+1)$-tuple $\left(U_{i}\right)_{i=0}^{N}$ of non-empty open sets in X,

$$
N_{U_{1}, \ldots, U_{N} ; U_{0}}:=\left\{k \geq 0: T_{1}^{-k}\left(U_{1}\right) \cap \cdots \cap T_{N}^{-k}\left(U_{N}\right) \cap U_{0} \neq \emptyset\right\}
$$

[^0]is non-empty. In particular, if $N_{U_{1}, \ldots, U_{N} ; U_{0}}$ happens to be cofinite for any $\left(U_{i}\right)_{i=0}^{N}$ as above, then $\left(T_{1}, \ldots, T_{N}\right)$ is said to be disjoint mixing (d-mixing for short). A connection between d-hypercyclicity and d-transitivity can be found in [8].

Bès, Martin, Peris and Shkarin [5] showed the following: if T is an operator on X satisfying the Original Kitai Criterion, then the tuple (T, \ldots, T^{r}) is d-mixing for every $r \in \mathbb{N}$. As a consequence, a bilateral weighted shift T on $l^{p}(\mathbb{Z})(1 \leq p<\infty)$ or $c_{0}(\mathbb{Z})$ is mixing if and only if $\left(T, \ldots, T^{r}\right)$ is d-mixing, for any $r \in \mathbb{N}$. Nevertheless, they remarked that this phenomenon does not occur beyond the weighted shift context, by providing an example of a mixing Hilbert space operator T such that $\left(T, T^{2}\right)$ is not d-mixing. This is a partial answer to the following question posed in 5.

Question 1.1. Does there exist a mixing continuous linear operator T on a separable Banach space such that $\left(T, T^{2}\right)$ is not d-transitive?

Our aim is to give a positive answer to Question 1.1 (Theorem 1.6 below).
1.1. Preliminaries and main results. For $A \subseteq \mathbb{N},|A|$ stands for the cardinality of A. Let \mathscr{F} be a set of subsets of \mathbb{N}. We say that \mathscr{F} is a family on \mathbb{N} provided (I) $|A|=\infty$ for any $A \in \mathscr{F}$ and (II) $A \in \mathscr{F}$ and $A \subset B$ implies $B \in \mathscr{F}$. From now on \mathscr{F} will be a family on \mathbb{N}.

In a natural way we generalize the notion of disjoint transitivity by introducing what we call \mathscr{F}-disjoint transitivity (or d - \mathscr{F} for short).

Definition 1.2. A tuple $\left(T_{1, n_{k}}, \ldots, T_{N, n_{k}}\right)_{k}$ of sequences of operators is said to be d - \mathscr{F} if for any $(N+1)$-tuple $\left(U_{i}\right)_{i=0}^{N}$ of non-empty open sets we have

$$
\left\{k \geq 0: T_{1, n_{k}}^{-1}\left(U_{1}\right) \cap \cdots \cap T_{N, n_{k}}^{-1}\left(U_{N}\right) \cap U_{0} \neq \emptyset\right\} \in \mathscr{F} .
$$

In particular, if $T_{i, n_{k}}=T_{i}^{k}$ for any $k \in \mathbb{N}$ and $1 \leq i \leq N$ in the above definition, then the N-tuple $\left(T_{1}, \ldots, T_{N}\right)$ of operators is said to be d - \mathscr{F}.

Observe that in particular when \mathscr{F} is the family of non-empty sets or the family of cofinite sets, we obtain the notion of disjoint transitivity and disjoint mixing respectively. On the other hand, if $N=1$ we obtain \mathscr{F} transitivity: an operator T is called \mathscr{F}-transitive (or an \mathscr{F}-operator for short) if $N(U, V):=\left\{n \geq 0: T^{n}(U) \cap V \neq \emptyset\right\} \in \mathscr{F}$ for any open U, V. This notion was introduced and studied in [7].

Recall that an operator T is said to be chaotic if it is hypercyclic and has a dense set of periodic points $\left(x \in X\right.$ is a periodic point of T if $T^{k} x=x$ for some $k \geq 1$).

An operator T is said to be reiteratively hypercyclic if there exists $x \in X$ such that for every non-empty open set U in X, the set $N(x, U)=\{n \geq 0$: $\left.T^{n} x \in U\right\}$ has positive upper Banach density, where the upper Banach
density of a set $A \subset \mathbb{N}$ is given by

$$
\overline{\mathrm{Bd}}(A)=\lim _{s \rightarrow \infty} \frac{\alpha^{s}}{s}
$$

and $\alpha^{s}=\limsup _{k \rightarrow \infty}|A \cap[k+1, k+s]|$ for any $s \geq 1$. Reiteratively hypercyclic operators have been studied in [6] and [12].

It is known that there exists a reiteratively hypercyclic operator which is not chaotic (see [1]). However, concerning the converse we have the following result due to Menet.

Theorem 1.3 ([11, Theorem 1.1]). Any chaotic operator is reiteratively hypercyclic.

Recall that a set $A \subseteq \mathbb{N}$ is syndetic if it has bounded gaps, i.e. if A is increasingly enumerated as $\left(x_{n}\right)_{n}=A$, then $\max _{n}\left(x_{n+1}-x_{n}\right)<M$ for some $M>0$.

In [5], the authors show that there exists a mixing operator T on a Hilbert space such that $\left(T, T^{2}\right)$ is not d-mixing. We show that the same operator has more specific properties.

Theorem 1.4. There exists $T \in \mathcal{L}\left(l^{2}\right)$ such that T is mixing, chaotic and $\left(T, T^{2}\right)$ is not d-syndetic.

So, our result improves the result of [5] already mentioned but still does not answer Question 1.1. In answering that question, Szemerédi's famous theorem will unexpectedly play an important role. Indeed, using a result of ergodic Ramsey theory due to Bergelson and McCutcheon [4], which is in fact a kind of Szemerédi's theorem for generalized polynomials, we obtain the following result.

Theorem 1.5. Letr $\in \mathbb{N}$. If T is reiteratively hypercyclic then $\left(T, \ldots, T^{r}\right)$ is d-syndetic or not d-transitive.

Now, from Theorems 1.31 .5 we can deduce our main result which gives a positive answer to Question 1.1.

TheOrem 1.6. There exists a mixing and chaotic operator T in $\mathcal{L}\left(l^{2}\right)$ such that $\left(T, T^{2}\right)$ is not d-transitive.
2. Proof of Theorem 1.6. As already mentioned, to prove Theorem 1.6 it is enough to prove Theorems 1.4 and 1.5 .
2.1. Proof of Theorem 1.4. In [5, Theorem 3.8] the authors give an example of a mixing Hilbert space operator T such that $\left(T, T^{2}\right)$ is not d-mixing. We will show that in addition T is chaotic and $\left(T, T^{2}\right)$ is not d-syndetic. So in particular it is not d-mixing. We follow the proof of [5], Theorem 3.8] with minor modifications. Nevertheless, we describe all the details for completeness.

