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1. Introduction. Let k be a field and x an indeterminate. The first
approach to a theory of lattices over the polynomial ring k[x] goes back
to Mahler [11]. In [10, §16], H. Lenstra gave a brief sketch of the essential
features of the theory, which has been developed in full scope by Bauch [2].

The role of the norm determined by a quadratic positive definite form,
in the classical theory of lattices over Z, is undertaken by a certain length
function d defined over a finite-dimensional vector space over k(x). For the
vector space underlying a finite field extension L/k(x), we can consider

d : L∗ → Q, d(α) = −min{wi(α) | 1 ≤ i ≤ t},
where w1, . . . , wt are the valuations on L extending the valuation v∞ on k(x),
characterized by v∞(a) = −deg(a) for any polynomial a ∈ k[x]. In this way,
d is a kind of extension of the degree function on k[x].

A relevant concept is that of reduced basis of a lattice with respect to the
given length function. W. M. Schmidt used reduced bases of integral closures
of certain subrings of function fields of curves over finite fields, as a crucial
tool for the design of algorithms to compute bases of the Riemann–Roch
spaces attached to divisors of the curve [13, 14, 9, 2].

In this paper, we study reduced bases of integral closures of arbitrary
discrete valuation rings.

Let A be a discrete valuation ring with field of fractions K. Let L/K
be a finite field extension, and B the integral closure of A in L, which we
suppose to be finitely generated as an A-module. Let v be the valuation on
A and w1, . . . , wt the valuations on L extending v. The notion of reduced
families of elements in L with respect to the function

w : L∗ → Q, w(α) = min{wi(α) | 1 ≤ i ≤ t},
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was already introduced in [7] as a tool to prove that certain families of
integral elements constitute A-bases of B.

In Section 2, we develop, in a more comprehensive way, the properties
of reduced families in this general context. In Theorem 2.8 we compute
the multiset of w-values of a reduced integral basis, which turns out to be
independent of the basis. Also, in Theorem 2.11 we find the structure of the
transition matrices between reduced integral bases.

In Section 3, we present a triangulation routine to convert a given re-
duced integral basis into a triangular one, without destroying reducedness.
This has many practical applications. For any task involving the previous
computation of a reduced integral basis (like the computation of Riemann–
Roch spaces of function fields) the computational cost is diminished if we
use a triangular reduced integral basis. Specifically, triangular integral bases
facilitate the computation of global integral bases by patching local ones,
with the aid of the Chinese remainder theorem.

In Section 4 we introduce a normal form for triangular reduced integral
bases. Finally, in Section 5 we discuss some computational issues concerning
the computation of integral bases in reduced normal form, and we exhibit a
concrete example.

2. Reduced integral bases. Let v : K → Z∪{∞} be a discrete valua-
tion on a field K. Let A be the valuation ring, π ∈ A a uniformizer, m = πA
the maximal ideal of A, and k = A/m the residue class field.

Let L/K be a simple finite field extension of K of degree n > 1, that is,
L = K(θ) for a certain θ ∈ L which is the root of some monic irreducible
polynomial f ∈ A[x] of degree n.

Let B ⊂ L be the integral closure of A in L. The ring B is a Dedekind
domain, which we assume to be finitely generated as an A-module. This is
the case, for instance, when L/K is separable, or K is complete, or A is a
finitely generated algebra over a field [16, Ch. I, §4].

Under this assumption, B is a free A-module of rank n. An A-basis of
B is called an integral basis of L/K.

Although integral bases are ordered families of elements in B, sometimes
we forget the ordering and consider integral bases merely as subsets of B.

Let w1, . . . , wt be the valuations on L extending v. For each wi, let Bi ⊂ L
be the valuation ring, mi the maximal ideal of Bi and ki = Bi/mi the residue
class field. Denote fi = [ki : k] and ei = e(wi/v). The ramification index ei
is characterized by the property wi(L

∗) = e−1i Z. In this situation, we have
the well-known relation

∑
i eifi = n.

Consider the following quasi-valuation extending v to L:

w : L→ Q ∪ {∞}, w(α) = min{wi(α) | 1 ≤ i ≤ t},
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For α, β ∈ L, a ∈ K and m ∈ Z, the mapping w satisfies:

(1) w(αβ) ≥ w(α) + w(β), and equality holds if β = αm,
(2) w(aβ) = w(a) + w(β) = v(a) + w(β),
(3) w(α+ β) ≥ min{w(α), w(β)}, and equality holds if w(α) 6= w(β).

Lemma 2.1. w(L∗) =
⋃t
i=1wi(L

∗) =
⋃t
i=1 e

−1
i Z.

Proof. By the very definition, w(L∗) ⊂
⋃t
i=1wi(L

∗). Since the valuations
w1, . . . , wt are pairwise independent, for each 1 ≤ i ≤ t there exists an
element αi ∈ B with w(αi) = e−1i . Hence, wi(L

∗) = w({αmi | m ∈ Z}) is
contained in w(L∗) for all 1 ≤ i ≤ t.

Since B = B1 ∩ · · · ∩Bt, the integral elements are characterized by

B = {α ∈ L | w(α) ≥ 0}.
Also, the subset B ⊂ B formed by an integral basis satisfies w(B) ⊂ [0, 1).
In fact, if α ∈ B has w(α) ≥ 1 then α/π is integral and it does not belong
to the A-module generated by B.

