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The spherical dual transform is an isometry
for spherical Wulff shapes

by

Huhe Han (Yangling) and Takashi Nishimura (Yokohama)

Abstract. A spherical Wulff shape is the spherical counterpart of a Wulff shape which
is the well-known geometric model of a crystal at equilibrium introduced by G. Wulff in
1901. Just as a Wulff shape, each spherical Wulff shape has its unique dual. The spherical
dual transform for spherical Wulff shapes is the mapping which maps a spherical Wulff
shape to its spherical dual Wulff shape. In this paper, it is shown that the spherical dual
transform for spherical Wulff shapes is an isometry with respect to the Pompeiu–Hausdorff
metric.

1. Introduction. Throughout this paper, let n (resp., Sn) be a positive
integer (resp., the unit sphere in Rn+1). For any point P ∈ Sn, let H(P ) be
the closed hemisphere centered at P , that is, the set of Q ∈ Sn satisfying
P · Q ≥ 0, where the dot stands for the scalar product of vectors in Rn+1.
For any non-empty subset W ⊂ Sn, the spherical polar set of W , denoted
by W ◦, is defined as follows:

W ◦ =
⋂

P∈W
H(P ).

In [NS], the spherical polar set plays an essential role for investigating
a Wulff shape, which is the geometric model of a crystal at equilibrium
introduced by G. Wulff [W].

Let H(Sn) be the set of non-empty closed subsets of Sn. It is well-
known that H(Sn) is a complete metric space with respect to the Pompeiu–
Hausdorff metric. Let H◦(Sn) be the subspace of H(Sn) consisting of non-
empty closed subsets W of Sn such that W ◦ 6= ∅. The spherical polar trans-
form © : H◦(Sn) → H◦(Sn) is defined by ©(W ) = W ◦. Since W ⊂ W ◦◦

2010 Mathematics Subject Classification: Primary 47N10; Secondary 52A30, 82D25.
Key words and phrases: spherical dual transform, extension of spherical dual transform,
spherical polar transform, spherical Wulff shape, spherical dual Wulff shape, spherical
convex body, isometry, bi-Lipschitz, Pompeiu–Hausdorff metric.
Received 30 September 2015; revised 29 April 2016 and 9 April 2018.
Published online 6 July 2018.

DOI: 10.4064/sm8406-9-2016 [201] c© Instytut Matematyczny PAN, 2019



202 H. Han and T. Nishimura

for any W ∈ H◦(Sn) by [NS, Lemma 2.2], it follows that W ◦ ∈ H◦(Sn) for
any W ∈ H◦(Sn). Thus, the spherical polar transform© is well-defined (1).

In [KN], crystal growth is investigated by introducing a geometric model
of a certain growing crystal in R2. One of the powerful tools in [KN] is the
spherical polar transform© : H◦(S2)→ H◦(S2). Especially, for studying the
dissolving process of the geometric model introduced in [KN], the spherical
polar transform is indispensable since it enables one to analyze in detail the
image of a dissolving one-parameter family of spherical Wulff shapes. Hence,
it is important to establish the properties of the spherical polar transform.

In this paper, motivated by the above considerations, we investigate natu-
ral restrictions of the spherical polar transform. The most natural subspace for
the restriction of spherical polar transform isHWulff(Sn, P ) defined as follows.

Definition 1.

(1) Let W be a subset of Sn. Suppose that there exists a point P ∈ Sn such
that W ∩H(P ) = ∅. Then W is said to be hemispherical.

(2) Let W ⊂ Sn be a hemispherical subset. Let P,Q ∈W . Then we denote
by PQ

PQ =

{
(1− t)P + tQ

‖(1− t)P + tQ‖
∈ Sn

∣∣∣∣ 0 ≤ t ≤ 1

}
.

(3) Let W ⊂ Sn be a hemispherical subset. Suppose that PQ ⊂W for any
P,Q ∈W . Then W is said to be spherical convex.

(4) Let W ⊂ Sn be a hemispherical subset. Suppose that W is closed,
spherical convex and has an interior point. Then W is said to be a
spherical convex body.

(5) For any P ∈ Sn, let

HWulff(Sn, P ) = {W ∈ H(Sn) |W ∩H(−P ) = ∅, P ∈ int(W ),

W is a spherical convex body},
where int stands for interior. The closure of HWulff(Sn, P ) in H(Sn) is
denoted by HWulff(Sn, P ).

(6) For any P ∈ Sn, an element of HWulff(Sn, P ) is called a spherical Wulff
shape.