Let $1 \leq p<\infty,-\infty<a<b<\infty$ and $k \in \mathbb{N}$. Recall that the Sobolev space $W^{k, p}[a, b]$ is the space of functions $f \in C^{k-1}[a, b]$ such that $f^{(k-1)}$ is absolutely continuous and $f^{(k)} \in L^{p}[a, b]$. The space $W^{k, p}[a, b]$ endowed with the norm

$$
\|f\|_{W^{k, p}[a, b]}=\left(\int_{a}^{b}\left(\sum_{j=0}^{k}\left|f^{(j)}(x)\right|^{p}\right) d x\right)^{1 / p}
$$

is a Banach space isomorphic to $L^{p}[0,1]$. Now, $W^{k, 2}[a, b]$ is a separable infinite-dimensional Hilbert space for each $k \in \mathbb{N}$. The family of operators to be considered lives on separable complex Hilbert spaces and is built from a single operator. Let $M \in \mathcal{L}\left(W^{2,2}[-\pi, \pi]\right)$ be defined by the formula

$$
\begin{equation*}
M: W^{2,2}[-\pi, \pi] \rightarrow W^{2,2}[-\pi, \pi], \quad M f(x)=e^{i x} f(x) \tag{2.1}
\end{equation*}
$$

Denote $\mathscr{H}=W^{2,2}[-\pi, \pi]$ and let M^{*} be the dual operator of M. Then $M^{*} \in \mathcal{L}\left(\mathscr{H}^{*}\right)$. For each $t \in[-\pi, \pi]$ we have $\delta_{t} \in \mathscr{H}^{*}$, where $\delta_{t}: \mathscr{H} \rightarrow \mathbb{C}$, $\delta_{t}(f)=f(t)$. Furthermore, the map $t \mapsto \delta_{t}$ from $[-\pi, \pi]$ to \mathscr{H}^{*} is normcontinuous. For a non-empty compact subset K of $[-\pi, \pi]$, denote

$$
X_{K}=\overline{\operatorname{span}\left\{\delta_{t}: t \in K\right\}}
$$

where the closure is taken with respect to the norm of \mathscr{H}^{*}.
Now, the functionals δ_{t} are linearly independent, X_{K} is always a separable Hilbert space, and X_{K} is infinite-dimensional if and only if K is infinite. Moreover,

$$
M^{*} \delta_{t}=e^{i t} \delta_{t} \quad \text { for each } t \in[-\pi, \pi]
$$

Hence, each X_{K} is an invariant subspace for M^{*}, which allows us to consider the operator

$$
Q_{K} \in \mathcal{L}\left(X_{K}\right), \quad Q_{K}=\left.M^{*}\right|_{X_{K}}
$$

The following is taken from [5] and tells us when Q_{K} is mixing or nontransitive; we omit the proof.

Proposition 2.1 ([5, Proposition 3.9]). Let K be a non-empty compact subset of $[-\pi, \pi]$. If K has no isolated points, then Q_{K} is mixing. If K has an isolated point, then Q_{K} is non-transitive.

Now, consider the set

$$
\begin{equation*}
K=\left\{\sum_{n=1}^{\infty} 2 \pi \epsilon_{n} \cdot \frac{1}{2^{6^{n}}}: \epsilon \in\{0,1\}^{\mathbb{N}}\right\} \tag{2.2}
\end{equation*}
$$

Then, as pointed out in [5], the operator $Q_{K} \in \mathcal{L}\left(X_{K}\right)$ is mixing, but $\left(Q_{K}, Q_{K}^{2}\right)$ is not d-mixing. In addition, we will show that Q_{K} is chaotic and $\left(Q_{K}, Q_{K}^{2}\right)$ is not d-syndetic.

Lemma 2.2. Let K be the compact subset of $[-\pi, \pi]$ defined in (2.2). Then Q_{K} is chaotic.

Proof. Since Q_{K} is mixing by Proposition 2.1, it remains to show that it has a dense set of periodic points. Denote by $\operatorname{Per}\left(Q_{K}\right)$ the set of periodic points of Q_{K}.

Recall that $Q_{K}^{n} \delta_{t}=e^{i n t} \delta_{t}$ for any $n \in \mathbb{Z}_{+}$and $t \in K$; the details can be found in [5, proof of Proposition 3.9].

Consider the set $A=\left\{\sum_{n=1}^{k} 2 \pi \epsilon_{n} / 2^{6^{n}}: \epsilon \in\{0,1\}^{\{1, \ldots, k\}}, k \in \mathbb{N}\right\}$.
Observe that $\sum_{n=1}^{k} 2 \pi \epsilon_{n} / 2^{6^{n}}=2 \pi m / 2^{6^{k}}$ for some m and any ϵ in $\{0,1\}^{\{1, \ldots, k\}}$. So clearly $\left\{\delta_{t}: t \in A\right\} \subseteq \operatorname{Per}\left(Q_{K}\right)$. Moreover, if $r_{1}=2 \pi m_{1} / 2^{6^{n_{1}}}$ and $r_{2}=2 \pi m_{2} / 2^{6^{n_{2}}}$ are in A, then $Q_{K}^{2^{6_{1}} 2^{6^{n_{2}}}}\left(\alpha_{1} \delta_{r_{1}}+\alpha_{2} \delta_{r_{2}}\right)=\alpha_{1} \delta_{r_{1}}+\alpha_{2} \delta_{r_{2}}$ for any $\alpha_{1}, \alpha_{2} \in \mathbb{C}$, so $\operatorname{span}\left\{\delta_{t}: t \in A\right\} \subseteq \operatorname{Per}\left(Q_{K}\right)$.

On the other hand, since A is dense in K, we deduce that $\overline{\left\{\delta_{t}: t \in A\right\}}=$ $\left\{\delta_{t}: t \in K\right\}$. Indeed, for any $r \in K$ there exists a sequence $\left(r_{n}\right)_{n} \subseteq A$ such that r_{n} tends to r. Hence, $\left\|\delta_{r}-\delta_{r_{n}}\right\|=\sup _{\|f\|=1}\left|f(r)-f\left(r_{n}\right)\right|$ tends to 0 .

Thus, $X_{K}=\overline{\operatorname{span}\left\{\delta_{t}: t \in K\right\}}=\operatorname{span} \overline{\left\{\delta_{t}: t \in A\right\}}=\overline{\operatorname{span}\left\{\delta_{t}: t \in A\right\}} \subseteq$ $\overline{\operatorname{Per}\left(Q_{K}\right)}$. So, $\operatorname{Per}\left(Q_{K}\right)$ is dense in X_{K}.

A set $A \subset \mathbb{N}$ is thick if it contains arbitrarily long intervals, i.e. for every $L>0$ there exists $n \geq 1$ such that $\{n, n+1, \ldots, n+L\} \subset A$.

