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Linear preservers of equivalence relations on
infinite-dimensional spaces

by

Tatjana Petek (Maribor and Ljubljana) and
Gordana Radić (Maribor)

Abstract. Linear maps preserving equivalence, equivalence by unitaries or congru-
ence, acting on an infinite-dimensional Banach/Hilbert space, are classified. In the first
two cases a unified approach is used: we identify the orbit of the identity and show that
it is invariant under the map under consideration. Known results on linear invertibility or
unitary group preservers are then used.

1. Introduction. Linear preserver problems concern the characteriza-
tion of linear maps on spaces/algebras of matrices or operators that leave
certain properties, functions, subsets or relations invariant. One of the in-
teresting topics is the study of similarity-preserving linear maps.

Throughout the paper, H denotes an infinite-dimensional complex Hil-
bert space and X stands for an infinite-dimensional complex Banach space.

The first result goes back to 1987 when Hiai [7] characterized linear maps
φ defined on the algebra of all complex n × n matrices that preserve sim-
ilarity, which means that if matrices A and B are similar (B = SAS−1

for some invertible matrix S) then φ(A) and φ(B) are similar as well.
Next, linear preservers of some other relations on matrix spaces were clas-
sified [9, 18]. Linear or merely additive preservers of similarity or unitary
similarity on infinite-dimensional spaces have been considered by many au-
thors [2, 3, 5, 6, 13–15, 19, 20, 24]; however, there are still some open ques-
tions. On infinite-dimensional Hilbert space, linear preservers of similarity
(in one direction only) were classified by Šemrl [24], who proved that if φ is
a bijective similarity-preserving linear map on B(H), then φ is either of the
form φ(X) = cTXT−1 for every X ∈ B(H), or of the form φ(X) = cTXtT−1
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for every X ∈ B(H), for some non-zero c ∈ C and an invertible operator
T ∈ B(H). Here, Xt denotes the transpose of X with respect to an arbitrary
but fixed orthonormal basis of H. Later, Petek et al. [15] determined bijec-
tive linear maps which map every unitarily similar pair A,B ∈ B(H) to a
unitarily similar pair (A and B are unitarily similar if B = UAU∗ for some
unitary U ∈ B(H)). Such a map φ is either of the form φ(X) = cUXU∗ for
every X ∈ B(H), or of the form φ(X) = cUXtU∗ for every X ∈ B(H), for
some non-zero c ∈ C and a unitary operator U ∈ B(H).

It is our aim to find a complete description of bijective linear maps
that preserve some other equivalence relations on an infinite-dimensional
space. We restrict our attention to three relations: equivalence (A,B ∈ B(X )
are equivalent if B = TAS for some invertible T, S ∈ B(X )); equivalence
by unitaries (A,B ∈ B(H) are equivalent by unitaries if B = UAW for
some unitary U,W ∈ B(H)); and congruence (A,B ∈ B(H) are congruent
if B = SAS∗ for some invertible S ∈ B(H)). For each of these relations
the orbit of the identity operator is rather large. The common approach in
classifying linear preservers of the (first and second) relations above is to
reduce the problem to the classification of linear maps which preserve the
orbit of the identity, which is the set of invertible operators and the unitary
group of operators, respectively.

We will describe linear maps on Banach/Hilbert spaces preserving a
given binary relation, which is a purely algebraic condition. As a result we
find in particular that such maps are continuous. Therefore, our results are
a contribution to automatic continuity results.

2. Preliminaries. LetX be an infinite-dimensional Banach space over C,
and X ′ its dual. We denote by B(X ) the algebra of all bounded lin-
ear operators on X , and by F(X ) the ideal of finite-rank operators in
B(X ).

Every rank-one operator on X can be written as x⊗f for some non-zero
vector x ∈ X and some non-zero functional f ∈ X ′. This operator is defined
by (x ⊗ f)z = f(z)x for every z ∈ X , and for every A ∈ B(X ) we have
A(x⊗ f) = Ax⊗ f and (x⊗ f)A = x⊗ A′f , where A′ denotes the adjoint
operator of A. Such an operator is idempotent if f(x) = 1, and nilpotent if
f(x) = 0. Observe that x⊗ λf = λx⊗ f for every λ ∈ C.

When H is a complex infinite-dimensional Hilbert space, we define rank-
one operators as (x⊗y)z = 〈z, y〉x for every z ∈ H, and (x⊗y)A = x⊗A∗y,
for every A ∈ B(H), where A∗ stands for the Hilbert space adjoint of A.
Here, 〈z, y〉 denotes the inner product of z, y ∈ H. Clearly, the operator
x ⊗ y is idempotent if 〈x, y〉 = 1, and nilpotent if 〈x, y〉 = 0. Furthermore,
x⊗ λy = λx⊗ y for every λ ∈ C, and (x⊗ y)∗ = y ⊗ x for all x, y ∈ H.



Preservers of equivalence relations 103

Our first step will be to reduce the problem to the case of rank-one
preserving maps. We will use the following result due to Kuzma regarding
“rank-one-non-increasing” additive mappings.

Theorem 2.1 ([16]). Let φ : F(X ) → F(X ) be an additive map, which
satisfies rankφ(X) ≤ 1 whenever rankX = 1. Then one and only one of the
following statements holds.

(i) There exist g ∈ X ′ and an additive map τ : F(X )→ X such that

φ(X) = τ(X)⊗ g for every X ∈ F(X ).

(ii) There exist a ∈ X and an additive map ϕ : F(X )→ X ′ such that

φ(X) = a⊗ ϕ(X) for every X ∈ F(X ).

(iii) There exist additive maps T : X → X and S : X ′ → X ′ such that

φ(x⊗ f) = Tx⊗ Sf for every x ∈ X and every f ∈ X ′.
(iv) There exist additive maps T : X ′ → X and S : X → X ′ such that

φ(x⊗ f) = Tf ⊗ Sx for every x ∈ X and every f ∈ X ′.
Remark. If φ is linear, the maps τ and ϕ in (i) and (ii), respectively,

are linear and cannot map a rank-one operator to zero.

Remark. When X = H is a Hilbert space, under the stronger assump-
tion that φ is linear, it is easy to see that T and S must be injective linear
maps in case (iii) and injective conjugate-linear maps in case (iv).