Definition 2.2. A subset {α1, . . . , αd} ⊂ L∗ is called reduced if for all
a1, . . . , ad ∈ K,

(2.1) w
( d∑
j=1

ajαj

)
= min{w(ajαj) | 1 ≤ j ≤ d}.

The left and right hand sides of (2.1) increase by ν ∈ Z if we replace
each aj with ajπ

ν . Thus, in order to check (2.1) we can assume that all aj
belong to A and not all of them belong to m.

The following property follows immediately from the definition.

Lemma 2.3. If {α1, . . . , αd} is reduced, then for all a1, . . . , ad ∈ K the
set {a1α1, . . . , adαd} is reduced.

It is easy to check that a reduced set is always K-linearly independent.
Further, any reduced set {αj | 1 ≤ j ≤ n} of cardinality n determines a
reduced integral basis {αj/πbw(αj)c | 1 ≤ j ≤ n}, as the following result
shows.

Lemma 2.4. A reduced set B = {α1, . . . , αn} ⊂ L∗ such that w(B) ⊂
[0, 1) is a reduced integral basis of L/K.

Proof. The assumption on w(B) implies that B ⊂ B. Let us prove that
B generates B as an A-module.

Any α ∈ B may be expressed as α =
∑n

j=1 ajαj for some a1, . . . , an ∈ K.
By reducedness, for all j we have

w(ajαj) ≥ w(α) ≥ 0.

Since w(αj) < 1 and w(aj) is an integer, this implies w(aj) ≥ 0, or equiva-
lently aj ∈ A.
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Our aim is to show that all reduced integral bases B of L/K have the
same multiset w(B). We want to compute the cardinality of the subsets

Bδ = {α ∈ B | w(α) = δ} ⊂ B, δ ∈ w(L∗).

To this end, we need a certain criterion for reducedness.

For any δ ∈ w(L∗), consider the A-modules

Lδ = {α ∈ L | w(α) ≥ δ} ⊃ L+
δ = {α ∈ L | w(α) > δ}.

Since mLδ ⊂ L+
δ , the quotient Lδ/L

+
δ has the structure of a k-vector space.

Definition 2.5. Consider the k-vector space V =
∏t
i=1 ki of dimension∑t

i=1 fi. For each 1 ≤ i ≤ t fix some uniformizer πi ∈ mi.

For all δ ∈ w(L∗) we define a reduction map

redδ : Lδ → V, redδ(α) = (αδ,i)1≤i≤t, αδ,i = απ
−beiδc
i + mi.

Clearly, redδ is a homomorphism of A-modules and ker(redδ) = L+
δ .

Hence, it induces an embedding of Lδ/L
+
δ as a k-subspace of V .

Theorem 2.6 ([13, 14], [7, Lem. 5.7]). Let B ⊂ L with w(B) ⊂ [0, 1).
Then B is reduced if and only if redδ(Bδ) ⊂ V is a k-linearly independent
family for all δ ∈ w(B).

Definition 2.7. Given a set E, we indicate by {eme | e ∈ E} the
multiset which contains each element e ∈ E with multiplicity me.

Theorem 2.8. Let E = w(L∗) ∩ [0, 1), and for each δ ∈ E consider

Iδ = {1 ≤ i ≤ t | δ ∈ e−1i Z}, fδ =
∑
i∈Iδ

fi.

Then for any reduced integral basis B we have #Bδ = fδ. In other words,
the multiset w(B) is equal to WL/K := {δfδ | δ ∈ E}.

Proof. By Lemma 2.1, E =
⋃t
i=1Ei, where

Ei = e−1i Z ∩ [0, 1) = {0, e−1i , . . . , (ei − 1)e−1i }, 1 ≤ i ≤ t.

For each i consider the multiset Xi = {δfi | δ ∈ Ei}. Let X =
∐t
i=1Xi be the

formal disjoint union of these multisets. The natural inclusions Xi ⊂WL/K

induce a bijection of multisets between X and WL/K . Hence,

∑
δ∈E

fδ = #WL/K = #X =
t∑
i=1

eifi = n.

On the other hand, redδ(Bδ) ⊂
∏
i∈Iδ ki for all δ ∈ E. In fact, for α ∈ Bδ

and j 6∈ Iδ, we have wj(α) 6= δ = w(α); hence wj(α) > δ and αδ,j = 0.



Reduced normal form of bases 185

By Theorem 2.6, #Bδ ≤ fδ for all δ ∈ E. Therefore,

n =
∑
δ∈E

#Bδ ≤
∑
δ∈E

fδ = n,

and the result follows.

We end this section with a description of the transition matrices between
reduced integral bases.

Notation. For any matrix T ∈ Am×m we denote by T ∈ km×m the
matrix obtained by applying reduction modulo m to all entries in T .

Definition 2.9. An orthonormal basis of L/K is a reduced integral
basis (α1, . . . , αn) ∈ Bn ordered by increasing w-values: w(α1) ≤ · · · ≤
w(αn).

This terminology is taken from [2], where lattices over the polynomial
ring k[x] are studied. Also, Theorem 2.11 below is inspired by [2, Thm. 1.27,
Lem. 1.28].

Definition 2.10. Let n = m1 + · · ·+mκ be a partition of n into a sum
of positive integers. This partition induces a decomposition of any T ∈ An×n
into a κ× κ matrix of blocks:

T = (Tij), Tij ∈ Ami×mj , 1 ≤ i, j ≤ κ.