Now, in order to obtain a mixing operator T such that $\left(T, T^{2}\right)$ is not d-syndetic, it will be enough to show that the sequence $\left(2 Q_{K}^{a_{n}}-Q_{K}^{2 a_{n}}\right)_{n}$ of operators is non-transitive along a thick set $A=\left(a_{n}\right)$. We have the following result.

Proposition 2.3. Let K be the compact subset of $[-\pi, \pi]$ defined in (2.2). Then the sequence $\left(2 Q_{K}^{k_{n, r}}-Q_{K}^{2 k_{n, r}}\right)_{n \in \mathbb{N}, 0 \leq r \leq n}$ of continuous linear operators on X_{K} is non-transitive, where $k_{n, r}=2^{6^{n}}-r$ with $0 \leq r \leq n$, $n \in \mathbb{N}$.

Now we are in a position to prove Theorem 1.4 .
We follow [5, proof of Theorem 3.8], but still we give all the details. We need to exhibit a mixing and chaotic operator T such that $\left(T, T^{2}\right)$ is not d-syndetic.

Let K be the compact set defined in 2.2 . By Proposition 2.1 and Lemma 2.2, Q_{K} is mixing and chaotic on the separable infinite-dimensional Hilbert space X_{K}. On the other hand, by Proposition 2.3, $\left(2 Q_{K}^{a_{n}}-Q_{K}^{2 a_{n}}\right)_{n \in \mathbb{N}}$ is nontransitive for some thick set A written increasingly as $A=\left(a_{n}\right)_{n}$. Hence, there exist non-empty open sets U, V in X_{K} such that $\left(2 Q_{K}^{a_{n}}-Q_{K}^{2 a_{n}}\right)(U) \cap V$ $=\emptyset$ for any $n \in \mathbb{N}$. In other words,

$$
\left\{n \in \mathbb{N}:\left(2 Q_{K}^{n}-Q_{K}^{2 n}\right)(U) \cap V \neq \emptyset\right\} \cap A=\emptyset
$$

i.e. the set $\left\{n \in \mathbb{N}:\left(2 Q_{K}^{n}-Q_{K}^{2 n}\right)(U) \cap V \neq \emptyset\right\}$ cannot be syndetic. In particular, $\left(Q_{K}, Q_{K}^{2}\right)$ is not d-syndetic. Indeed, pick a non-empty open set V_{0} such that $2 V_{0}-V_{0} \subseteq V$ (denote by $B(x ; r)$ the open ball centered at x
in X_{K} with radius r; pick $x \in X_{K}$ and $r \in \mathbb{R}_{+}$such that $B(x ; r) \subset V$; then set $\left.V_{0}:=B(x ; r / 3)\right)$. Hence, $\left\{n \in \mathbb{N}: U \cap Q_{K}^{-n}\left(V_{0}\right) \cap Q_{K}^{-2 n}\left(V_{0}\right) \neq \emptyset\right\} \subseteq\left\{n \in \mathbb{N}:\left(2 Q_{K}^{n}-Q_{K}^{2 n}\right)(U) \cap V \neq \emptyset\right\}$. Consequently, $\left\{n \in \mathbb{N}: U \cap Q_{K}^{-n}\left(V_{0}\right) \cap Q_{K}^{-2 n}\left(V_{0}\right) \neq \emptyset\right\}$ cannot be a syndetic set and so $\left(Q_{K}, Q_{K}^{2}\right)$ is not d-syndetic. Since all separable infinite-dimensional Hilbert spaces are isomorphic to l^{2}, there is a mixing and chaotic $T \in \mathcal{L}\left(l^{2}\right)$ such that $\left(T, T^{2}\right)$ is not d-syndetic. This concludes the proof of Theorem 1.4 .

In order to close this subsection, we need to prove Proposition 2.3. We follow [5, proof of Proposition 3.10], except that instead of [5, Lemma A.3], we use Lemma 2.6 below.

To prove Lemma 2.6 we need another two lemmas proved in [5] that we state without proof.

Lemma 2.4 ([5, Lemma A.1]). Let $f \in W^{2,2}[-\pi, \pi], f(-\pi)=f(\pi)$, $f^{\prime}(-\pi)=f^{\prime}(\pi), c_{0}=\|f\|_{L^{\infty}[-\pi, \pi]}$ and $c_{1}=\left\|f^{\prime \prime}\right\|_{L^{2}[-\pi, \pi]}$. Then $\|f\|_{W^{2}[-\pi, \pi]}$ $\leq \sqrt{3 c_{1}^{2}+c_{0}^{2}}$.

Lemma 2.5 ([5, Lemma A.2]). Let $-\infty<\alpha<\beta<\infty$ and $a_{0}, a_{1}, b_{0}, b_{1}$ $\in \mathbb{C}$. Then there exists $f \in C^{2}[\alpha, \beta]$ such that

$$
\begin{aligned}
& f(\alpha)=a_{0}, \quad f^{\prime}(\alpha)=a_{1}, \quad f(\beta)=b_{0}, \quad f^{\prime}(\beta)=b_{1} \\
& \|f\|_{L^{\infty}[\alpha, \beta]} \leq\left|a_{0}+b_{0}\right| / 2+\left|a_{0}-b_{0}\right| / 2+(\beta-\alpha)\left(\left|a_{1}\right|+\left|b_{1}\right|\right) / 5 \\
& \left\|f^{\prime \prime}\right\|_{L^{2}[\alpha, \beta]}^{2} \leq \frac{24\left|a_{0}-b_{0}\right|^{2}}{(\beta-\alpha)^{3}}+\frac{12\left(\left|a_{1}\right|^{2}+\left|b_{1}\right|^{2}\right)}{\beta-\alpha}
\end{aligned}
$$

Lemma 2.6. There exists a sequence $\left(f_{2^{6 n}-r}\right)_{n \in \mathbb{N}, 0 \leq r \leq n}$ of 2π-periodic functions on \mathbb{R} such that $\left.f_{2^{6^{n}-r}}\right|_{[-\pi, \pi]} \in W^{2,2}[-\pi, \pi]$, the sequence $\left(\left\|f_{2^{6^{n}-r}}\right\|_{W^{2,2}[-\pi, \pi]}\right)_{n, r}$ is bounded and

$$
f_{2^{6^{n}}-r}(x)=2 e^{i\left(2^{6^{n}}-r\right) x}-e^{2 i\left(2^{6^{n}}-r\right) x}
$$

whenever $\left|x-2 \pi m / 2^{6^{n}}\right| \leq 2 /\left(2^{6^{n}}\right)^{5}$ for some $m \in \mathbb{Z}$ and every $n \in \mathbb{N}$ and $0 \leq r \leq n$.