We add a simple lemma which is likely well known.

Lemma 2.2. Let A ∈ B(X ) be of rank one and B ∈ B(X ) be non-zero.
If rank(A+ λB) = 1 for at least two non-zero λ ∈ C, then rankB = 1.

Proof. By the assumption there exist distinct non-zero λ1, λ2 ∈ C such
that

A+ λ1B = x1 ⊗ f1 and A+ λ2B = x2 ⊗ f2
for some non-zero x1, x2 ∈ X and non-zero f1, f2 ∈ X ′. Since rankA = 1,
it follows from λ2x1 ⊗ f1 − λ1x2 ⊗ f2 = (λ2 − λ1)A that x1 and x2 are
linearly dependent or f1 and f2 are linearly dependent. Thus (λ1 − λ2)B =
x1 ⊗ f1 − x2 ⊗ f2 implies that B is of rank one.

3. Equivalence preservers. Let X be an infinite-dimensional complex
Banach space. Recall that operators A,B ∈ B(X ) are equivalent, denoted
by A ∼ B, whenever there exist invertible operators T, S ∈ B(X ) such that
A = TBS. A linear map φ : B(X ) → B(X ) preserves equivalence if A ∼ B
implies φ(A) ∼ φ(B); and φ preserves equivalence in both directions when
A ∼ B if and only if φ(A) ∼ φ(B).
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It is easy to see that all rank-one operators are mutually equivalent, so
the equivalence orbit of a fixed rank-one operator (i.e. the set of all operators
equivalent to that operator) consists of all rank-one operators.

Our first result is a characterization of linear maps on B(X ) which pre-
serve equivalence.

Theorem 3.1. Let X be an infinite-dimensional reflexive complex Ba-
nach space and φ : B(X )→ B(X ) a bijective linear map. Then the following
statements are equivalent.

(i) φ preserves equivalence.
(ii) Either there exist invertible operators T, S ∈ B(X ) such that

φ(X) = TXS for every X ∈ B(X ),

or there exist bounded bijective linear operators T : X ′ → X and S :
X → X ′ such that

φ(X) = TX ′S for every X ∈ B(X ),

where X ′ stands for the adjoint of the operator X.
(iii) φ preserves equivalence in both directions.

Before starting the proof, let us recall a simple lemma, which will be
needed in the proof.

Lemma 3.2 ([25]). Let x ∈ X and f ∈ X ′. Then I − x⊗ f is invertible
in B(X ) if and only if f(x) 6= 1.

The proof of Theorem 3.1 depends on the description of bijective linear
maps which preserve invertibility, that is, map each invertible operator to
an invertible operator; a characterization of such maps is the content of the
next theorem.

Theorem 3.3 ([25]). Let φ : B(X ) → B(X ) be a bijective linear map
preserving invertibility. Then either there exist invertible operators T, S ∈
B(X ) such that φ(X) = TXS for every X ∈ B(X ), or there exist bounded
invertible operators T : X ′ → X and S : X → X ′ such that φ(X) = TX ′S
for every X ∈ B(X ).

Proof of Theorem 3.1. The implications (ii)⇒(iii) and (iii)⇒(i) are ob-
vious. It remains to prove (i)⇒(ii), which will be done in several steps.

Step 1. φ is rank-one preserving.

Choose any P ∈ B(X ) of rank one. By the surjectivity of φ, there exists a
non-zero A ∈ B(X ) such that φ(A) = P and a normalized vector e ∈ X with
Ae 6= 0. For a fixed non-zero fe ∈ X ′, the operator I − λe⊗ fe is invertible
for infinitely many non-zero λ ∈ C. For such λ, operating by φ on

(3.1) A ∼ A(I − λe⊗ fe) = A− λAe⊗ fe
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gives

(3.2) P = φ(A) ∼ φ(A)− λφ(Ae⊗ fe) = P − λφ(Ae⊗ fe).
Hence, P −λφ(Ae⊗ fe) is of rank one for infinitely many non-zero scalars λ
and by Lemma 2.2, rankφ(Ae⊗ fe) = 1. So we have found a rank-one oper-
ator which is mapped to a rank-one operator. Since all rank-one operators
are equivalent, φ(R) is of rank one for every rank-one R.

Step 2. Either there exist injective linear maps T : X → X and S :
X ′ → X ′ such that φ(x⊗ f) = Tx⊗ Sf for every rank-one operator x⊗ f ,
or there exist injective linear maps T : X ′ → X and S : X → X ′ such that
φ(x⊗ f) = Tf ⊗ Sx for every rank-one operator x⊗ f .

We apply Theorem 2.1. In addition to the assumptions of Theorem 2.1,
our map φ is linear and preserves rank-one operators. Therefore, it cannot
map any rank-one operator to zero.

Assume firstly that φ(x ⊗ f) = τ(x ⊗ f) ⊗ g for every x ⊗ f ∈ B(X ),
for some 0 6= g ∈ X ′ and a linear map τ : F(X ) → X . Choose any non-
zero x0 ∈ X and any non-zero f0 ∈ X ′ linearly independent of g. By the
surjectivity of φ, there exists A ∈ B(X ) such that φ(A) = x0 ⊗ f0. Clearly,
A is not of rank one, thus there exist normalized e1, e2 ∈ X such that Ae1
and Ae2 are linearly independent. For each i = 1, 2 choose fi ∈ X ′ with
fi(ei) = 1. Then it follows from A ∼ A(I − 2ei ⊗ fi) = A− 2Aei ⊗ fi that

(3.3) x0 ⊗ f0 ∼ x0 ⊗ f0 − 2φ(Aei ⊗ fi).
Hence, x0 ⊗ f0 − 2τ(Aei ⊗ fi)⊗ g is of rank one. Since f0 and g are linearly
independent, τ(Aei⊗fi) and x0 are necessarily linearly dependent, so the vec-
tors τ(Ae1⊗f1) and τ(Ae2⊗f2) and consequently the operators φ(Ae1⊗f1)
and φ(Ae2⊗ f2) are linearly dependent too. As φ is an injective linear map,
this contradicts the fact that Ae1 and Ae2 are linearly independent.

Analogously we prove that the second statement of Theorem 2.1 cannot
be true. Therefore φ satisfies either (iii) or (iv).