It is known that a Wulff shape in Rn can be characterized as a con-
vex body in Rn with the origin in its interior [T]. Hence, the definition of
spherical Wulff shape is reasonable. The restriction of © to HWulff(Sn, P )
(resp., HWulff(Sn, P )) is called the spherical dual transform relative to P
(resp., the extended spherical dual transform relative to P ) and is denoted
by ©Wulff,P (resp., ©Wulff,P ). The set ©(W ) = W ◦ is called the spherical

(1) Since (Sn)◦ = ∅ for any n ∈ N, the spherical polar transform defined in [KN]
should be understood as © : H◦(Sn)→ H◦(Sn).
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dual Wulff shape of W if W is a spherical Wulff shape. Thus, it is reasonable
to call ©Wulff,P the spherical dual transform. It is not difficult to prove the
following (Proposition 5.2):

©Wulff,P : HWulff(Sn, P )→ HWulff(Sn, P ) is well-defined and bijective,

©Wulff,P : HWulff(Sn, P )→ HWulff(Sn, P ) is well-defined and bijective.

The main purpose of this paper is to show the following:

Theorem 1. Let P ∈ Sn. Then, with respect to the Pompeiu–Hausdorff
metric, the following hold:

(1) The spherical dual transform relative to P ,

©Wulff,P : HWulff(Sn, P )→ HWulff(Sn, P ),

is an isometry.
(2) The extended spherical dual transform relative to P ,

©Wulff,P : HWulff(Sn, P )→ HWulff(Sn, P ),

is an isometry.

For any r > 0, let Dr be the set of x ∈ Rn satisfying ‖x‖ ≤ r. Then Dr is
a Wulff shape for any r ∈ R (r > 0), and it is well-known that the dual Wulff
shape of Dr is D1/r. Moreover, it is easily seen that h(Dr1 , Dr2) = |r1−r2| for
any r1, r2 > 0, where h is the Pompeiu–Hausdorff metric. Thus, one cannot
expect the Euclidean counterpart of assertion (1) of Theorem 1. This is an
advantage of studying the spherical version of Wulff shapes. Moreover, the
Euclidean counterpart of the extended of spherical dual transform relative
to P is not well-defined. This, too, is an advantage of studying the spherical
version of Wulff shapes.

Next, we investigate the restriction of© toHs-conv(Sn), the closure of the
set of spherical convex closed subsets. The restriction of © to Hs-conv(Sn)
is denoted by ©s-conv. It is not hard to see that (Proposition 5.2)

©s-conv : Hs-conv(Sn)→ Hs-conv(Sn) is well-defined and bijective.

Theorem 2. With respect to the Pompeiu–Hausdorff metric, the restric-
tion of the spherical polar transform

©s-conv : Hs-conv(Sn)→ Hs-conv(Sn)

is bi-Lipschitz but never an isometry.

This paper is organized as follows. In Section 2, preliminaries for the
proofs of Theorems 1 and 2 are given. Theorems 1 and 2 are proved in
Sections 3 and 4 respectively. Section 5 is an appendix where, for the readers’
convenience, it is proved that ©Wulff,P , ©Wulff,P and ©s-conv are all well-
defined bijective mappings; and moreover it is explained why the restriction
of © to Hs-conv(Sn) is important.
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2. Preliminaries

2.1. Convex geometry in Sn

Definition 2 ([NS]). LetW be a hemispherical subset of Sn. The spher-
ical convex hull of W is

s-conv(W ) =

{ ∑k
i=1 tiPi

‖
∑k

i=1 tiPi‖

∣∣∣∣ Pi ∈W,
k∑

i=1

ti = 1, ti ≥ 0, k ∈ N
}
.

Lemma 2.1 ([NS]). LetW1,W2 be non-empty subsets of Sn withW1 ⊂W2.
Then W ◦2 ⊂W ◦1 .

Lemma 2.2 ([NS]). For any non-empty closed hemispherical subset
X ⊂ Sn,

s-conv(X) = (s-conv(X))◦◦.

The following proposition may be regarded as a spherical version of the
separation theorem, which may be easily obtained from the separation the-
orem in Euclidean space (for the latter, see for instance [M]).

Proposition 2.1. Let P ∈ Sn and let W1,W2 be closed, disjoint spheri-
cal convex sets such that Wi∩H(P ) = ∅ (i = 1, 2). Then there exists Q ∈ Sn

satisfying

W1 ⊂ H(Q) and W2 ∩H(Q) = ∅.