Proof. We slightly modify the proof of Lemma A. 3 in [5].
For $n \in \mathbb{N}$ and $0 \leq r \leq n$, let

$$
k_{n, r}=2^{6^{n}}-r \quad \text { and } \quad h_{k_{n, r}}=2 e^{i k_{n, r} x}-e^{2 i k_{n, r} x}
$$

Note that $h_{k_{n, r}}$ is $2 \pi / k_{n, r}$-periodic. Let also

$$
\alpha_{n, r}=2 /\left(2^{6^{n}}\right)^{5}-2 \pi / 2^{6^{n}} \quad \text { and } \quad \beta_{n, r}=-2 /\left(2^{6^{n}}\right)^{5}
$$

By Lemma 2.5, there is $g_{k_{n, r}} \in C^{2}\left[\alpha_{n, r}, \beta_{n, r}\right]$ such that

$$
\begin{align*}
& g_{k_{n, r}}\left(\alpha_{n, r}\right)=h_{k_{n, r}}\left(2 /\left(2^{6^{n}}\right)^{5}\right), \quad g_{k_{n, r}}\left(\beta_{n, r}\right)=h_{k_{n, r}}\left(-2 /\left(2^{6^{n}}\right)^{5}\right) \\
& g_{k_{n, r}}^{\prime}\left(\alpha_{n, r}\right)=h_{k_{n, r}^{\prime}}^{\prime}\left(2 /\left(2^{6^{n}}\right)^{5}\right), \quad g_{k_{n, r}}^{\prime}\left(\beta_{n, r}\right)=h_{k_{n, r}^{\prime}}^{\prime}\left(-2 /\left(2^{6^{n}}\right)^{5}\right) \tag{2.3}\\
& \left\|g_{k_{n, r}}\right\|_{L_{\left[\alpha_{n, r}, \beta_{n, r}\right]}^{\infty} \leq \max \left\{\left|h_{k_{n, r}}\left(2 /\left(2^{6^{n}}\right)^{5}\right)\right|,\left|h_{k_{n, r}}\left(-2 /\left(2^{6^{n}}\right)^{5}\right)\right|\right\}} \quad \begin{array}{l}
\quad+\frac{\left(\beta_{n, r}-\alpha_{n, r}\right)}{5}\left(\left|h_{k_{n, r}^{\prime}}^{\prime}\left(2 /\left(2^{6^{n}}\right)^{5}\right)\right|+\left|h_{k_{n, r}^{\prime}}^{\prime}\left(-2 /\left(2^{6^{n}}\right)^{5}\right)\right|\right)
\end{array} . \tag{2.4}
\end{align*}
$$

$$
\begin{align*}
\left\|g_{k_{n, r}}^{\prime \prime}\right\|_{L_{\left[\alpha_{n, r}, \beta_{n, r}\right]}^{2}}^{2} \leq & \frac{24\left|h_{k_{n, r}}\left(2 /\left(2^{6^{n}}\right)^{5}\right)-h_{k_{n, r}}\left(-2 /\left(2^{6^{n}}\right)^{5}\right)\right|^{2}}{\left(\beta_{n, r}-\alpha_{n, r}\right)^{3}} \tag{2.5}\\
& +12 \frac{\left|h_{k_{n, r}^{\prime}}^{\prime}\left(2 /\left(2^{6^{n}}\right)^{5}\right)\right|^{2}+\left|h_{k_{n, r}}^{\prime}\left(-2 /\left(2^{6^{n}}\right)^{5}\right)\right|^{2}}{\left(\beta_{n, r}-\alpha_{n, r}\right)}
\end{align*}
$$

The equalities 2.3 imply that there is a unique $f_{k_{n, r}} \in C^{1}(\mathbb{R})$ such that $f_{k_{n, r}}$ is $2 \pi / 2^{6^{n}}$-periodic,

$$
\left.f_{k_{n, r}}\right|_{\left[\alpha_{n, r}, \beta_{n, r}\right]}=g_{k_{n, r}} \quad \text { and }\left.\quad f_{k_{n, r}}\right|_{\left[\beta_{n, r}, \alpha_{n, r}+2 \pi / 2^{6^{n}}\right]}=h_{k_{n, r}}
$$

$2 \pi / 2^{6^{n}}$-periodicity of $f_{k_{n, r}}$ and the equality $\left.f_{k_{n, r}}\right|_{\left[\beta_{n, r}, \alpha_{n, r}+2 \pi / 2^{6^{n}}\right]}=h_{k_{n, r}}$ imply that $f_{k_{n, r}}(x)=2 e^{i\left(2^{6^{n}}-r\right) x}-e^{2 i\left(2^{6^{n}}-r\right) x}$ whenever $\left|x-2 \pi m / 2^{6^{n}}\right| \leq$ $2 /\left(2^{6^{n}}\right)^{5}$, for every $m \in \mathbb{Z}$ with $|2 m| \leq 2^{6^{n}}$ and all $n \in \mathbb{N}$ and $0 \leq r \leq n$. Since $f_{k_{n, r}}$ is piecewise C^{2}, we have $\left.f_{k_{n, r}}\right|_{[-\pi, \pi]} \in W^{2,2}[-\pi, \pi]$. It remains to verify that the sequence $\left(\left\|f_{k_{n, r}}\right\|_{W^{2,2}[-\pi, \pi]}\right)_{n, r}$ is bounded.

Using the inequality $\left|e^{i t}-e^{i s}\right| \leq|t-s|$ for $t, s \in \mathbb{R}$, we get

$$
\left|h_{k_{n, r}}^{\prime}\left(2 /\left(2^{6^{n}}\right)^{5}\right)\right|=\left|h_{k_{n, r}}^{\prime}\left(-2 /\left(2^{6^{n}}\right)^{5}\right)\right| \leq 2\left(2^{6^{n}}-r\right)^{2} \cdot 2 /\left(2^{6^{n}}\right)^{5}
$$

Hence by 2.4,

$$
\left\|f_{k_{n, r}}\right\|_{L_{\left[\alpha_{n}, r, \beta_{n, r}\right]}^{\infty}} \leq 3+5^{-1}\left(\frac{2 \pi}{2^{6^{n}}}-\frac{4}{\left(2^{6^{n}}\right)^{5}}\right) \cdot 8 \frac{\left(2^{6^{n}}-r\right)^{2}}{\left(2^{6^{n}}\right)^{5}}<9
$$

$$
\begin{equation*}
\left\|f_{k_{n, r}}\right\|_{L_{[-\pi, \pi]}^{\infty}} \leq \max \{3,9\}=9 \tag{2.6}
\end{equation*}
$$