It is enough to consider one of these cases, since the proof of the other
is almost the same. We will suppose that (iv) holds, i.e. there exist injective
linear maps T : X ′ → X and S : X → X ′ such that

φ(x⊗ f) = Tf ⊗ Sx for every rank-one operator x⊗ f.
Step 3. T and S are surjective maps.

Assume that T is not surjective, so there exists a non-zero x0 ∈ X \ImT .
Choose any non-zero f0 ∈ X ′; since φ is bijective, there exists A ∈ B(X ) such
that φ(A) = x0 ⊗ f0. Because A is not of rank one, there exist normalized
e1, e2 ∈ X such that Ae1 and Ae2 are linearly independent. As in (3.3), we
infer x0 ⊗ f0 ∼ x0 ⊗ f0 − 2φ(Ae1 ⊗ f1) for some non-zero f1 ∈ X ′ with
f1(e1) = 1. Obviously, x0 ⊗ f0 − 2Tf1 ⊗ SAe1 is of rank one. Since Tf1 and
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x0 are linearly independent, we deduce that SAe1 and similarly SAe2 are
linearly dependent on f0. Therefore, SAe1 and SAe2 are linearly dependent.
By the injectivity of S it follows that Ae1 and Ae2 are linearly dependent,
a contradiction. Thus T is surjective. In the same way we can prove the
surjectivity of S.

Step 4. T and S are continuous.

Since φ is bijective, there has to be a non-zero A ∈ B(X ) with φ(A) = I.
Firstly, choose any non-zero e0 ∈ X and non-zero f0 ∈ X ′ such that
f0(e0) = 0. By Lemma 3.2, the operator I − λ0e0 ⊗ f0 is invertible for every
λ0 ∈ C. From the relation A ∼ A(I − λ0e0 ⊗ f0) = A− λ0Ae0 ⊗ f0 we get

I ∼ I − λ0Tf0 ⊗ SAe0 for every λ0 ∈ C.
Thus λ0(SAe0)(Tf0) 6= 1 for every scalar λ0, by Lemma 3.2. Hence,

(3.4) (SAe0)(Tf0) = 0 for every nilpotent e0 ⊗ f0 ∈ B(X ).

Following steps similar to those used in [24, Proposition 3.1], we can
prove that there exists c ∈ C such that

(3.5) (SAe1)(Tf1) = c for every idempotent e1 ⊗ f1 ∈ B(X ).

For completeness, let us sketch the proof. Take e1 ∈ X and f1 ∈ X ′ such that
f1(e1) = 1. Then I−λ1e1⊗f1 is invertible for every scalar λ1 6= 1. As in (3.4),
we have λ1(SAe1)(Tf1) 6= 1 for every λ1 6= 1. Define c = (SAe1)(Tf1) ∈ C;
since λ1c 6= 1 for every scalar λ1 6= 1, it follows that

(3.6) c = 0 or c = 1.

Next, consider e2 ∈ X and f2 ∈ X ′ such that f2(e2) = 1 and f1(e2) = 0 =
f2(e1). By applying (3.4) we get (SAe2)(Tf1) = 0 = (SAe1)(Tf2). As the
operator (e1 + e2) ⊗ (f1 − f2) is nilpotent, it must be that (SAe1)(Tf1) =
(SAe2)(Tf2). Finally, choose e3 ∈ X and f3 ∈ X ′ such that f3(e3) = 1 and
then take e4 ∈ X and f4 ∈ X ′ linearly independent of e3 and f3, respectively,
such that f4(e4) = 1, f4(e1) = 0 = f1(e4) and f4(e3) = 0 = f3(e4). By
the same method as above, we get c = (SAe1)(Tf1) = (SAe4)(Tf4) =
(SAe3)(Tf3), which is the desired conclusion.

Take any x ∈ X and f ∈ X ′ with f(x) 6= 0. Replacing f1 by f(x)−1f in
(3.5) and using (3.4) we easily obtain

(3.7) (SAx)(Tf) = cf(x) for every x ∈ X and every f ∈ X ′.
Our next goal is to show that c 6= 0. Suppose that c = 0. By (3.7), we

have
(SAx)(Tf) = 0 for every x ∈ X and every f ∈ X ′.

Fix x0 ∈ X and let g0 = SAx0 ∈ X ′. Then g0(Tf) = 0 for every f ∈ X ′. The
map T is surjective, so g0 = 0. By the injectivity of S, we have Ax0 = 0.
The vector x0 was arbitrary, thus A = 0, a contradiction.
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Since c 6= 0, conclusions (3.6) and (3.7) imply

(3.8) (SAx)(Tf) = f(x) for every x ∈ X and every f ∈ X ′.
We now prove the continuity of the operator SA and in turn also of T .

Let xn → 0 and SAxn → g ∈ X ′. Applying (3.8) gives

g(Tf) = 0 for every f ∈ X ′.
The operator T is surjective, so g = 0. By the closed graph theorem, the
operator SA is continuous. Furthermore, by the bijectivity of T , for every
y ∈ X let fy = T−1y. Then by (3.8), we have

fy(x) = (SAx)(Tfy) = (SAx)(y) for every x ∈ X .
Since SAx is a bounded functional, we estimate

|fy(x)| = |(SAx)(y)| ≤ ‖SAx‖ · ‖y‖ ≤ ‖SA‖ · ‖x‖ · ‖y‖
for every x ∈ X . Hence, ‖T−1y‖ = ‖fy‖ ≤ ‖SA‖ · ‖y‖ for every y ∈ X . It
turns out that ‖T−1‖ ≤ ‖SA‖, so T−1 and consequently T is bounded.

By applying φ on the relations A ∼ (I − λ0e0 ⊗ f0)A, λ0 ∈ C, and
A ∼ (I − λ1e1 ⊗ f1)A, λ1 6= 1, where e0 ⊗ f0 is any nilpotent and e1 ⊗ f1
any idempotent, and by a similar reasoning to that used above, we obtain

(3.9) (Sx)(TA′f) = f(x) for every x ∈ X and every f ∈ X ′.
As X is reflexive by assumption, let i : X → X ′′ denote the canonical iso-
metric embedding. By setting h = Sx ∈ X ′ in (3.9), it follows that

(3.10) |i(S−1h)f | = |f(S−1h)| = |h(TA′f)| ≤ ‖h‖ · ‖TA′‖ · ‖f‖,
and we infer that S−1 is continuous, so S is continuous as well.