2.2. Metric geometry in Sn. For any P,Q ∈ Sn, the length of the
arc PQ is denoted by |PQ|.

Lemma 2.3. For any P,Q ∈ Sn such that |PQ| ≤ π/2,

h(H(P ), H(Q)) = |PQ|.

Proof. By Figure 1, it is clear that h(H(P ), H(Q))+r = |PQ|+r = π/2,
so h(H(P ), H(Q)) = |PQ|.

Fig. 1. h(H(P ), H(Q)) = |PQ|
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Definition 3.

(1) For any P ∈ Sn and any 0 < r < π, define

B(P, r) = {Q ∈ Sn | |PQ| ≤ r}, ∂B(P, r) = {Q ∈ Sn | |PQ| = r}.

(2) For any non-empty W ⊂ Sn and any 0 < r < π, define

B(W, r) =
⋃

P∈W
B(P, r).

Lemma 2.4. For any W ⊂ Sn such that W ◦ is a spherical convex set
and any 0 < r < π/2,

B
( ⋂
P∈W

H(P ), r
)

=
⋂

P∈W
B(H(P ), r).

Proof. “⊂” Let Q ∈ B(
⋂

P∈W H(P ), r). Then B(Q, r) ∩
⋂

P∈W H(P )

6= ∅. Let Q1 ∈ B(Q, r) be such that Q1 ∈ H(P ) for any P ∈ W . Then
Q ∈

⋂
P∈W B(H(P ), r).

“⊃” Suppose there exists Q ∈
⋂

P∈W B(H(P ), r) \ B(
⋂

P∈W H(P ), r).

Since Q /∈ B(
⋂

P∈W H(P ), r) = B(W ◦, r), it follows that B(Q, r)∩W ◦ = ∅.
Since W ◦ and B(Q, r) are closed spherical convex sets, by Proposition 2.1
there exists P ∈ Sn such that W ◦ ⊂ H(P ) and B(Q, r) ∩ H(P ) = ∅. By
Lemmas 2.1 and 2.2, it follows that P ∈ W ◦◦ = W . Therefore, there exists
P ∈W such that Q /∈ B(H(P ), r), contrary to assumption.

2.3. Lipschitz mappings

Proposition 2.2. For any n ∈ N, the spherical polar transform © :
H◦(Sn)→H◦(Sn) is Lipschitz with respect to the Pompeiu–Hausdorff metric.

Proof. We first show that© is Lipschitz when restricted to sets W such
that W ◦ is a spherical convex set. Suppose it is not Lipschitz. Then for any
K > 0 there exist W1,W2 ∈ H◦(Sn) with W ◦1 ,W

◦
2 spherical convex such that

Kh(W1,W2) < h(W ◦1 ,W
◦
2 ). In particular, for K = 2 there exist W1,W2 ∈

H◦(Sn) with W ◦1 ,W
◦
2 spherical convex such that 2h(W1,W2) < h(W ◦1 ,W

◦
2 ).

Since h(X,Y ) ≤ π for any X,Y ∈ H◦(Sn), it follows that h(W1,W2) < π/2.
Set r = h(W1,W2). Then, since 2r < h(W ◦1 ,W

◦
2 ), from the definition of the

Pompeiu–Hausdorff metric, at least one of the following holds:

(1) There exists P ∈W ◦1 such that d(P,Q) > 2r for any Q ∈W ◦2 .
(2) There exists Q ∈W ◦2 such that d(Q,P ) > 2r for any P ∈W ◦1 .

We will show that (1) implies a contradiction. Suppose that there exists

P̃ ∈ W ◦1 such that P̃ /∈ B(W ◦2 , 2r). In particular, P̃ /∈ B(W ◦2 , r). Since W ◦2
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is a spherical convex set and r < π/2, by Lemma 2.4 we have

P̃ /∈ B(W ◦2 , r) = B
( ⋂
Q∈W2

H(Q), r
)

=
⋂

Q∈W2

B(H(Q), r).

Hence, there exists Q ∈W2 such that P̃ /∈ B(H(Q), r).

On the other hand, since h(W1,W2) = r, there exists PQ ∈W1 such that

d(PQ, Q) ≤ r. Thus, by Lemma 2.3, P̃ ∈ H(PQ) ⊂ B(H(Q), r), a contradic-
tion.

In the same way, we can show that (2) implies a contradiction.