Next,

$$
\begin{aligned}
& \left|h_{k_{n, r}}\left(2 /\left(2^{6^{n}}\right)^{5}\right)-h_{k_{n, r}}\left(-2 /\left(2^{6^{n}}\right)^{5}\right)\right| \\
& \quad=\left\lvert\, 2\left(e^{i\left(2^{6^{n}}-r\right) \frac{2}{\left(2^{6^{n}}\right)^{5}}}-e^{\left.i\left(2^{6^{n}}-r\right) \frac{-2}{\left(2^{6^{n}}\right)^{5}}\right)}-\left(e^{2 i\left(2^{6^{n}}-r\right) \frac{2}{\left(2^{6^{n}}\right)^{5}}}-e^{\left.2 i\left(2^{6^{n}}-r\right) \frac{-2}{\left(2^{6^{n}}\right)^{5}}\right) \mid}\right.\right.\right. \\
& \quad=\left|4 \sin \left(2 \cdot \frac{2^{6^{n}}-r}{\left(2^{6^{n}}\right)^{5}}\right)-2 \sin \left(4 \cdot \frac{2^{6^{n}}-r}{\left(2^{6^{n}}\right)^{5}}\right)\right|
\end{aligned}
$$

$$
\begin{aligned}
& =4 \sin \left(2 \cdot \frac{2^{6^{n}}-r}{\left(2^{6^{n}}\right)^{5}}\right)\left(1-\cos \left(2 \cdot \frac{2^{6^{n}}-r}{\left(2^{6^{n}}\right)^{5}}\right)\right) \\
& =16 \sin ^{3}\left(\frac{2^{6^{n}}-r}{\left(2^{6^{n}}\right)^{5}}\right) \cos \left(\frac{2^{6^{n}}-r}{\left(2^{6^{n}}\right)^{5}}\right) \leq 16\left(\frac{2^{6^{n}}-r}{\left(2^{6^{n}}\right)^{5}}\right)^{3} \leq \frac{16}{\left(2^{6^{n}}\right)^{12}}
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
& \frac{\left|h_{k_{n, r}}^{\prime}\left(2 /\left(2^{6^{n}}\right)^{5}\right)\right|^{2}+\left|h_{k_{n, r}}^{\prime}\left(-2 /\left(2^{6^{n}}\right)^{5}\right)\right|^{2}}{\beta_{n, r}-\alpha_{n, r}} \leq \frac{32 \frac{\left(2^{6^{n}}-r\right)^{4}}{\left(2^{6^{n}}\right)^{10}}}{\frac{2 \pi}{2^{6^{n}}}-\frac{4}{\left(2^{6^{n}}\right)^{5}}} \\
& \quad \leq \frac{32}{\frac{32}{\left(2^{6^{n}}\right)^{6}}} \frac{4}{2^{6^{n}}-\frac{4}{\left(2^{6^{n}}\right)^{5}}}=\frac{32}{2 \pi\left(2^{6^{n}}\right)^{5}-4 \cdot 2^{6^{n}}} \leq \frac{32}{2 \pi\left(2^{6^{n}}\right)^{5}-4\left(2^{6^{n}}\right)^{5}} \leq \frac{16}{\left(2^{6^{n}}\right)^{5}}
\end{aligned}
$$

Hence by 2.5,

$$
\begin{aligned}
\left\|f_{k_{n, r}}^{\prime \prime}\right\|_{L_{\left[\alpha_{n}, r, \beta_{n}, r\right]}^{2}}^{2} & \leq 24 \cdot \frac{\left(\frac{16}{\left(2^{6^{n}}\right)^{12}}\right)^{2}}{\left(\frac{2 \pi}{2^{6^{n}}}-\frac{4}{\left(2^{6^{n}}\right)^{5}}\right)^{3}}+12 \cdot \frac{16}{\left(2^{6^{n}}\right)^{5}} \\
& \leq 24 \cdot \frac{16^{2} \cdot\left(2^{6^{n}}\right)^{-24}}{\left(\frac{2 \pi}{2^{6^{n}}}-\frac{4}{\left.2^{6^{n}}\right)^{3}}+12 \cdot \frac{16}{\left(2^{6^{n}}\right)^{5}}\right.} \\
& \leq \frac{24 \cdot 16^{2}}{8 \cdot\left(2^{6^{n}}\right)^{21}}+\frac{12 \cdot 16}{\left(2^{6^{n}}\right)^{5}} \leq \frac{960}{\left(2^{6^{n}}\right)^{5}}
\end{aligned}
$$

Since $\left|h_{k_{n, r}}^{\prime \prime}(x)\right| \leq 6\left(k_{n, r}\right)^{2}$ for $x \in\left[\beta_{n, r}, \alpha_{n, r}+2 \pi / 2^{6^{n}}\right]$, we have

$$
\left\|f_{k_{n, r}}^{\prime \prime}\right\|_{L_{\left[\beta n, r, \alpha_{n}, r+2 \pi / 2^{6^{n}}\right]}^{2}}^{2} \leq 36 \cdot\left(2^{6^{n}}-r\right)^{4} \cdot \frac{4}{\left(2^{6^{n}}\right)^{5}} \leq \frac{144}{2^{6^{n}}}
$$

Hence,

$$
\left\|f_{k_{n, r}}^{\prime \prime}\right\|_{L_{\left[\alpha_{n, r}, \alpha_{n, r}+2 \pi / 2^{6^{n}}\right]}^{2}}^{2} \leq \frac{960}{\left(2^{6^{n}}\right)^{5}}+\frac{144}{2^{6^{n}}} \leq \frac{1104}{2^{6^{n}}}
$$

Since $f_{k_{n, r}}^{\prime \prime}$ is $2 \pi / 2^{6^{n}}$-periodic, we find that

$$
\begin{equation*}
\left\|f_{k_{n, r}}^{\prime \prime}\right\|_{L_{[-\pi, \pi]}^{2}}^{2}=2^{6^{n}} \cdot\left\|f_{k_{n, r}}^{\prime \prime}\right\|_{L_{\left[\alpha_{n}, r, \alpha_{n, r}+2 \pi / 2^{6^{n}}\right]}^{2}}^{2} \leq 1104 \tag{2.7}
\end{equation*}
$$

Now, by Lemma 2.4 and using (2.7) and (2.6) we obtain

$$
\left\|f_{k_{n, r}}\right\|_{W^{2,2}[-\pi, \pi]} \leq \sqrt{3 \cdot 1104+9^{2}}<64
$$

for each $n \in \mathbb{N}$ and $0 \leq r \leq n$.
2.2. Proof of Theorem 1.5 . The main ingredient of the proof of Theorem 1.5 is a result due to Bergelson and McCutcheon concerning essential idempotents of $\beta \mathbb{N}$ (the Stone-Čech compactification of \mathbb{N}), and Szemerédi's theorem for generalized polynomials [4]. So, we first need some background on $\beta \mathbb{N}$.

Recall that a filter is a family \mathscr{F} invariant by finite intersections, i.e. $A, B \in \mathscr{F}$ implies $A \cap B \in \mathscr{F}$. The collection of all maximal filters (in the sense of inclusion) is denoted by $\beta \mathbb{N}$. Elements of $\beta \mathbb{N}$ are known as ultrafilters; endowed with an appropiate topology, $\beta \mathbb{N}$ becomes the StoneČech compactification of \mathbb{N}. Each point $i \in \mathbb{N}$ is identified with the principal ultrafilter $\mathfrak{U}_{i}:=\{A \subseteq \mathbb{N}: i \in A\}$, which yields an embedding of \mathbb{N} into $\beta \mathbb{N}$. For any $A \subseteq \mathbb{N}$ and $p \in \beta \mathbb{N}$, the closure $\mathrm{cl} A$ of A in $\beta \mathbb{N}$ is defined as follows: $p \in \operatorname{cl} A$ if and only if $A \in p$.