Step 5. φ−1(I) is invertible.

Denote A = φ−1(I). In order to show that A is invertible, note that
T : X ′ → X is a bounded linear operator, so its adjoint T ′ : X ′ → X ′′ exists
and T ′h = h ◦ T : X ′ → C. Now, choose any x ∈ X and apply (3.8) to get

i(x)(f) = f(x) = (SAx)(Tf) = (SAx ◦ T )(f) = (T ′SAx)(f)

for every f ∈ X ′. Thus i(x) = T ′SAx for every x ∈ X . Therefore i = T ′SA
is bijective, and consequently the operator A = (T ′S)−1i is invertible.

As there exists an invertible operator which is mapped to I, the map φ
preserves invertibility, and by Theorem 3.3 we complete the proof.

Let us close this section with a characterization of bijective equivalence-
preserving linear maps on B(H). As the proof is essentially the same as the
proof of Theorem 3.1, it is omitted.

Theorem 3.4. Let φ : B(H)→ B(H) be a bijective linear map preserving
equivalence. Then there exist invertible operators T, S ∈ B(H) such that
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either

φ(X) = TXS for every X ∈ B(H),

or

φ(X) = TXtS for every X ∈ B(H),

where Xt denotes the transpose of X with respect to an arbitrary but fixed
orthonormal basis in H.

4. Preservers of equivalence by unitaries. Recall that A,B ∈ B(H)
are equivalent by unitaries, denoted by A ' B, whenever there exist unitary
operators U,W ∈ B(H) such that A = UBW . A map φ preserves equivalence
by unitaries if A ' B implies φ(A) ' φ(B).

It is easy to verify that x⊗ y ' e⊗ f if and only if ‖x‖ · ‖y‖ = ‖e‖ · ‖f‖,
and I ' U if and only if U ∈ B(H) is unitary.

Let us give a simple technical lemma.

Lemma 4.1. Let A ∈ B(H). If I ' I + (µ − 1)A for every µ ∈ C with
|µ| = 1, then A is a projection (i.e. A∗ = A = A2).

Proof. Since I + (µ− 1)A is a unitary operator for |µ| = 1 we have

(I + (µ− 1)A)∗(I + (µ− 1)A) = I,

and hence

(µ− 1)A+ µ− 1A∗ + |µ− 1|2A∗A = 0

By taking µ = −1 and then µ = i, we obtain

A+A∗ − 2A∗A = 0 and (i− 1)A− (i+ 1)A∗ + 2A∗A = 0.

Summing up these equations, we get A = A∗, and by the first equality
A2 = A, as desired.

In our next result we determine linear maps on B(H) which preserve
equivalence by unitaries.

Theorem 4.2. Let φ : B(H) → B(H) be a bijective linear map. Then
the following statements are equivalent.

(i) φ preserves equivalence by unitaries.
(ii) There exist a non-zero c ∈ C and unitary operators U,W ∈ B(H) such

that either

φ(X) = cUXW for every X ∈ B(H),

or

φ(X) = cUXtW for every X ∈ B(H),

where Xt denotes the transpose of X with respect to an arbitrary but
fixed orthonormal basis in H.
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(iii) φ preserves equivalence by unitaries in both directions (i.e. A ' B if
and only if φ(A) ' φ(B)).

The proof of Theorem 4.2 applies a well-known result on the unitary
group preserving maps, which we recall below.

Theorem 4.3 ([21]). Let φ : B(H) → B(H) be a linear bijective map
which preserves the unitary group. Then there exist unitary operators U,W ∈
B(H) such that either φ(X) = UXW for every X ∈ B(H), or φ(X) =
UXtW for every X ∈ B(H), where Xt denotes the transpose of X with
respect to an arbitrary but fixed orthonormal basis in H.

Remark. In [21], the continuity of φ was assumed. However, this as-
sumption is superfluous. By [22] every self-adjoint operator H ∈ B(H) can
be written as a linear combination of two unitary operators W1,W2 ∈ B(H)

as H = ‖H‖
2 (W1 +W2). Then it follows easily that for every A ∈ B(H) there

exist unitary operators Ui ∈ B(H), i = 1, 2, 3, 4, such that A =
∑4

i=1 αiUi,
where |αi| ≤ ‖A‖/2 for i = 1, 2, 3, 4. Since φ preserves the unitary group, it
is bounded and therefore continuous.

Proof of Theorem 4.2. We only have to prove (i)⇒(ii), since (ii)⇒(iii)
and (iii)⇒(i) are obvious. The structure of the proof will be similar to that
of the proof of Theorem 3.1.

Step 1. φ is rank-one preserving.

The proof is similar to that of Step 1 in the proof of Theorem 3.1, so it
is omitted.

Step 2. Either there exist injective linear maps T, S : H → H such
that φ(x ⊗ y) = Tx ⊗ Sy for every rank-one operator x ⊗ y, or there exist
conjugate-linear maps T, S : H → H such that φ(x⊗y) = Ty⊗Sx for every
rank-one operator x⊗ y.

The map φ takes one of the forms from Theorem 2.1 by Step 1. Firstly, we
assume that there exist a non-zero b ∈ H and a linear map τ : F(H)→ H,
where rankX = 1 forces τ(X) 6= 0, such that φ(X) = τ(X) ⊗ b for every
X ∈ F(H). As φ is surjective, there exists A ∈ B(H) such that φ(A) = I.
Clearly, A is not of rank one, so there exist e1, e2 ∈ H such that Ae1 and
Ae2 are linearly independent. By the assumption, we obtain

φ(Aei ⊗ ei) = τ(Aei ⊗ ei)⊗ b for i = 1, 2.

As I + (µ− 1)ei ⊗ ei is unitary, for every unimodular µ ∈ C, we have

A ' A(I + (µ− 1)ei ⊗ ei) = A+ (µ− 1)Aei ⊗ ei,
which further implies

(4.1) I ' I + (µ− 1)φ(Aei ⊗ ei) for every µ with |µ| = 1.
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By Lemma 4.1 the operators φ(Ae1 ⊗ e1) and φ(Ae2 ⊗ e2) are projections,
thus

τ(Ae1 ⊗ e1) =
1

‖b‖2
b = τ(Ae2 ⊗ e2),

and consequently φ(Ae1⊗ e1) = φ(Ae2⊗ e2). Since φ is injective, we deduce
that Ae1⊗ e1 = Ae2⊗ e2, which contradicts linear independence of Ae1 and
Ae2. In the same way, we can see that the second statement of Theorem 2.1
cannot be true. Therefore φ satisfies either (iii) or (iv).