Next we show that for any W, W̃ ∈ H◦(Sn), we have h(W ◦, W̃ ◦) ≤
2h(W, W̃ ). SinceW, W̃ ∈ H◦(Sn), there exist P, P̃ ∈ Sn such thatW ⊂ H(P )

and W̃ ⊂ H(P̃ ). Set

Wi = B(W, 1/i) ∩B(H(P ), π/2− 1/i),

W̃i = B(W̃ , 1/i) ∩B(H(P̃ ), π/2− 1/i)

for any i ∈ N. Since both W ◦i , W̃
◦
i are black spherical convex, by the

proof given above we have h(W ◦i , W̃
◦
i ) ≤ 2h(Wi, W̃i) for any i ∈ N. Now,

W = limi→∞Wi and W̃ = limi→∞ W̃i, so for any i ∈ N,

h(W ◦, W̃ ◦) ≤ h(W ◦,W ◦i ) + h(W ◦i , W̃
◦
i ) + h(W̃ ◦i , W̃

◦)

≤ h(W ◦,W ◦i ) + 2h(Wi, W̃i) + h(W̃ ◦i , W̃
◦).

In [KN], it has been shown that © : H◦(S2) → H◦(S2) is continuous.
It is easily seen that the proof given in [KN] works for all n ∈ N. Thus,

limi→∞ h(W ◦,W ◦i ) = 0 = limi→∞ h(W̃ ◦, W̃ ◦i ). Therefore,

h(W ◦, W̃ ◦) ≤ 2 lim
i→∞

h(Wi, W̃i) = 2h(W, W̃ ).

Claim 2.1. The following example shows that 2 is the least Lipschitz
constant of ©.

Example. For any real r ∈ (1, 2), there exist a real r1 and P1, P2 ∈ Sn

such that rπ/2 < r1 < π and d(P1, P2) = r1. Since H(Pi) ⊂ Sn =

B(H(Pj), π/2) for {i, j} = {1, 2}, we have h(H(P1), H(P2)) ≤ π/2. Set
W1 = H(P1) and W2 = H(P2). Then

rh(W1,W2) ≤ rπ/2 < r1 = d(P1, P2) = h({P1}, {P2}) = h(W ◦1 ,W
◦
2 ).

It follows (see Figure 2) that

rh(W1,W2) < h(W ◦1 ,W
◦
2 ).

By Proposition 2.2, we can extend Lemma 2.2 as follows.
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Fig. 2. rh(W1,W2) < h({P1}, {P2}) (1 < r < 2)

Lemma 2.5. For X = limi→∞Xi, where Xi ∈ Hs-conv(Sn) (i = 1, 2, . . . ),
we have

X = X◦◦.

Proof. By Proposition 2.2, ©◦© is Lipschitz. Thus, if X = limi→∞Xi

then X◦◦ = limi→∞X
◦◦
i . By Lemma 2.2, X = limi→∞Xi = limi→∞X

◦◦
i

= X◦◦.

3. Proof of Theorem 1. We first show that for any W1,W2 ∈
HWulff(Sn, P ),

(∗) h(W ◦1 ,W
◦
2 ) ≤ h(W1,W2).

Suppose that there exist W1,W2 ∈ HWulff(Sn, P ) such that h(W1,W2) <
h(W ◦1 ,W

◦
2 ). First, since W1,W2 ∈ HWulff(Sn, P ), it follows that h(W1,W2)

< π/2. Set r = h(W1,W2). As r < h(W ◦1 ,W
◦
2 ), it follows that d(W ◦1 ,W

◦
2 )

> r or d(W ◦2 ,W
◦
1 ) > r, where d(·, ·) is the distance defined in Section 2.

Therefore, at least one of the following holds:

(a) There exists Q1 ∈W ◦1 such that d(Q1, R2) > r for any R2 ∈W ◦2 .
(b) There exists Q2 ∈W ◦2 such that d(Q2, R1) > r for any R1 ∈W ◦1 .

Suppose that (a) holds, so there exists Q1 ∈ W ◦1 \ B(W ◦2 , r). Then, by
Lemma 2.4,

Q1 /∈ B(W ◦2 , r) = B
( ⋂
Q̃∈W2

H(Q̃), r
)

=
⋂

Q̃∈W2

B(H(Q̃), r).

Hence, there exists R ∈W2 such that Q1 /∈ B(H(R), r).

On the other hand, since h(W1,W2) = r, there exists P̃R ∈W1 such that

d(P̃R, R) ≤ r. By Lemma 2.3, Q1 ∈ H(P̃R) ⊂ B(H(R), r), a contradiction.
In the same way, we can show that (b) implies a contradiction. Thus, (∗) is
proved.
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By Lemma 2.2 and (∗), for any W1,W2 ∈ HWulff(Sn, P ) we have

h(W1,W2) ≤ h(W ◦1 ,W
◦
2 ) ≤ h(W1,W2).