Given $p, q \in \beta \mathbb{N}$ and $A \subseteq \mathbb{N}$, the operation $(\mathbb{N},+)$ can be extended to $\beta \mathbb{N}$ so as to make $(\beta \mathbb{N},+)$ a compact right topological semigroup. The extended operation can be defined by: $A \in p+q$ if and only if $\{n \in \mathbb{N}:-n+A \in q\} \in p$. Now, according to a famous theorem of Ellis, idempotents (with respect to +) exist. Let $E(\mathbb{N})=\{p \in \beta \mathbb{N}: p=p+p\}$ be the collection of idempotents in $\beta \mathbb{N}$. For further details see [10]. Given a family \mathscr{F}, the dual family \mathscr{F}^{*} consists of all sets A such that $A \cap F \neq \emptyset$ for every $F \in \mathscr{F}$. The following is a well-known result.

Lemma 2.7.
(1) If \mathscr{F} is an ultrafilter, then $\mathscr{F}^{*}=\mathscr{F}$.
(2) If $\mathscr{F}=\bigcup_{\alpha} \mathscr{F}_{\alpha}$, then $\mathscr{F}^{*}=\bigcap_{\alpha} \mathscr{F}_{\alpha}^{*}$.

In particular, whenever \mathscr{F} is a union of some collection of ultrafilters, then \mathscr{F}^{*} is the intersection of the same collection.

The collection of essential idempotents is commonly denoted by \mathcal{D}.
The collection \mathcal{D} (of D-sets) is the union of all idempotents $p \in \beta \mathbb{N}$ such that every member of p has positive upper Banach density. Accordingly, \mathcal{D}^{*} is the intersection of all such idempotents.

The following result of ergodic Ramsey theory is due to Bergelson and McCutcheon [4]. It is indeed a sort of Szemerédi's theorem stated originally for generalized polynomials, and it will be crucial for proving Theorem 1.5 .

Theorem 2.8 ([4, Theorem 1.25]). Let $F \subset \mathbb{N}$ have positive upper $B a$ nach density and $g_{1} \ldots, g_{r}$ be polynomials. Then

$$
\left\{k \in \mathbb{N}: \overline{\operatorname{Bd}}\left(F \cap\left(F-g_{1}(k)\right) \cap \cdots \cap\left(F-g_{r}(k)\right)\right)>0\right\} \in \mathcal{D}^{*}
$$

We can now prove Theorem 1.5 .
Fix $r \in \mathbb{N}$. Let T be reiteratively hypercyclic. Then there exists $x \in X$ such that $\overline{\operatorname{Bd}}(N(x, U))>0$ for any non-empty open set U in X. First, let us see that

$$
\begin{equation*}
N_{T}(\underbrace{U, \ldots, U}_{r} ; U)=\left\{k \geq 0: T^{-k} U \cap \cdots \cap T^{-r k} U \cap U \neq \emptyset\right\} \in \mathcal{D}^{*} \tag{2.8}
\end{equation*}
$$

for any non-empty open set U in X. We will show that

$$
\begin{aligned}
A_{U}:= & \{k \geq 0: \overline{\operatorname{Bd}}(N(x, U) \cap(N(x, U)-k) \cap \cdots \cap(N(x, U)-r k))>0\} \\
& \subseteq\left\{k \geq 0: T^{-k} U \cap \cdots \cap T^{-r k} U \cap U \neq \emptyset\right\}
\end{aligned}
$$

In fact, let $k \in A_{U}$. Then there exists a set A with positive upper Banach density such that for any $n \in A$ we have $T^{n+i k} x \in U$ for any $i \in\{0, \ldots, r\}$. Consequently, $T^{n} x \in T^{-k} U \cap \cdots \cap T^{-r k} U \cap U$. Now, by Theorem 2.8, it follows that $A_{U} \in \mathcal{D}^{*}$. Thus condition (2.8) holds.

Next, let $\left(U_{j}\right)_{j=0}^{r}$ be a finite sequence of non-empty open sets in X. Suppose that $\left(T, \ldots, T^{r}\right)$ is d-transitive. We must show that $N_{T}\left(U_{1}, \ldots, U_{r} ; U_{0}\right)$ is a syndetic set. In fact, there exists $n \in \mathbb{N}$ such that

$$
V_{n}:=T^{-n} U_{1} \cap \cdots \cap T^{-r n} U_{r} \cap U_{0} \neq \emptyset
$$

Thus V_{n} is open. Pick non-empty open sets O_{1}, O_{2} such that $O_{1}+O_{2} \subset V_{n}$. Then

$$
\begin{equation*}
T^{j n}\left(O_{1}+O_{2}\right) \subset U_{j} \quad \text { for any } j \in\{0, \ldots, r\} \tag{2.9}
\end{equation*}
$$

It is known that \mathcal{D}^{*} is a filter. Now, by (2.8) we have

$$
A:=N_{T}(\underbrace{O_{1}, \ldots, O_{1}}_{r} ; O_{1}) \cap N_{T}(\underbrace{O_{2}, \ldots, O_{2}}_{r} ; O_{2}) \in \mathcal{D}^{*}
$$

In addition, it is well known that each set in \mathcal{D}^{*} is syndetic [2]. Hence, A is syndetic. Let us show that $A+n \subseteq N\left(U_{1}, \ldots, U_{r} ; U_{0}\right)$, then we are done because $A+n$ is syndetic, since the collection of syndetic sets is shift invariant.

In fact, let $t \in A+n$. Then $t-n \in A$, which means that

$$
\begin{aligned}
& T^{-t} T^{n}\left(O_{1}\right) \cap \cdots \cap T^{-r t} T^{r n}\left(O_{1}\right) \cap O_{1} \neq \emptyset \\
& T^{-t} T^{n}\left(O_{2}\right) \cap \cdots \cap T^{-r t} T^{r n}\left(O_{2}\right) \cap O_{2} \neq \emptyset
\end{aligned}
$$

By the linearity of T we obtain

$$
T^{-t}\left(T^{n}\left(O_{1}+O_{2}\right)\right) \cap \cdots \cap T^{-r t}\left(T^{r n}\left(O_{1}+O_{2}\right)\right) \cap\left(O_{1}+O_{2}\right) \neq \emptyset
$$

Then by 2.9 we conclude that

$$
T^{-t} U_{1} \cap \cdots \cap T^{-r t} U_{r} \cap U_{0} \neq \emptyset
$$

This concludes the proof of Theorem 1.5 .
3. Tuple of powers of a weighted shift. In linear dynamics recurrence properties are frequently studied first in the context of weighted backward shifts.