Again, we will only consider case (iv), i.e. we suppose there exist injective
conjugate-linear maps T, S : H → H such that

φ(x⊗ y) = Ty ⊗ Sx for every rank-one operator x⊗ y.

Step 3. There exist positive constants α and β such that ‖Sx‖ = α‖x‖
and ‖Tx‖ = β‖x‖ for all x ∈ H. Consequently, both T and S are continuous.

Fix orthonormal vectors e, f ∈ H. Then it can be easily checked that for
any x, y ∈ H,

x⊗ y ' ‖x‖e⊗ y and x⊗ y ' ‖y‖x⊗ f.

By operating with φ on these relations, we derive that

Ty ⊗ Sx ' ‖x‖Ty ⊗ Se and Ty ⊗ Sx ' ‖y‖Tf ⊗ Sx,

which immediately implies

‖Ty‖ · ‖Sx‖ = ‖x‖ · ‖Ty‖ · ‖Se‖ and ‖Ty‖ · ‖Sx‖ = ‖y‖ · ‖Tf‖ · ‖Sx‖.

Setting α = ‖Se‖ > 0 and β = ‖Tf‖ > 0, we arrive at

(4.2) ‖Sx‖ = α‖x‖ and ‖Ty‖ = β‖y‖,

for all x, y ∈ H.

Step 4. φ−1(I) is a unitary operator multiplied by a non-zero scalar.

Let φ(A) = I. If A is a scalar operator, we are done. So, assume that A
is not scalar. As A 6= 0, there exists a normalized vector e ∈ H with Ae 6= 0.
As in (4.1), we infer

I ' I + (µ− 1)φ(Ae⊗ e) for every µ with |µ| = 1.

By Lemma 4.1, the operator φ(Ae⊗ e) = Te⊗ SAe is a projection of rank
one. Hence, λeTe = SAe for some non-zero λe ∈ C. By (4.2) and from

1 = 〈Te, SAe〉 = 〈Te, λeTe〉 = λe‖Te‖2 = λeβ
2

it follows that

(4.3) Te = β2SAe for every e ∈ H with Ae 6= 0.



Preservers of equivalence relations 111

As A is bounded, thus continuous, and T and S are also continuous, (4.3)
can be extended to

Te = β2SAe for every e ∈ H.

This yields T = β2SA, and by applying Step 3 we get

(4.4) I =
1

β2
T ∗T =

1

β2
(β2SA)∗(β2SA) = β2A∗(S∗S)A = α2β2A∗A.

By the same method, φ(f ⊗ A∗f) = TA∗f ⊗ Sf is a projection of rank
one for every non-zero f ∈ H with A∗f 6= 0. From continuity of A, T and S
it follows that S = α2TA∗. Thus,

(4.5) I =
1

α2
S∗S = α2(TA∗)∗(TA∗) = α2A(T ∗T )A∗ = α2β2AA∗.

Because of (4.4) and (4.5), the operator αβA is unitary and φ( 1
αβA) = I, as

desired.

Replacing φ by (αβ)−1φ, we see that φ preserves unitary operators, and
by Theorem 4.3, the proof is completed.

5. Congruence preservers. Recall that A,B ∈ B(H) are congruent,
denoted by A ≡ B, whenever there exists a bijective operator S ∈ B(H)
such that A = SBS∗. A map φ preserves congruence when A ≡ B implies
φ(A) ≡ φ(B). We say that A ∈ B(H) is positive if 〈Ax, x〉 ≥ 0 for every
x ∈ H.

It is clear that for any A,B ∈ B(H), A ≡ B implies A ∼ B, and if A ≡ B
then either both A and B are self-adjoint, or neither is. Moreover, if A ≡ B
and A is positive, then B is positive as well.

In the next proposition we give a classification of congruence classes
for 2 × 2 complex matrices, which is actually a special case of the Claim
in [11, Theorem 1.1(b)].

Proposition 5.1 ([11]). Every 2 × 2 complex matrix is congruent to a
matrix of exactly one of the following types:[

0 1

λ 0

]
, µ

[
0 1

1 i

]
,

[
µ1 0

0 µ2

]
,

[
µ 0

0 0

]
,

[
0 1

0 0

]
,

[
0 0

0 0

]
,

where µ, µ1, µ2 are unimodular scalars and |λ| > 1.

We continue with two elementary observations; the first lemma is derived
from the previous proposition, and the second one will be needed in the last
step of the proof of the main result of this section.

Lemma 5.2. Let A be a non-zero 2 × 2 complex matrix. If A ≡ αA for
every unimodular α ∈ C, then A ≡

[
0 1
0 0

]
.
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Proof. Firstly, if A ≡
[
0 1
λ 0

]
for some |λ| > 1, then the relation A ≡ αA,

for every unimodular scalar α, implies[
0 1

λ 0

]
≡ α

[
0 1

λ 0

]
=

[
1 0

0 α

][
0 1

α2λ 0

][
1 0

0 α

]
≡
[

0 1

α2λ 0

]
.

The first and the last matrix are congruent and both are in canonical form.
Hence, λ = λα2 for every unimodular α ∈ C, a contradiction.

Next, suppose that A ≡ µ
[
0 1
1 i

]
for some unimodular µ ∈ C. Thus

µ
[
0 1
1 i

]
≡ αµ

[
0 1
1 i

]
and by Proposition 5.1, since |αµ| = 1, it follows that

µ = αµ, for every unimodular α ∈ C, a contradiction.
By the same argument, the matrix A is neither congruent to

[ µ1 0
0 µ2

]
for any unimodular µ1, µ2 ∈ C, nor to

[
µ 0
0 0

]
for any unimodular µ ∈ C.

Therefore A ≡
[
0 1
0 0

]
, as claimed.

Lemma 5.3. Let A,B ∈ B(H) be positive. If

A− λe⊗Be− λBe⊗ e+ λ2〈Be, e〉e⊗ e
is positive for every normalized e ∈ H and every real λ 6= 1, then A− B is
positive as well.