Therefore, h(W1,W2) = h(W ◦1 ,W
◦
2 ) for any W1,W2 ∈ HWulff(Sn, P ).

Next, we show assertion (2) of Theorem 1. Let W1 = limi→∞W1i and
W2 = limi→∞W2i , where W1i ,W2i ∈ HWulff(Sn, P ) for any i ∈ N. By
assertion (1), h(W1i ,W2i) = h(W ◦1i ,W

◦
2i

). By Proposition 2.2,

h(W1,W2) = h
(

lim
i→∞

W1i , lim
i→∞

W2i

)
= lim

i→∞
h(W1i ,W2i) = lim

i→∞
h(W ◦1i ,W

◦
2i)

= h
(

lim
i→∞

W ◦1i , lim
i→∞

W ◦2i

)
= h(W ◦1 ,W

◦
2 ).

4. Proof of Theorem 2. By the proof of Proposition 2.2, we have

h(W ◦1 ,W
◦
2 ) ≤ 2h(W1,W2), h(W ◦◦1 ,W ◦◦2 ) ≤ 2h(W ◦1 ,W

◦
2 )

for any W1,W2 ∈ Hs-conv(Sn). By Lemma 2.5, for any W1,W2 ∈ Hs-conv(Sn),

W ◦◦1 = W1, W ◦◦2 = W2,

so
1
2h(W1,W2) ≤ h(W ◦1 ,W

◦
2 ) ≤ 2h(W1,W2).

Hence, ©s-conv : Hs-conv(Sn)→ Hs-conv(Sn) is bi-Lipschitz.

By Claim 2.1, it is clear that©s-conv : Hs-conv(S◦)→ Hs-conv(S◦) is never
isometric.

5. Appendix

5.1. Mappings in the theorems are well-defined bijections

Proposition 5.1.

(1) For any P ∈ Sn, HWulff(Sn, P ) ⊂ H◦(Sn).
(2) For any P ∈ Sn, ©(HWulff(Sn, P )) = HWulff(Sn, P ).

(3) For any P ∈ Sn, ©(HWulff(Sn, P )) = HWulff(Sn, P ).

(4) For any P ∈ Sn, ©Wulff,P is injective.

(5) Hs-conv(Sn) ⊂ H◦(Sn).
(6) ©(Hs-conv(Sn)) 6= Hs-conv(Sn).

(7) ©(Hs-conv(Sn)) = Hs-conv(Sn).
(8) The mapping ©s-conv is injective.

Proof. (1) It is clear that for any W ∈ HWulff(Sn, P ), we have W ⊂
H(P ). Thus, by Lemma 2.1, P ∈W ◦, so W ◦ 6= ∅.
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(2) For any W ∈ HWulff(Sn, P ), there exist 0 < r1 < r2 < π/2 such that
B(P, r1) ⊂W ⊂ B(P, r2). By Lemma 2.1,(

B(P, r2)
)◦ ⊂W ◦ ⊂ (B(P, r1)

)◦
.

It follows that W ◦ ∩ H(−P ) = ∅ and P ∈ int(W ◦). Let Q1, Q2 ∈ W ◦ =⋂
Q∈W H(Q). Since W ◦ ∩H(−P ) = ∅, it follows that (1− t)Q1 + tQ2 is not

the zero vector for any t ∈ [0, 1]. Thus, for any t ∈ [0, 1],

(1− t)Q1 + tQ2

‖(1− t)Q1 + tQ2‖
∈
⋂

Q∈W
H(Q) = W ◦.

Hence W ◦ is spherical convex, so ©(W ) ∈ HWulff(Sn, P ).

Conversely, for any W ∈ HWulff(Sn, P ), set W̃ = W ◦. We have already

proved that W̃ ∈ HWulff(Sn, P ). By Lemma 2.2, ©(W̃ ) = W .

(3) For any W∈HWulff(Sn, P ), there exists a sequence Wi∈HWulff(Sn, P )
such that W = limi→∞Wi. Since © : H◦(Sn) → H◦(Sn) is continuous,
W ◦ = limi→∞W

◦
i . By (2), ©(W ) ∈ HWulff(Sn, P ).

Conversely, for any W ∈ HWulff(Sn, P ), set W̃ = W ◦. We have proved

that W̃ ∈ HWulff(Sn, P ). By Lemma 2.5, ©(W̃ ) = W .