The orthonormal group O(m1, . . . ,mκ, A) is the subgroup of GLn(A)
formed by all T ∈ An×n satisfying the following conditions:

(1) Tii ∈ GLmi(A), 1 ≤ i ≤ κ,
(2) Tij ∈ mmi×mj for all i > j.

Theorem 2.11. Let 0 = ε1 < ε2 < · · · < εκ < 1 be the elements in the
underlying set of WL/K . For 1 ≤ i ≤ κ denote mi = fεi, so that WL/K =
{εmii | 1 ≤ i ≤ κ}. Let B ∈ Bn be an orthonormal basis of L/K. Then
B′ ∈ Bn is an orthonormal basis of L/K if and only if the transition matrix
from B to B′ belongs to the orthonormal group O(m1, . . . ,mκ, A).

Proof. Write B = (α1, . . . , αn) and denote

n0 = 0, ni = m1 + · · ·+mi, 1 ≤ i ≤ κ.

For a given T ∈ O(m1, . . . ,mκ, A) set

(2.2)


α′1
...

α′n

 = T


α1

...

αn

 .
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For a given 1 ≤ d ≤ n, let 1 ≤ i ≤ κ be determined by ni−1 < d ≤ ni. From
(2.2) we deduce that α′d = β− + β + β+, where

(2.3)

β− =

ni−1∑
j=1

ajαj with aj ∈ m,

β =

ni∑
j=ni−1+1

ajαj with aj ∈ A, not all in m,

β+ =
n∑

j=ni+1

ajαj with aj ∈ A,

(a1 · · · an) being the dth row of T . Since the family B is reduced, we deduce

w(β−) ≥ 1, w(β) = εi, w(β+) > εi.

Hence, w(α′d) = εi = w(αd), and

redεi(α
′
d) = redεi(β) =

ni∑
j=ni−1+1

aj redεi(αj).

Thus, T preserves the sequence of w-values, and moreover

(2.4)


redεi(α

′
ni−1+1)
...

redεi(α
′
ni)

 = T ii


redεi(αni−1+1)

...

redεi(αni)

 , 1 ≤ i ≤ κ.

By Theorem 2.6, the family B′ = (α′1, . . . , α
′
n) ∈ Bn is reduced too, and by

Lemma 2.4 it is an orthonormal basis.

Conversely, suppose that B′ = (α′1, . . . , α
′
n) ∈ Bn is an orthonormal

basis of L/K, and let T ∈ GLn(A) be the transition matrix from B to B′,
determined by (2.2). From w(α′d) = w(αd) we deduce (2.3) and (2.4). This
proves that T belongs to the orthogonal group.

3. Triangular reduced integral bases. We are interested in the com-
putation of triangular reduced integral bases, because they are useful in
many practical applications. For instance, they facilitate the computation
of global integral bases by patching local ones with the aid of the Chinese
remainder theorem [3, Ch. IV].

Definition 3.1. We say that (α0, . . . , αn−1) ∈ Ln is a triangular family
if αj = gj(θ)π

rj for a certain monic polynomial gj ∈ A[x] of degree j, and
an integer rj , for each 0 ≤ j < n.



Reduced normal form of bases 187

In other words, the transition matrix T ∈ GLn(K) determined by
αn−1

...

α0

 = T


θn−1

...

1


is upper triangular with entries πrn−1 , . . . , πr0 on the diagonal.

By Theorem 3.3 below, the computation of triangular reduced integral
bases amounts to computing, for each 0 ≤ j < n, a monic polynomial
gj ∈ A[x] of degree j such that gj(θ) attains the maximal w-value among
all monic polynomials in A[x] of degree j.

Definition 3.2. For 0 ≤ j < n, consider

δj = max{w(g(θ)) | g ∈ A[x] monic of degree j}.
Since the valuations w1, . . . , wt are discrete, this maximal value is attained
by some monic polynomial g ∈ A[x]. In other words, δj ∈ w(L∗) for all j.

We denote by m(δj) the multiplicity of δj in the family δ0, . . . , δn−1.

Clearly, δ0 ≤ · · · ≤ δn−1. In fact, if 0 < j < n and g ∈ A[x] is a monic
polynomial of degree j − 1 with w(g(θ)) = δj−1, we have

δj ≥ w(θg(θ)) ≥ w(θ) + w(g(θ)) ≥ δj−1.
The following result proves the existence of triangular reduced integral

bases, and offers an interesting point of view to distinguish triangular re-
duced integral bases among triangular integral bases.

Theorem 3.3 ([15, Thm. 1.4]). Let g0, . . . , gn−1 ∈ A[x] be monic poly-
nomials of degrees 0, . . . , n−1, respectively. Let νj = w(gj(θ)) for 0 ≤ j < n,
and consider the set B = {g0(θ)π−ν0 , . . . , gn−1(θ)π−νn−1}. Then:

(1) B is an integral basis if and only if bνjc = bδjc for 0 ≤ j < n.
(2) B is a reduced integral basis if and only if νj = δj for 0 ≤ j < n.

By Theorems 2.8 and 3.3, the multiset {δj+Z | 0 ≤ j < n} is an intrinsic
invariant of the extension L/K. More precisely,

WL/K = {δ0 − bδ0c, . . . , δn−1 − bδn−1c}.
However, the multiset ∆ = {δ0, . . . , δn−1} of all maximal w-values depends
on the choice of the polynomial f defining the extension L/K (but not on
the choice of the root θ of f).

Consider Gauss’ extension of the valuation v to the polynomial ring A[x]:

v
(∑
d≥0

adx
d
)

= min{v(ad) | 0 ≤ d}.