Proof. Choose any normalized e ∈ H. Since the operator A− λe⊗Be−
λBe⊗ e+ λ2〈Be, e〉e⊗ e, λ ∈ R \ {1}, is positive, we actually have

〈Ax, x〉 − λ〈x,Be〉〈e, x〉 − λ〈x, e〉〈Be, x〉+ λ2〈Be, e〉〈x, e〉〈e, x〉 ≥ 0

for every x ∈ H. By inserting x := e it follows easily that

〈Be, e〉(λ− 1)2 + 〈(A−B)e, e〉 ≥ 0

for every real λ 6= 1. As 〈Be, e〉 ≥ 0, it must be that 〈(A − B)e, e〉 ≥ 0 for
every normalized e ∈ H and in fact for every e ∈ H, as claimed.

Our last result is a representation of linear maps on B(H) which preserve
congruence.

Theorem 5.4. Let φ : B(H) → B(H) be a bijective linear map. Then
the following statements are equivalent.

(i) φ preserves congruence.
(ii) There exist a unimodular µ ∈ C and an invertible operator S ∈ B(H)

such that either

φ(X) = µSXS∗ for every X ∈ B(H),

or

φ(X) = µSXtS∗ for every X ∈ B(H),

where Xt denotes the transpose of X with respect to an arbitrary but
fixed orthonormal basis of H.
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(iii) φ preserves congruence in both directions (i.e. A ≡ B if and only if
φ(A) ≡ φ(B)).

Proof. As in the previous sections, we only have to prove (i)⇒(ii), and
the proof is in several steps.

Step 1. There exists a unimodular µ ∈ C such that for every non-zero
x ∈ H there exists a non-zero p ∈ H with φ(x⊗ x) = µp⊗ p.

Let P ∈ B(H) be any projection of rank one. As φ is surjective, there
exists A ∈ B(H) such that φ(A) = P . Because A 6= 0, there exists a nor-
malized e ∈ H with 〈Ae, e〉 6= 0. By Lemma 3.2, the operator I − λe ⊗ e is
invertible for every λ ∈ R \ {1}, so acting by φ on both sides of

A ≡ (I − λe⊗ e)A(I − λe⊗ e)∗ = A− λ(e⊗A∗e+Ae⊗ e) + λ2〈Ae, e〉e⊗ e
gives

(5.1) P ≡ P − λφ(e⊗A∗e+Ae⊗ e) + λ2〈Ae, e〉φ(e⊗ e).
Hence,

(5.2) P − λφ(e⊗A∗e+Ae⊗ e) + λ2〈Ae, e〉φ(e⊗ e)
is a self-adjoint operator of rank one. By dividing (5.2) by λ2 and sending λ
to infinity, we arrive at rank 〈Ae, e〉φ(e⊗ e) ≤ 1. Moreover, 〈Ae, e〉 6= 0 and
by the injectivity of φ, rankφ(e⊗ e) = 1. Thus,

(5.3) φ(e⊗ e) = a⊗ b
for some non-zero a, b ∈ H. As the operator (5.2) is self-adjoint, we have

λφ(e⊗A∗e+Ae⊗e)−λ2〈Ae, e〉a⊗b = λφ(e⊗A∗e+Ae⊗e)∗−λ2〈Ae, e〉 b⊗a
for every λ ∈ R \ {1}. Therefore

〈Ae, e〉a⊗ b = 〈Ae, e〉 b⊗ a,
which implies that a and b are linearly dependent. Then there exists a non-
zero α ∈ C such that a = αb = |α|µb for some unimodular µ ∈ C. By
(5.3),

φ(e⊗ e) = |α|µb⊗ b = µp⊗ p,
where p =

√
|α| b ∈ H. Since x ⊗ x ≡ e ⊗ e for every non-zero x ∈ H, we

deduce that φ(x⊗ x) ≡ µp⊗ p for every non-zero x ∈ H.
Note that the same unimodular µ ∈ C applies for every x ⊗ x, so by

replacing φ with µφ, we may further assume that for every non-zero x ∈ H
we have φ(x⊗ x) = p⊗ p for some non-zero p ∈ H, depending on x.

Step 2. φ is rank-one preserving.

It is easy to see that every rank-one operator is either congruent to µe⊗e
for some |µ| = 1 and e 6= 0, or to e ⊗ f where e and f are linearly inde-
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pendent vectors. By Step 1 it is enough to show that for arbitrary linearly
independent e, f ∈ H, the operator φ(e⊗ f) is of rank one.

To do so, fix linearly independent e, f ∈ H. Without loss of generality,
we may assume that φ(e⊗e) = e⊗e and φ(f⊗f) = p⊗p, for some non-zero
p ∈ H. It is clear that there exists an invertible S ∈ B(H) such that Se = e
and Sf = p. By replacing φ with S−1φ(·)(S−1)∗ we may further assume
that φ(e⊗ e) = e⊗ e and φ(f ⊗ f) = f ⊗ f .

By applying Step 1 we deduce φ((e + f) ⊗ (e + f)) = a ⊗ a for some
non-zero a ∈ H. On the other hand, by the linearity of φ, we have φ(e⊗ e)
+ φ(e⊗ f + f ⊗ e) + φ(f ⊗ f) = a⊗ a, and thus

φ(e⊗ f + f ⊗ e) = a⊗ a− e⊗ e− f ⊗ f
is a self-adjoint operator of rank at most three. We can easily verify that
e⊗ f + f ⊗ e ≡ −(e⊗ f + f ⊗ e), and therefore

(5.4) φ(e⊗ f + f ⊗ e) ≡ −φ(e⊗ f + f ⊗ e).
Observe that self-adjoint operators of finite rank are congruent if and only if
they have the same number of positive eigenvalues and the same number of
negative eigenvalues [8]. Now, as φ(e⊗f +f ⊗e) is a self-adjoint operator of
rank at most three and because (5.4) is true, it follows that φ(e⊗ f + f ⊗ e)
is of rank two with one positive and one negative eigenvalue. Since e and
f are linearly independent, we have a ∈ span{e, f}. With respect to the
decomposition H = span{e, f} ⊕ {e, f}⊥ the operator φ(e⊗ f + f ⊗ e) has
a matrix representation

φ(e⊗ f + f ⊗ e) =

[
a11 a12

a12 a22

]
⊕ 0,

for some a11, a12, a22 ∈ C. Similarly, repeating the same procedure with ie
instead of e shows that the operator

φ(ie⊗ f − if ⊗ e) = b⊗ b− e⊗ e− f ⊗ f
is of rank two for some b ∈ span{e, f}. Then

φ(ie⊗ f − if ⊗ e) =

[
b11 b12

b12 b22

]
⊕ 0

for some b11, b12, b22 ∈ C.