(4) Suppose that W1 = limi→∞W1i ,W2 = limi→∞W2i ∈ HWulff(Sn, P )
and W ◦1 = W ◦2 , where W1i ,W2i ∈ HWulff(Sn, P ) for any i ∈ N. Since
W1i ,W2i are spherical convex, by Lemma 2.5 we have

W1 = W ◦◦1 = W ◦◦2 = W2.

(5) Let W ∈ Hs-conv(Sn). Then, by Proposition 5.3 below, there exists
P ∈ Sn such that W ∈ HWulff(Sn, P ). By (1), ©(W ) ∈ H◦(Sn).

(6) For any P ∈ Sn, ©({P}) = H(P ) is not hemispherical. Therefore,
©(Hs-conv(Sn)) 6= Hs-conv(Sn).

(7) For anyW ∈Hs-conv(Sn), by Proposition 5.3,W ∈
⋃

P∈SnHWulff(Sn, P ).

It follows that there exists a sequence W̃i ∈ HWulff(Sn, Pi) such that

W = limi→∞ W̃i. Since© is continuous and W̃ ◦i ∈ Hs-conv(Sn) (i = 1, 2, . . . ),

we have limi→∞ W̃
◦
i = W ◦ ∈ Hs-conv(Sn).

Conversely, for any W ∈ Hs-conv(Sn), set W̃ = W ◦. By Lemma 2.5,
W =©(W ◦).

(8) Suppose that W1 = limi→∞W1i ,W2 = limi→∞W2i ∈ Hs-conv(Sn)
and W ◦1 = W ◦2 , where W1i ,W2i ∈ Hs-conv(Sn) for any i ∈ N. Since W1i ,W2i

are spherical convex, by Lemma 2.5 we have

W1 = W ◦◦1 = W ◦◦2 = W2.

By Proposition 5.1, we have the following:
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Proposition 5.2. Each of the following is a well-defined bijective map-
ping:

©Wulff,P : HWulff(Sn, P )→ HWulff(Sn, P ),

©Wulff,P : HWulff(Sn, P )→ HWulff(Sn, P ),

©s-conv : Hs-conv(Sn)→ Hs-conv(Sn).

Notice that ©(Hs-conv(Sn)) 6⊂ Hs-conv(Sn). Thus, the restriction to
Hs-conv(Sn) is not investigated in this paper.

5.2. Why the restriction of © to Hs-conv(Sn) is important? It
is natural to expect that the isometric property still holds even for the
restriction of © to

⋃
P∈Sn HWulff(Sn, P ). Since this subspace of H◦(Sn)

seems to be complicated, the following proposition is useful.

Proposition 5.3.⋃
P∈Sn

HWulff(Sn, P ) = Hs-conv(Sn).

Proof. By Definition 1, the inclusion ⊂ is clear. Thus, it is sufficient to
show that

Hs-conv(Sn) ⊂
⋃

P∈Sn

HWulff(Sn, P ).

Assume first that W ∈ Hs-conv(Sn) is a hemispherical closed subset of Sn.
Suppose that W has an interior point. Then, it is easily seen that there exists
P ∈ int(W ) such that W ⊂ H(P ). Since H(P ) ∈ HWulff(Sn, P ), it follows
that W ∈ HWulff(Sn, P ). Next, suppose that W has no interior points. Since
W is hemispherical and closed, there exist P ∈W and N ∈ N such that for
any i > N we have ∂B(W, 2/i) ∩H(−P ) = ∅. For any i > N , there exists a
sequence

{Wi}∞i=1 ⊂ Hs-conv(Sn)

such that h(Wi,W ) < 1/i. Thus,

P ∈W ⊂ B(Wi, 1/i) ⊂ B(B(W, 1/i), 1/i) = B(W, 2/i) ⊂ H(P ).

Therefore, as B(Wi, 1/i) ∈ HWulff(Sn, P ), we have

W = lim
i→∞

B(Wi, 1/i) ∈
⋃

P∈Sn

HWulff(Sn, P ).

Finally, let W be any element of Hs-conv(Sn). There exists P ∈ Sn such
that W ⊂ H(P ). For any positive integer i, define

Wi = B(W, 1/i) ∩B(P, π/2− 1/i).

Then it is easily seen that Wi ∈ HWulff(Sn, P ) for any i ∈ N and W =
limi→∞Wi. Therefore, W ∈

⋃
P∈Sn HWulff(Sn, P )).
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