Lemma 3.4. For a given g =
∑n−1

d=0 adx
d ∈ A[x], let d0 be maximal with

the property v(g) = v(ad0). Then w(g(θ)) ≤ v(g) + δd0.
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Proof. Let g0, . . . , gn−1 ∈ A[x] be monic polynomials of degrees 0, . . . ,
n− 1 attaining the maximal w-values δ0, . . . , δn−1. Obviously, we can write
g in a unique way as g =

∑n−1
d=0 bdgd with b0, . . . , bn−1 ∈ A. By hypothesis,

v(an−1), . . . , v(ad0+1) > v(g), v(ad0) = v(g).

Clearly, this forces the coefficients bd to satisfy the same conditions:

v(bn−1), . . . , v(bd0+1) > v(g), v(bd0) = v(g).

By Theorem 3.3 and Lemma 2.3, the family g0(θ), . . . , gn−1(θ) is reduced,
so that w(g(θ)) = min{v(bd) + δd | 0 ≤ d < n} ≤ v(bd0) + δd0 = v(g) + δd0 .

3.1. Triangulation of reduced integral bases. In this section, we
discuss a triangulation procedure which may be applied to any reduced
integral basis B = {β1, . . . , βn} of the form

βj = qj(θ)π
−bνjc, νj = w(qj(θ)), 1 ≤ j ≤ n,

where q1, . . . , qn are polynomials inA[x] whosew-values ν1, . . . , νn are known.
Such a basis is provided, for instance, by the method of quotients [7], or

the multipliers method [1], both based on the Montes algorithm [6, 5].
The standard triangulation procedures, like the Hermite Normal Form

(HNF) routine, destroy reducedness. Our aim is to use these standard tech-
niques but in a controlled way which preserves reducedness.

Definition 3.5. For an integer 0 < d ≤ n, we say that q1, . . . , qd ∈ A[x]
is a d-reduced polynomial family if the following conditions are satisfied:

(1) deg(qj) < d and v(qj) = 0, for all 1 ≤ j ≤ d.
(2) q1(θ), . . . , qd(θ) is a reduced family.

Lemma 3.6. Consider the flag

L = Ln ) Ln−1 ) · · · ) L1 = K ) L0 = {0}
of K-subspaces of L, where Li = 〈1, θ, . . . , θi−1〉K for 1 ≤ i ≤ n. For
0 < d ≤ n, let q1, . . . , qd be a d-reduced polynomial family with w-values
ν1, . . . , νd. Then:

(1) νj ≤ δd−1 for all 1 ≤ j ≤ d.
(2) q1(θ)/π

bν1c, . . . , qd(θ)/π
bνdc is an A-basis of the A-module B ∩ Ld.

Proof. The first item follows immediately from Lemma 3.4. The second
follows from the same arguments of the proof of Lemma 2.4.

The triangulation procedure iterates the following steps:

Triangulation step

Input : A d-reduced polynomial family q1, . . . , qd, whose sequence of w-
values ν1, . . . , νd is known.
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Output :

• δd−1 and m := m(δd−1).
• Monic polynomials gd−1, . . . , gd−m ∈ A[x] such that

deg(gd−j) = d− j, w(gd−j(θ)) = δd−1, 1 ≤ j ≤ m.

• A (d−m)-reduced polynomial family q′1, . . . , q
′
d−m, whose sequence of

w-values ν ′1, . . . , ν
′
d−m is known.

We start with an n-reduced poynomial family provided by either method,
quotients [7] or multipliers [1]. Let r be the number of pairwise different max-
imal w-values. After r triangulation steps, we end with a family of monic
polynomials gn−1, . . . , g0 ∈ A[x] of degrees n− 1, . . . , 0, attaining the maxi-
mal w-values δn−1, . . . , δ0. By Theorem 3.3, this yields a triangular reduced
integral basis of L/K.

From now on, we fix a d-reduced polynomial family q1, . . . , qd with se-
quence of w-values ν1, . . . , νd. Let ν = max{νj | 1 ≤ j ≤ d} and let ` be the
multiplicity of ν in the sequence ν1, . . . , νd.

We suppose moreover that the polynomials are ordered so that

ν1 = · · · = ν` = ν, ν`+1, . . . , νd < ν.

The concrete description of the triangulation step, given in Proposition
3.8, requires an auxiliary result.

Lemma 3.7. Let Γ`,d(A) be the subgroup of GLd(A) of all matrices U of
the form

(3.1) U =

(
P 0

Q Id−`

)
, P ∈ GL`(A), Q ∈ A(d−`)×`.

For any U ∈ Γ`,d(A) the polynomials q′1, . . . , q
′
d ∈ A[x] obtained as

q′1
...

q′d

 = U


q1
...

qd


yield a reduced family q′1(θ), . . . , q

′
d(θ) ∈ L with the same sequence of w-

values ν1, . . . , νd.

Proof. The sequence of w-values is preserved by an argument completely
analogous to that used in the proof of Theorem 2.11.

For all 1 ≤ j ≤ d, denote

βj = qj(θ)/π
bνjc, β′j = q′j(θ)/π

bνjc, εj = νj − bνjc = w(βj) = w(β′j).
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Consider the sets B = {βj | 1 ≤ j ≤ d} and B′ = {β′j | 1 ≤ j ≤ d}. By
Lemma 2.3, B is reduced and we only need to check that B′ is reduced. We
shall prove this by applying the reducedness criterion of Theorem 2.6.