Since 2e⊗ f = (e⊗ f + f ⊗ e)− i(ie⊗ f − if ⊗ e), we get

φ(2e⊗ f) =

[
a1 − ib1 a2 − ib2
a2 − ib2 a4 − ib4

]
⊕ 0.

By [20, Proposition 3] every nilpotent N of rank one is unitarily similar and
thus congruent to αN , for every unimodular α ∈ C. Thus 2e⊗f ≡ α(2e⊗f)
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for every α ∈ C with |α| = 1. This yields

φ(2e⊗ f) ≡ αφ(2e⊗ f) for every scalar α with |α| = 1.

Since φ(2e⊗ f) can be viewed as a 2× 2 square matrix, by Lemma 5.2 the
operator φ(2e⊗ f) must be of rank one, as desired.

Step 3. Either there exists an injective linear map T : H → H such
that φ(x⊗ y) = Tx⊗ Ty for every rank-one operator x⊗ y, or there exists
an injective conjugate-linear map T : H → H such that φ(x⊗ y) = Ty⊗ Tx
for every rank-one operator x⊗ y.

Since φ preserves rank-one operators, one and only one of the statements
from Theorem 2.1 is true. Suppose that it is the first one, i.e. there exist a
non-zero c ∈ H and a linear map τ : B(H) → H, which cannot map any
rank-one operator to zero, such that φ(X) = τ(X)⊗ c for every X ∈ F(H).
By taking any linearly independent x, y ∈ H we get

φ(x⊗ x) = τ(x⊗ x)⊗ c = p⊗ p and φ(y ⊗ y) = τ(y ⊗ y)⊗ c = q ⊗ q
for some non-zero p, q ∈ H by Step 1. Hence p and q are each linearly
dependent on c. Thus p and q are linearly dependent, which contradicts the
injectivity of φ.

By the same argument, (ii) of Theorem 2.1 cannot be true, so φ satisfies
either (iii) or (iv). Assume that (iii) holds and that there exist injective
linear maps T, S : H → H such that φ(x ⊗ y) = Tx ⊗ Sy for every rank-
one operator x ⊗ y. Since we already know that for every x ∈ H we have
φ(x⊗x) = Tx⊗Sx = p⊗p for some p ∈ H, there actually exists λ > 0 such
that Sx = λTx for every x ∈ H. This immediately implies that φ(x⊗ x) =
λTx ⊗ Tx =

√
λTx ⊗

√
λTx. Therefore, replacing T by (1/

√
λ)T yields

φ(x⊗ y) = Tx⊗ Ty for every rank-one operator x⊗ y.

Similarly, if (iv) of Theorem 2.1 is true, there exists an injective conjugate-
linear map T such that φ(x ⊗ y) = Ty ⊗ Tx for every rank-one operator
x⊗ y. In this case, J : H → H defined by Jx =

∑
i∈I 〈x, ei〉ei is a bijective

conjugate-linear map, where {ei | i ∈ I} is a fixed orthonormal basis of H.
Then Xt = JXJ denotes the transpose of X with respect to that basis. Now,
replace φ byX 7→ φ(Xt),X ∈ B(H). This gives φ(x⊗y) = TJx⊗TJy, where
T ◦J is an injective linear map onH. So, without loss of generality we can and
will assume that there exists an injective linear map T : H → H such that

φ(x⊗ y) = Tx⊗ Ty for every rank-one operator x⊗ y.

Step 4. Let A ∈ B(H). If φ(A) is positive, then A is positive.

Denote φ(A) = B and assume that B is positive. We want to show that
〈Ax, x〉 ≥ 0 for every x ∈ H. If B = 0, this is obviously true, so suppose
B 6= 0. Choose a normalized e ∈ H. By Lemma 3.2, the operator I − λe⊗ e
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is invertible for every real λ 6= 1. Thus,

A ≡ A− λe⊗A∗e− λAe⊗ e+ λ2〈Ae, e〉e⊗ e

for every λ ∈ R \ {1}. Since φ preserves congruence, we obtain

B ≡ B − λTe⊗ TA∗e− λTAe⊗ Te+ λ2〈Ae, e〉Te⊗ Te,

which immediately implies that the operator

B − λTe⊗ TA∗e− λTAe⊗ Te+ λ2〈Ae, e〉Te⊗ Te

is positive. Therefore,

〈Bx, x〉 − λ(〈x, TA∗e〉〈Te, x〉+ 〈x, Te〉〈TAe, x〉) + λ2〈Ae, e〉|〈x, Te〉|2 ≥ 0

for every x ∈ H and every real λ 6= 1, and hence 〈Ae, e〉 ≥ 0 for every e ∈ H.

Step 5. The injective linear map T : H → H such that φ(x ⊗ y) =
Tx⊗ Ty for all x, y ∈ H is surjective and bounded.

Suppose T is not surjective, so there exists u ∈ H \ ImT . By the surjec-
tivity of φ and Step 4 there exists a positive A ∈ B(H) with φ(A) = u⊗ u.

If A is a scalar operator, then φ(I) = αu⊗u for some non-zero scalar α.
From the relation I ≡ I + e1 ⊗ e1 for any normalized e1 ∈ H it follows that
αu ⊗ u ≡ αu ⊗ u + Te1 ⊗ Te1. Hence, αu ⊗ u + Te1 ⊗ Te1 is of rank one,
which contradicts the assumption that u and Te1 are linearly independent.