Each bilateral bounded weight $w=\left(w_{k}\right)_{k \in \mathbb{Z}}$ induces a bilateral weighted backward shift B_{w} on $X=c_{0}(\mathbb{Z})$ or $l^{p}(\mathbb{Z})(1 \leq p<\infty)$, given by $B_{w} e_{k}:=$ $w_{k} e_{k-1}$, where $\left(e_{k}\right)_{k \in \mathbb{Z}}$ denotes the canonical basis of X.

Analogously, each unilateral bounded weight $w=\left(w_{n}\right)_{n \in \mathbb{Z}_{+}}$induces a unilateral weighted backward shift B_{w} on $X=c_{0}\left(\mathbb{Z}_{+}\right)$or $l^{p}\left(\mathbb{Z}_{+}\right)(1 \leq p<\infty)$, given by $B_{w} e_{n}:=w_{n} e_{n-1}, n \geq 1$, with $B_{w} e_{0}:=0$, where $\left(e_{n}\right)_{n \in \mathbb{Z}_{+}}$denotes the canonical basis of X.

As previously mentioned, the authors of [5] proved that for any weighted shift B_{w}, the following holds: B_{w} is mixing if and only if $\left(B_{w}, \ldots, B_{w}^{r}\right)$ is d-mixing for all $r \in \mathbb{N}$. The aim of this section is to show that this result extends to some families on \mathbb{N} frequently studied in Ramsey theory.

Let us recall some such families:

- $\mathcal{I}=\{A \subseteq \mathbb{N}: A$ is infinite $\}$;
- $\Delta=\{A \subseteq \mathbb{N}: B-B \subseteq A$ for some infinite set $B\} ;$
- $\mathcal{I P}=\left\{A \subseteq \mathbb{N}: \exists\left(x_{n}\right)_{n} \subseteq \mathbb{N}, \sum_{n \in F} x_{n} \in A\right.$ for any finite set $\left.F\right\}$;
- the set A is piecewise syndetic ($A \in \mathcal{P S}$ for short) if A can be written as the intersection of a thick set and a syndetic set.

It is known that \mathcal{I}^{*} (the family of cofinite sets), $\Delta^{*}, \mathcal{I} \mathcal{P}^{*}$ and $\mathcal{P} \mathcal{S}^{*}$ are filters. In addition, $\mathcal{I}^{*} \subsetneq \Delta^{*} \subsetneq \mathcal{I} \mathcal{P}^{*} \subsetneq \mathcal{S}$ and $\mathcal{I}^{*} \subsetneq \mathcal{P} \mathcal{S}^{*} \subsetneq \mathcal{S}$, where \mathcal{S} denotes the family of syndetic sets. For a rich source of information on this subject we refer the reader to [10.

The main result of this section is the following.
Theorem 3.1. Let \mathscr{F} be the family $\Delta^{*}, \mathcal{I P}^{*}, \mathcal{P S}^{*}$ or \mathcal{S}. Then for any $r \in \mathbb{N}$ the following are equivalent:
(i) T is an \mathscr{F}-operator;
(ii) $T \oplus \cdots \oplus T^{r}$ is an \mathscr{F}-operator on X^{r}.

In particular, a bilateral (or unilateral) weighted backward shift B_{w} on c_{0} or $l^{p}(1 \leq p<\infty)$ is an \mathscr{F}-operator if and only if $\left(B_{w}, \ldots, B_{w}^{r}\right)$ is d - \mathscr{F}.

Remark 3.2. Obviously, mixing operators are Δ^{*}-operators, but the converse is not true, as exhibited in [7, and the example is a weighted shift. Therefore, the conclusion of Theorem 3.1 concerning weighted shifts does not necessarily follow from the statement: B_{w} is mixing if and only if $\left(B_{w}, \ldots, B_{w}^{r}\right)$ is d-mixing, for any $r \in \mathbb{N}$, shown in (5).

In order to prove Theorem 3.1 we will need the following results.
Recall that any tuple of powers of a fixed backward weighted shift on c_{0} or l^{p} is d-transitive if and only if it is d-hypercyclic. This follows from [8, Theorem 2.7] and [8, Theorem 4.1]. Now, combining [8, Theorem 4.1] and [13, Theorem 2.5] in its bilateral (or unilateral) version, we obtain the following two propositions.

Proposition 3.3. Let $X=c_{0}(\mathbb{Z})$ or $l^{p}(\mathbb{Z})(1 \leq p<\infty), w=\left(w_{j}\right)_{j \in \mathbb{Z}} a$ bounded bilateral weight sequence, \mathscr{F} a filter on \mathbb{N} and $r_{0}=0<1 \leq r_{1}<$ $\cdots<r_{N}$. Then the following are equivalent:
(i) $\left(B_{w}^{r_{1}}, \ldots, B_{w}^{r_{N}}\right)$ is $d-\mathscr{F}$,
(ii) $\bigoplus_{0 \leq s<l \leq N} B_{w}^{\left(r_{l}-r_{s}\right)}$ is an \mathscr{F}-operator on $X^{N(N+1) / 2}$,
(iii) for any $M>0, j \in \mathbb{Z}$ and $0 \leq s<l \leq N$,

$$
\begin{aligned}
& \left\{m \in \mathbb{N}: \prod_{i=j+1}^{j+m\left(r_{l}-r_{s}\right)}\left|w_{i}\right|>M\right\} \in \mathscr{F}, \\
& \left\{m \in \mathbb{N}: \frac{1}{\prod_{i=j-m\left(r_{l}-r_{s}\right)+1}^{j}\left|w_{i}\right|}>M\right\} \in \mathscr{F} .
\end{aligned}
$$

Proposition 3.4. Let $X=c_{0}\left(\mathbb{Z}_{+}\right)$or $l^{p}\left(\mathbb{Z}_{+}\right)(1 \leq p<\infty)$, $w=$ $\left(w_{n}\right)_{n \in \mathbb{Z}_{+}}$a bounded unilateral weight sequence, \mathscr{F} a filter on \mathbb{N} and $r_{0}=$ $0<1 \leq r_{1}<\cdots<r_{N}$. Then the following are equivalent:
(i) $\left(B_{w}^{r_{1}}, \ldots, B_{w}^{r_{N}}\right)$ is $d-\mathscr{F}$,
(ii) $\bigoplus_{0 \leq s<l \leq N} B_{w}^{\left(r_{l}-r_{s}\right)}$ is an \mathscr{F}-operator on $X^{N(N+1) / 2}$,
(iii) for any $M>0, j \in \mathbb{Z}_{+}$and $0 \leq s<l \leq N$,

$$
\left\{m \in \mathbb{N}: \prod_{i=j+1}^{j+m\left(r_{l}-r_{s}\right)}\left|w_{i}\right|>M\right\} \in \mathscr{F}
$$

The following results of Ramsey theory concern preservation of certain notions of largeness in products.