Let U be given by the matrices P , Q as in (3.1). For j > `, we have

q′j = qj + a1q1 + · · ·+ a`q`,

with a1, . . . , a` ∈ A the entries in the (j − `)th row of Q. Since

w(a1q1 + · · ·+ a`q`) ≥ ν > νj ,

we deduce that w(β′j − βj) > εj . This implies redεj (β
′
j) = redεj (βj).

On the other hand, let ε = ν − bνc = w(βj) = w(β′j) for all 1 ≤ j ≤ `.
The mapping redε is linear in the following sense:

β′1
...

β′`

 = P


β1
...

β`

 ⇒


redε(β

′
1)

...

redε(β
′
`)

 = P


redε(β1)

...

redε(β`)

 .

Consider the set I = {1 ≤ j ≤ n | εj = ε}, which contains 1, . . . , ` and
some more indices. By definition,

Bε = {βj | j ∈ I}, B′ε = {β′j | j ∈ I}.

By Theorem 2.6, redε(Bε) is a k-linearly independent subset of V . Since P ∈
GL`(k), the family redε(β

′
1), . . . , redε(β

′
`) is k-linearly independent and gen-

erates the same subspace as redε(β1), . . . , redε(β`). Since redε(β
′
j) = redε(βj)

for all j ∈ I, j > `, the set redε(B′ε) is k-linearly independent too.

Also, for all δ ∈ w(L∗) ∩ [0, 1), δ 6= ε, the set redδ(B′δ) = redδ(Bδ) is
k-linearly independent. By Theorem 2.6, B′ is reduced.

Let T = (ti,j) ∈ Ad×d be the matrix whose ith row captures the coeffi-
cients of the polynomial qi in decreasing degree. Thus,

(3.2) T


xd−1

...

1

 =


q1
...

qd

 .

We say that the rows of T encode the polynomials q1, . . . , qd.

The triangulation step replaces the matrix T with UT for a suitable U in
the group Γ`,d(A) introduced in Lemma 3.7, and then divides out the rows
of UT by appropriate powers of π.

Proposition 3.8. Let Tup and Tdown be the matrices formed by the first
` rows of T and the last d− ` rows of T , respectively. Express the Hermite
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normal form of Tup as(
Im C

0 D

)
, C ∈ Am×(d−m), D ∈ A(`−m)×(d−m),

with all entries in the first column of D belonging to m. Write

Tdown = (E | F ), E ∈ A(d−`)×m, F ∈ A(d−`)×(d−m),

T ′ =

(
D

F − EC

)
∈ A(d−m)×(d−m).

Let h1, . . . , hd−m be the polynomials encoded by the rows of T ′. Then:

(1) δd−1 = ν := max{νj | 1 ≤ j ≤ d} and m(δd−1) = m.
(2) The monic polynomials gd−1, . . . , gd−m encoded by the rows of the

matrix (Im | C) have degrees d− 1, . . . , d−m and satisfy

w(gd−1(θ)) = · · · = w(gd−m(θ)) = δd−1.

(3) All entries in the matrix D belong to m.
(4) The polynomials q′j = hj π

−v(hj), for 1 ≤ j ≤ d−m, form a (d−m)-
reduced polynomial family whose sequence of w-values is

ν ′j = νm+j − v(hj), 1 ≤ j ≤ d−m.

Proof. Let g ∈ A[x] be a monic polynomial of degree d − 1 such that

w(g(θ)) = δd−1. By Lemma 3.6(2), we can write g(θ) =
∑d

j=1 ajqj(θ) with
aj ∈ K. By reducedness,

δd−1 = w(g(θ)) = min{v(aj) + νj | 1 ≤ j ≤ d}.

By Lemma 3.6, νj ≤ δd−1 for all j, so that ν ≤ δd−1. We have

(3.3) νj ≤ δd−1 ≤ v(aj) + νj , 1 ≤ j ≤ d.

This implies v(aj) ≥ 0 for all j. Since g is monic, we have necessarily
v(aj0) = 0 for some index j0. From (3.3) we deduce δd−1 = νj0 , and this
implies that δd−1 = ν.

Consider the following transformation of the matrix T by multiplication
on the left by a matrix in the group Γ`,d(A):(

P 0

0 Id−`

)(
Tup

Tdown

)
=

(
PTup

Tdown

)
=

 Im C

0 D

E F

 ,

where P ∈ GL`(A) reflects the Gaussian elimination transformations that
were applied to compute the Hermite normal form of Tup.
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Now, let E′ = (E | 0), where 0 indicates the null matrix in A(d−`)×(`−m).
We apply a further transformation by an element in Γ`,d(A):(

I` 0

−E′ Id−`

) Im C

0 D

E F

 =

 Im C

0 D

0 F − EC

 =: M.

Let gd−1, . . . , gd−m, h1, . . . , hd−m be the polynomials encoded by the rows
of M . By Lemma 3.7, gd−1(θ), . . . , gd−m(θ), h1(θ), . . . , hd−m(θ) is a reduced
family with sequence of w-values ν1, . . . , νd. This proves (2) and (4).

In order to prove that m = m(δd−1), it suffices to show that a monic
polynomial g ∈ A[x] of degree d − m − 1 has necessarily w(g(θ)) < δd−1.
Suppose w(g(θ)) ≥ δd−1 for such a polynomial g, and let us show that this
leads to a contradiction.