Thus A is not scalar, so there exists a normalized e2 ∈ H such that e2
and Ae2 are linearly independent. The operator I + e2 ⊗ e2 is obviously
invertible, and since φ preserves congruence, the relation

A ≡ (I + e2 ⊗ e2)A(I + e2 ⊗ e2)

implies

u⊗ u ≡ u⊗ u+ Te2 ⊗ TAe2 + TAe2 ⊗ Te2 + 〈Ae2, e2〉Te2 ⊗ Te2,

and consequently the operator

u⊗ u+ Te2 ⊗
(
TAe2 +

〈Ae2, e2〉
2

Te2

)
+

(
TAe2 +

〈Ae2, e2〉
2

Te2

)
⊗ Te2

is of rank one. On the other hand, since T is injective and u /∈ ImT , we
see that {u, Te2, TAe2} is a set of linearly independent vectors, so the set{
u, Te2, TAe2 + 1

2〈Ae2, e2〉Te2
}

is linearly independent too, a contradiction.

To prove that T is bounded, observe that the operator I − λe ⊗ e is
positive for every normalized e ∈ H and every λ < 1. By Step 4, let φ(B)=I
for some positive B ∈ B(H). Apply Step 4 once again to see that the
operator φ−1(I − λe ⊗ e) = B − λT−1e ⊗ T−1e is positive as well. Thus,
〈Bx, x〉 − λ|〈x, T−1e〉|2 ≥ 0 for every x ∈ H and every λ < 1. By inserting
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x := T−1e we get

〈BT−1e, T−1e〉 − λ‖T−1e‖4 ≥ 0.

Obviously T−1e 6= 0, therefore

λ ≤ 〈BT
−1e, T−1e〉
‖T−1e‖4

for every λ < 1. Hence,

1 ≤ 〈BT
−1e, T−1e〉
‖T−1e‖4

.

By the Cauchy–Schwarz inequality and the boundedness of B,

‖T−1e‖4 ≤ 〈BT−1e, T−1e〉 ≤ ‖BT−1e‖ · ‖T−1e‖ ≤ ‖B‖ · ‖T−1e‖2

for every normalized e ∈ H. We arrive at ‖T−1e‖ ≤
√
‖B‖ for every nor-

malized e ∈ H. Thus T−1 is bounded, and hence so is T .
With this at hand, we can replace φ with T−1φ(·)(T−1)∗ and without

loss of generality we further assume that

φ(x⊗ y) = x⊗ y for every rank-one operator x⊗ y.
Step 6. φ(A) = A for every positive A ∈ B(H).

Choose any positive B ∈ B(H). By the bijectivity of φ and Step 4 there
exists exactly one positive A ∈ B(H) such that φ(A) = B. Our aim is to
show that A = B. In order to do this, take any normalized e ∈ H. By
Lemma 3.2, the operator I − λe⊗ e is invertible for every real λ 6= 1.

Firstly, apply A ≡ (I − λe ⊗ e)A(I − λe ⊗ e) to get positivity of the
operator B− λe⊗Ae− λAe⊗ e+ λ2〈Ae, e〉e⊗ e. By Lemma 5.3, we obtain

〈(B −A)e, e〉 ≥ 0 for every e ∈ H.
Then from the relation B ≡ (I − λe ⊗ e)B(I − λe ⊗ e) it follows that the
operator B − λe⊗Be− λBe⊗ e+ λ2〈Be, e〉e⊗ e is positive. By Step 4 the
operator A− λe⊗Be− λBe⊗ e+ λ2〈Be, e〉e⊗ e is positive as well. Hence,
Lemma 5.3 gives

〈(A−B)e, e〉 ≥ 0 for every e ∈ H.
Therefore,

〈(B −A)e, e〉 = 0 for every e ∈ H,
and thus A = B.

We finally complete the proof of Theorem 5.4 by invoking the well known
fact that every A ∈ B(H) can be written as a linear combination of two
self-adjoint operators, and every self-adjoint operator can be written as a
difference of two positive operators in B(H).
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[1] M. Brešar and P. Šemrl, Linear preservers on B(X ), in: Banach Center Publ. 38,
Inst. Math., Polish Acad. Sci., 1997, 49–58.

[2] Z. Bai, S. Du and J. Hou, Additive maps preserving similarity or asymptotic simi-
larity on B(H), Linear Multilinear Algebra 55 (2007), 209–218.

[3] Z. Bai, S. Du and J. Hou, Nonlinear maps preserving similarity on B(H), Linear
Algebra Appl. 422 (2007), 506–516.

[4] H.-K. Du and G.-X. Ji, Similarity-invariant subspaces and similarity-preserving lin-
ear maps, Acta Math. Sinica (Engl. Ser.) 18 (2002), 489–498.

[5] S. Du and J. Hou, Similarity invariant real linear subspaces and similarity preserving
additive maps, Linear Algebra Appl. 377 (2004), 141–153.

[6] H.-K. Du and G.-X. Ji, Similarity-invariant subspaces and similarity-preserving lin-
ear maps, Acta Math. Sinica (Engl. Ser.) 18 (2002), 489–498.

[7] F. Hiai, Similarity preserving linear maps on matrices, Linear Algebra Appl. 97
(1987), 127–139.

[8] R. A. Horn and C. R. Johnson, Matrix Analysis, 2nd ed., Cambridge Univ. Press,
New York, 2013.

[9] R. Horn, C. K. Li and N. K. Tsing, Linear operators preserving certain equivalence
relations on matrices, SIAM J. Matrix Anal. Appl. 12 (1991), 195–204.

[10] R. A. Horn and V. V. Sergeichuk, Congruence of a square matrix and its transpose,
Linear Algebra Appl. 389 (2004), 347–353.

[11] R. A. Horn and V. V. Sergeichuk, Canonical form for complex matrix congruence
and ∗congruence, Linear Algebra Appl. 416 (2006), 1010–1032.

[12] J. Hou, Rank-preserving linear maps on B(X ), Sci. China Ser. A 32 (1989), 929–940.
[13] J. Hou and X.-L. Zhang, Additive maps preserving similarity of operators on Banach

spaces, Acta Math. Sinica (Engl. Ser.) 22 (2006), 179–186.
[14] G. Ji, Similarity-preserving linear maps on B(H), Linear Algebra Appl. 360 (2003),

249–257.
[15] M. Karder, T. Petek and A. Taghavi, Unitary similarity preserving linear maps on

B(H), Integral Equations Operator Theory 82 (2015), 51–60.
[16] B. Kuzma, Additive mappings decreasing rank one, Linear Algebra Appl. 348 (2002),

175–187.
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