Proposition 3.5 ([3, Corollary 2.3]). Let $l \in \mathbb{N}$ and I be a subsemigroup of \mathbb{N}^{l}.
(a) If B is an $\mathcal{I P}{ }^{*}$-set in \mathbb{N}, then $B^{l} \cap I$ is an $\mathcal{I P}{ }^{*}$-set in I.
(b) If B is a Δ^{*}-set in \mathbb{N}, then $B^{l} \cap I$ is a Δ^{*}-set in I.

Proposition 3.6 ([3, Corollary 2.7]). Let $l \in \mathbb{N}$ and I be a subsemigroup of \mathbb{N}^{l}. If B is a $\mathcal{P} \mathcal{S}^{*}$-set in \mathbb{N}, then $B^{l} \cap I$ is a $\mathcal{P S}^{*}$-set in I.

We are now finally able to prove Theorem 3.1.
Proof of Theorem 3.1. If $T \oplus \cdots \oplus T^{r}$ is an \mathscr{F}-operator on X^{r} for some $r \in \mathbb{N}$, then obviously T is an \mathscr{F}-operator. Conversely, let T be an \mathscr{F} operator, $r \in \mathbb{N}$ and U, V non-empty open sets. We need to show that $N(U, V) \in t \mathscr{F}$ for any $t=1, \ldots, r$.

Denote

$$
\begin{equation*}
A=\{m, 2 m, \ldots, r m: m \in \mathbb{N}\} \cap(\underbrace{N(U, V) \times \cdots \times N(U, V)}_{r \text { times }}) . \tag{3.1}
\end{equation*}
$$

By Proposition 3.5, if $N(U, V)$ is an $\mathcal{I P}{ }^{*}$-set [Δ^{*}-set] in \mathbb{N}, then A is an $\mathcal{I P ^ { * }}$ set [Δ^{*}-set] in $\{m, 2 m, \ldots, r m: m \in \mathbb{N}\}$. Analogously, by Proposition 3.6, if $N(U, V)$ is a $\mathcal{P} \mathcal{S}^{*}$-set in \mathbb{N}, then A is a $\mathcal{P} \mathcal{S}^{*}$-set in $\{m, 2 m, \ldots, r m: m \in \mathbb{N}\}$.

Denote by Π_{i} the projection onto the i th coordinate. It is not difficult to see that $\Pi_{1}(A) \in \mathscr{F}$ for $\mathscr{F}=\Delta^{*}, \mathcal{I} \mathcal{P}^{*}, \mathcal{P} \mathcal{S}^{*}$, which is equivalent to

$$
B=\{m \in \mathbb{N}: t m \in N(U, V)\} \in \mathscr{F}
$$

for any $t=1, \ldots, r$.
Hence, $t B \subseteq N(U, V)$ and $B \in \mathscr{F}$. Then $N(U, V) \in t \mathscr{F}$ for any $t=$ $1, \ldots, r$. Since $\mathscr{F}=\Delta^{*}, \mathcal{I} \mathcal{P}^{*}, \mathcal{P} \mathcal{S}^{*}$, it is a filter, and it is not difficult to see that $T \oplus \cdots \oplus T^{r}$ is indeed an \mathscr{F}-operator on X^{r}.

If B_{w} is a weighted shift on c_{0} or l^{p} and $\mathscr{F}=\Delta^{*}, \mathcal{I} \mathcal{P}^{*}, \mathcal{P} \mathcal{S}^{*}$, then by Proposition 3.3 (or Proposition 3.4), we deduce that B_{w} is an \mathscr{F}-operator if and only if $\left(B_{w}, \ldots, B_{w}^{r}\right)$ is d - \mathscr{F} for any $r \in \mathbb{N}$.

Finally, let \mathscr{F} be the family of syndetic sets. Just recall that T is syndetic if and only if T is a $\mathcal{P} \mathcal{S}^{*}$-operator [7]. Hence T is syndetic if and only if $T \oplus \cdots \oplus T^{r}$ is a $\mathcal{P} \mathcal{S}^{*}$-operator on X^{r}, for any $r \in \mathbb{N}$. If B_{w} is a weighted shift, then B_{w} is syndetic if and only if $\left(B_{w}, \ldots, B_{w}^{r}\right)$ is $d-\mathcal{P} \mathcal{S}^{*}$, for any $r \in \mathbb{N}$. This concludes the proof of Theorem 3.1.

Acknowledgements. We would like to thank the referee for her/his careful reading of the manuscript.

References

[1] F. Bayart and É. Matheron, Dynamics of Linear Operators, Cambridge Tracts in Math. 179, Cambridge Univ. Press, Cambridge, 2009.
[2] V. Bergelson and T. Downarowicz, Large sets of integers and hierarchy of mixing properties of measure preserving systems, Colloq. Math. 110 (2008), 117-150.
[3] V. Bergelson and N. Hindman, Partition regular structures contained in large sets are abundant, J. Combin. Theory Ser. A 93 (2001), 18-36.
[4] V. Bergelson and R. McCutcheon, Idempotent ultrafilters, multiple weak mixing and Szemerédi's theorem for generalized polynomials, J. Anal. Math. 111 (2010), 77-130.
[5] J. Bès, Ö. Martin, A. Peris and S. Shkarin, Disjoint mixing operators, J. Funct. Anal. 263 (2012), 1283-1322.
[6] J. Bès, Q. Menet, A. Peris and Y. Puig, Recurrence properties of hypercyclic operators, Math. Ann. 366 (2016), 545-572.
[7] J. Bès, Q. Menet, A. Peris and Y. Puig, Strong transitivity properties for operators, preprint.
[8] J. Bès and A. Peris, Disjointness in hypercyclicity, J. Math. Anal. Appl. 336 (2007), 297-315.
[9] K.-G. Grosse-Erdmann and A. Peris, Linear Chaos, Universitext, Springer, London, 2011.
[10] N. Hindman and D. Strauss, Algebra in the Stone-Čech compactification. Theory and Applications, Expositions Math. 27, de Gruyter, Berlin, 1998.
[11] Q. Menet, Linear chaos and frequent hypercyclicity, Trans. Amer. Math. Soc., online (2017); doi: 10.1090/tran/6808
[12] Y. Puig, Linear dynamics and recurrence properties defined via essential idempotents of $\beta \mathbb{N}$, Ergodic Theory Dynam. Systems, online (2016); doi: 10.1017/etds.2016.34
[13] H. N. Salas, Hypercyclic weighted shifts, Trans. Amer. Math. Soc. 347 (1995), 9931004.

Yunied Puig

Dipartimento di Matematica "Federigo Enriques" Università degli Studi di Milano
Via Saldini 50
20133 Milano, Italy
E-mail: puigdedios@gmail.com

[^0]: 2010 Mathematics Subject Classification: Primary 47A16; Secondary 05D10.
 Key words and phrases: mixing operators, disjoint transitive operators.
 Received 26 September 2016.
 Published online 9 March 2017.