Since h1(θ), . . . , hd−m(θ) ∈ Ld−m are K-linearly independent elements
(by reducedness), they form a K-basis of Ld−m. Hence, we may write

g(θ) = a1h1(θ) + · · ·+ ad−mhd−m(θ), a1, . . . , ad−m ∈ K.

By reducedness,

δd−1 ≤ w(g(θ)) ≤ v(aj) + νm+j , 1 ≤ j ≤ d−m.

This implies w(aj) ≥ 0 for all 1 ≤ j ≤ ` −m (because νm+j = ν = δd−1),
and w(aj) > 0 for all `−m < j ≤ d−m (because νm+j < ν = δd−1). On the
other hand, the coefficients of degree d−m− 1 of h1, . . . , h`−m belong to m,
because they form the first column of D. Hence, the leading coefficient of g
belongs to m, and this contradicts the fact that g is monic. This ends the
proof of item (1).

Item (3) is a consequence of Lemma 3.4. If q ∈ A[x] is the polynomial
encoded by any row of D, we have δd−1 = w(q(θ)) ≤ v(q) + δd0 for some
d0 ≤ deg(q) < d − m. We deduce that v(q) ≥ δd−1 − δd0 > 0. Hence, all
coefficients of q belong to m.

4. Reduced normal form. Let UTn(A) be the unitriangular group,
that is, the subgroup of GLn(A) of all upper triangular matrices with 1’s on
the diagonal.

The triangulation procedure of Section 3 computes a matrix T = (tij) ∈
UTn(A) whose rows encode a family of monic polynomials gn−1, . . . , g0 such
that gn−1(θ), . . . , g0(θ) attain the maximal w-values δn−1, . . . , δ0.

The aim of this section is to apply further simplifications to the entries
above the main diagonal of T to obtain a canonical form, still encoding a
family of polynomials attaining the maximal w-values. By Theorem 3.3, this
is the only condition we need to ensure that
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(4.1) B = {1, g1(θ)/πbδ1c, . . . , gn−1(θ)/πbδn−1c}
is still a triangular reduced integral basis.

For each positive integer d choose Rd ⊂ A a set of representatives of the
classes modulo md.

Definition 4.1. A triangular reduced integral basis B as in (4.1) is said
to be in reduced normal form (RNF) if the matrix T = (tij) ∈ UTn(A)
whose rows encode the family gn−1, . . . , g0 satisfies tij ∈ Rdδn−i−δn−je for all
i < j. In this case, we also say that the matrix T is in RNF.

The condition for B to be in HNF is tij ∈ Rbδn−ic−bδn−jc for all i < j. For
each pair of indices 1 ≤ i < j ≤ n, we have bδn−ic− bδn−jc ≤ dδn−i− δn−je,
and equality holds if and only if δn−i − δn−j ∈ Z.

Therefore, for the pairs of indices i < j such that δn−i − δn−j 6∈ Z the
condition on tij for T to be in RNF is weaker than the condition for T to
be in HNF.

Lemma 4.2. For i < j and a ∈ A, consider the monic polynomial g =
gj − agi ∈ A[x] of degree j. Then g keeps the maximal w-value w(g(θ)) = δj
if and only if v(a) ≥ δj − δi.

Proof. By reducedness, w(g(θ)) = min{δj , v(a) + δi}.
Lemma 4.2 shows that there is a unique triangular reduced integral basis

of L/K in RNF, for a given defining polynomial f of the extension L/K.
For a triangular reduced basis obtained by the triangulation routine of

Section 3, we may use a blockwise procedure to obtain the RNF.
Let ρ1 > · · · > ρr be the ordered sequence of pairwise different elements

in the multiset ∆ = {δ0, . . . , δn−1}. Let m1, . . . ,mr be the corresponding
multiplicities, so that ∆ = {ρm1

1 , . . . , ρmrr }.
Suppose that T ∈ UTn(A) encodes the numerators of a triangular re-

duced integral basis obtained by the triangulation procedure of Section 3.
Let T = (Tij)1≤i,j≤r be the block decomposition of T induced by the parti-
tion n = m1+· · ·+mr. Note that Tii = Imi for all i, and Tij = 0 for all i > j.

RNF routine

Input : T = (Tij)1≤i,j≤r ∈ UTn(A) and the list ρ1 > · · · > ρr of maximal
w-values.

1. for i = 1 to r − 1 do
2. for j = i+ 1 to r do
3. express Tij = C + πdρi−ρjeD, with C ∈ Rmi×mjdρi−ρje
4. for k = j to r do
5. Tik ← Tik − πdρi−ρjeDTjk
Output : A matrix T ∈ UTn(A) in RNF.
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5. Computational implications. An example. In this section, we
discuss the practical computation of integral bases in reduced normal form,
and we exhibit an example.

Let Av ⊂ Kv be the completion of A ⊂ K with respect to the v-
adic topology. Let us still denote by v : Kv → Q ∪ {∞} the canonical
(non-discrete) extension of the valuation v to a fixed algebraic closure
of Kv.

Let f = F1 · · ·Ft be the factorization of f into a product of irreducible
factors in Av[x]. The factors F1, . . . , Ft are in 1-1 correspondence with the
extensions w1, . . . , wt of v to L. In fact, each Fi determines a finite field
extension Li/Kv, and the field L may be embedded into Li by sending
θ to a root of Fi in Kv. The valuation wi is obtained as the composi-
tion

wi : L ↪→ Li ↪→ Kv
v→ Q ∪ {∞}.

The method of quotients introduced in [7] computes a reduced integral
basis as a by-product of the Montes algorithm [5, 6], which is a kind of
polynomial factorization routine over Av[x].

Bauch [1] and Stainsby [15] found independent algorithms, called multi-
pliers and MaxMin respectively, which compute reduced integral bases as an
application of the Montes algorithm in combination with the Single Factor
Lifting algorithm (SFL) [8]. The MaxMin algorithm has the advantage of
directly computing triangular reduced integral bases.

For each irreducible factor Fi, the Montes algorithm computes a family
of monic polynomials φ1, . . . , φr, φr+1 ∈ A[x], where r is the Okutsu depth
of Fi, such that the list [φ1, . . . , φr] is an Okutsu frame of Fi, and φr+1

is an Okutsu approximation to Fi (see [12, 4]). This means that φr+1 is
“sufficiently close” to Fi in the v-adic topology.

If m` = deg φ` for 1 ≤ ` ≤ r + 1, then [4, Sec. 2]

0 < m1 < · · · < mr < mr+1 = deg(Fi), m1 | · · · |mr+1.

The Okutsu frame [φ1, . . . , φr] is a family of polynomials with maximal
wi-values according to their degree. More precisely, for any monic polynomial
g ∈ A[x] we have

deg(g) < m`+1 for 0 ≤ ` ≤ r ⇒ wi(g(θ))

deg(g)
≤ wi(φ`(θ))

m`
,

where we agree that φ0 = 1. The polynomials in the Okutsu frames of all
factors F1, . . . , Ft will be simply called φ-polynomials.

We may summarize two methods for the computation of integral bases
in reduced normal form as follows.
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Quotients

(Q1) Apply the Montes algorithm to compute an Okutsu frame of each
Fi, but skip the computation of the Okutsu approximations.

(Q2) Compute an n-reduced polynomial family q1, . . . , qn and the corre-
sponding sequence of w-values ν1, . . . , νn.

(Q3) Apply the triangulation routine of Section 3.
(Q4) Apply the RNF routine of Section 4.

Each polynomial qi is a suitable product of the quotients of certain di-
visions with remainder of f by powers of φ-polynomials, performed (and
stored) along the execution of the Montes algorithm (see [7]).

MaxMin

(MM1) Apply the full Montes algorithm to compute Okutsu frames and
Okutsu approximations of all Fi.

(MM2) Compute the maximal w-values δ0, . . . , δn−1 and formal expres-
sions of monic polynomials g0, . . . , gn−1 attaining these values,
as products of φ-polynomials and Okutsu approximations.

(MM3) Apply the SFL routine to improve the Okutsu approximations to
the precision determined by the computations of (MM2).

(MM4) Execute the products indicated formally in (MM2) and compute
the polynomials g0, . . . , gn−1, yielding a triangular reduced inte-
gral basis.

(MM5) Apply the RNF routine of Section 4.

Steps (Q2) and (MM4) have the same cost: O(n) multiplications in A[θ].
Steps (Q4) and (MM5) have the same cost too. On the other hand, step
(MM2) has a negligible cost.

Therefore, in order to compare the computational performance of the
two methods, we must compare the cost of the triangulation routine (Q3)
with the extra tasks of MaxMin: computation of the Okutsu approximations
(part of (MM1)) and their improvements (MM3).

Now, the complexity of the steps (MM1)-(MM4) [15, Thm. 3.5] is lower
than the complexity of Gaussian elimination, which requires O(n3) multi-
plications in A.

Thus, for n large, MaxMin is much faster than Quotients, or the simi-
lar algorithm resulting from the use of the multipliers method. For n of a
moderate size, say n < 100, the two methods have a similar performance
for randomly chosen inputs. Therefore, MaxMin is a reasonable choice as a
prototype algorithm for the computation of integral bases in RNF.

Also, MaxMin and Multipliers have the advantage of being able to com-
pute reduced bases of fractional ideals of B, while Quotients is only able to
compute the maximal order B itself.
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5.1. An example. We end this section with a concrete example.

Let A = Z(2) be the localization of Z at the prime ideal 2Z. Thus, K = Q
and the valuation v of A is the ordinary 2-adic valuation. For each positive
integer d, set Rd = (−2d−1, 2d−1] ∩ Z.

Consider the number field L = Q(θ), where θ is a root of the monic
irreducible polynomial

f = x8 − x7 + 21x6 − 20x5 − 368x4 + 388x3 − 516x2 + 128x+ 128 ∈ A[x].

The Montes algorithm determines the prime ideal decomposition

2B = p41 p
2
2 p3, f1 = f(p1/2) = f2 = f(p2/2) = 1, f3 = f(p3/2) = 2,

so that f = F1F2F3 has three irreducible factors in Z2[x]. The algorithm
also finds the following Okutsu frames and Okutsu approximations:

[x, x2 + 2x+ 2], φp1 = x4 + 4x3 + 8x2 + 16x+ 4 ≈ F1,

[x], φp2 = x2 + 32 ≈ F2,

[ ], φp3 = x2 + x+ 1 ≈ F3.

The irreducible factor F3 is irreducible modulo 2. Hence, it has Okutsu depth
zero and its Okutsu frame is an empty list.

The reduced integral basis computed by the method of quotients is

TQuotients =



1 31 21 12 16 4 28 0

9 7 11 2 14 4 0 0

0 1 5 1 0 6 0 0

0 1 7 5 4 0 4 4

1 2 3 2 1 0 0 0

0 0 0 1 3 1 0 0

0 1 0 0 0 0 0 0

1 0 0 0 0 0 0 0


, ~ν =



9/2

13/4

11/4

2

3/2

1

0

0


.

The matrix TQuotients encodes a family of polynomials q1, . . . , q8 ∈ A[x] as
indicated in (3.2). The column ~ν contains the corresponding sequence of
w-values: ν1 = w(q1(θ)), . . . , ν8 = w(q8(θ)). Recall that the corresponding
reduced integral basis is

B = {q1(θ)/2bν1c, . . . , q8(θ)/2bν8c}.

In agreement with Theorem 2.8, w(B) = {04, (1/2)2, (1/4)1, (3/4)1}.
The triangulation procedure of Section 3 consists of five triangulation

steps. In the intermediate steps, the vector ~ν of w-values takes the following
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values (after reordering):

~ν = [9/2, 11/4, 9/4, 2, 3/2, 1, 0, 0],

~ν = [9/2, 11/4, 9/4, 3/2, 1, 1, 0, 0],

~ν = [9/2, 11/4, 9/4, 1, 1, 1/2, 0, 0].

The final upper triangular matrix is

Ttriang =



1 −1 −11 12 16 4 −4 0

0 1 −3 1 0 −2 0 0

0 0 1 −3 1 0 −2 0

0 0 0 1 1 1 0 0

0 0 0 0 1 1 1 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1


, ~ν =



9/2

11/4

9/4

1

1/2

0

0

0


.

The vector ~ν describes the canonical maximal w-values

δ0 = δ1 = δ2 = 0, δ3 = 1/2, δ4 = 1, δ5 = 9/4, δ6 = 11/4, δ7 = 9/2.

The RNF routine of Section 4 leads to

TRNF =



1 −1 −3 4 8 −12 12 0

0 1 1 1 0 2 0 0

0 0 1 1 1 0 2 0

0 0 0 1 1 1 0 0

0 0 0 0 1 1 1 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1


, ~ν =



9/2

11/4

9/4

1

1/2

0

0

0


.

On the other hand, the basis in Hermite Normal Form would be

THNF =



1 3 1 0 0 4 12 0

0 1 0 0 3 2 2 0

0 0 1 1 1 0 2 0

0 0 0 1 1 1 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1


, ~ν =



4

2

9/4

1

0

0

0

0


.
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This corresponds to a simpler basis indeed. However, since the w-values are
not the maximal ones, this basis is not reduced, by Theorem 3.3.

Finally, let us illustrate the computation of TRNF by the MaxMin algo-
rithm. For α ∈ L, denote

~w(α) = (w1(α), w2(α), w3(α)).

Along the execution of the Montes algorithm, we compute and store the
w-vectors of all φ-polynomials and Okutsu approximations:

φ x x2 + 2x+ 2 φp1 φp2 φp3

~w(φ(θ)) (1/2, 5/2, 0) (7/4, 1, 0) (∞, 2, 0) (1,∞, 0) (0, 0,∞)

The coordinates with value ∞ just indicate that the values wi(φpi) for
i = 1, 2, 3 can become arbitrarily large for a proper improvement of the
Okutsu approximations with the SFL algorithm, while the values wi(φpj )
remain constant for i 6= j.

With this information at hand, the MaxMin algorithm constructs monic
polynomials g0, . . . , g7 of degree 0, . . . , 7 attaining the maximal w-values. By
[15, Thm. 2.6] these polynomials may be obtained as appropriate products
of φ-polynomials and Okutsu approximations. After a very simple search
[15, Thm. 3.3], we take

(5.1)

g0 = 1, g3 = xφp3 , g6 = x2(x2 + 2x+ 2)φp3 ,

g1 = x, g4 = (x2 + 2x+ 2)φp3 , g7 = xφp1φp3 .

g2 = x2, g5 = x(x2 + 2x+ 2)φp3 ,

giving rise directly to the sequence of canonical w-values

δ0 = δ1 = δ2 = 0, δ3 = 1/2, δ4 = 1, δ5 = 9/4, δ6 = 11/4, δ7 = 9/2.

In order to have w(gj(θ)) = δj for all 0 ≤ j < 8, the conditions
w1(φp1(θ)) =∞, w3(φp3(θ)) =∞ may be replaced by

w1(φp1(θ)) ≥ 4, w3(φp3(θ)) ≥ 9/2.

For the concrete choices for the Okutsu approximations provided by the
Montes algorithm we have w1(φp1(θ)) = 15/4 and w3(φp3(θ)) = 1, which is
not enough for our purposes. A single iteration of the SFL routine for each
factor yields the right improvements:

φp1 = x4 + 32x3 + 52x2 + 48x+ 28, w1(φp1(θ)) = 9/2 ≥ 4,

φp3 = x2 − x+ 1, w3(φp3(θ)) = 8 ≥ 9/2.

Now, we may execute the computation (5.1) of g0, . . . , g7 with these concrete
values of φp1 , φp3 provided by the SFL algorithm. In this way, we obtain a
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triangular matrix:

TMaxMin =



1 31 21 28 32 20 28 0

0 1 1 1 0 2 0 0

0 0 1 1 1 0 2 0

0 0 0 1 1 1 0 2

0 0 0 0 1 −1 1 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1


, ~ν =



9/2

11/4

9/4

1

1/2

0

0

0


,

which yields the canonical matrix TRNF after applying the RNF routine of
Section 4.
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