Sur un problème de la théorie de la mesure. II.

Par

D. Mirimanoff (Genève).

Dans cette note je chercherai à généraliser les résultats que j'ai établis dans ma note précédente. Je montrerai qu'une partie de ces résultats s'étendent à une catégorie assez vaste d'ensembles parfaits que j'appelle ensembles parfaits de 1^{re} espèce.

1. Ensembles parfaits de 1re espèce.

Soit E un ensemble parfait reparti sur un intervalle (a, b). On sait que son complémentaire C(E) se compose d'un ensemble d'intervalles ouverts δ_i , que j'appellerai, avec M. W. H. Young, intervalles noirs de E. Je suppose que les δ_i soient rangés par ordre décroissant de longueur

$$\delta_1 \geq \delta_2 \geq \ldots \geq \delta_n \geq \ldots$$

en désignant par la même lettre l'intervalle et sa longueur.

Ces intervalles et par conséquent l'ensemble E peuvent être construits à l'aide d'une suite d'opérations C_i .

Supposons qu'on ait construit les i-1 premiers intervalles $\delta_1, \delta_2, \ldots \delta_{i-1}$. Ces intervalles sont séparés ou bordés par i intervalles blancs. Appliquons maintenant l'opération C_i . L'intervalle δ_i s'introduira dans l'un des intervalles blancs; il apparaîtra bordé de deux intervalles blancs nouveaux que j'appellerai d_i et d_i .

Je dirai que l'ensemble E est de 1re espèce si, quel que soit i,

$$\delta_{i} \leq \frac{d'_{i}}{d''_{i}},$$

c'est-à-dire: si δ_i est \leq à chacun des intervalles d_i' , d_i'' introduits par C_i , et cela quel que soit i.

Je partirai des deux propriétés suivantes des ensembles parfaits de 1^{re} espèce.

Propriété I. Si δ_i et δ_j sont deux intervalles noirs d'un ensemble parfait E de 1^{re} espèce, l'intervalle d_{ij} qui les sépare est \geq à l'un au moins des intervalles δ_i , δ_j .

En effet, l'intervalle d_{ij} est \geq à l'un des intervalles blancs d'_{ij} , d''_{ij} , si i < j, il est donc à fortiori $\geq \delta_{j}$.

Propriété II. Si α et β sont deux points quelconques de (a, b) n'appartenant pas à un même intervalle noir d'un ensemble parfait E de 1^{re} espèce construit sur (a, b) (l'un des points α , β peut être situé en dehors de (a, b)) et si \mathcal{E} est un ensemble parfait quelconque de 1^{re} espèce construit sur (α, β) , les ensembles E et \mathcal{E} ont des points communs.

Supposons d'abord que & est un ensemble non dense.

Il suffit de démontrer la propriété II dans le cas où les points α , β font partie de deux intervalles noirs δ_i , δ_j de E (l'un des points α , β peut être situé en dehors de (a, b).

Désignons par $\Delta_1, \Delta_2, \ldots \Delta_n, \ldots$ les intervalles noirs de \mathcal{E} .

Introduisons d'abord Δ_1 et soient α' , β' ses extrémités.

Je dis que Δ_1 ne peut pas recouvrir complètement l'intervalle d_{ij} qui sépare les intervalles δ_i , δ_j . Supposons le contraire, supposons donc que $\Delta_1 > d_{ij}$. En vertu de la propriété I,

$$d_{ij} \geq \delta_j$$
 (si $i < j$),

on aurait donc $\Delta_1 > \delta_j$ et à fortiori $\Delta_1 > \beta' \beta$, conclusion absurde, puisque pour les ensembles de 1^{re} espèce

$$\Delta_1 \leqq_{\beta'\beta}^{\alpha\alpha'}$$
.

Par conséquent l'un au moins des points α' , β' , par exemple le point α' , tombera à l'intérieur de d_{σ} . Si α' fait partie d'un intervalle noir de E, on raisonnera sur (α, α') comme on a raisonné sur (α, β) . On aura ainsi une suite d'intervalles (α, β) . (α, α') , ... s'emboîtant les uns dans les autres. Il suffit de considérer le cas où les extrémités de chaque intervalle nouveau appartiennent à des intervalles noirs de E. On a alors une suite infinie d'intervalles s'emboîtant les uns dans les autres et dont la longueur tend vers 0. Cette suite définit un point c et un seul commun à tous ces intervalles. Or chacun des intervalles de la suite contient des points de E et des points de E. Par conséquent e est à la fois un point limite de e et de e; il appartient donc à e et à e, puisque chacun de ces ensembles est fermé.

Le raisonnement s'applique, avec des modifications légères, à des ensembles parfaits quelconques de 1^{re} espèce.

La propriété II est démontrée.

2. Nous pouvons maintenant, en nous appuyant sur les propriétés I et II, résoudre le problème suivant dont j'ai traité un cas particulier dans ma note précédente:

Problème. Soient E_x et E_y deux ensembles parfaits de 1^{re} espèce dont le premier est réparti sur un segment OA de l'axe Ox et le second sur un segment OB de l'axe Oy. Menons par les points de E_x des droites parallèles à Oy et par les points de E_y des droites parallèles à Ox et soit E l'ensemble de tous les points d'intersection de ces deux familles de droites. Désignons par E_λ la projection de E sur une demi-droite quelconque $O\lambda$. Quelle est la mesure de E_λ ?

Sans nuire à la généralité, on peut supposer OA = OB = 1. Soit d'autre part C le point dont les coordonnées sont 1, 1 et 9 l'angle de $O\lambda$ avec Ox.

Supposons que ϑ soit compris entre 0 et $\pi/4$,

$$0 < \vartheta \leqslant \frac{\pi}{4}$$
.

Envisageons une droite quelconque d normale à $O\lambda$ et coupant le carré OABC. Soient α^* et β les points où cette droite rencontre les droites BC et OA; l'un au moins de ces points est situé sur le périmètre du carré. Soit α le point de OA qui a même abscisse que α^* . On a alors le théorème suivant:

Théorème. Si α et β n'appartiennent pas à un même intervalle noir de E_x , la droite d passe par un point de E.

Pour la démonstration de ce théorème je renvoie à ma note précédente.

Il en résulte que les points de l'ensemble complémentaire $C(E_{\lambda})$ sont fournis par les droites d telles que α et β appartiennent à un même intervalle noir de E_{α} .

3. Mesure de E_x . Soit C' la projection du sommet C sur la droite $O\lambda$. On a

$$\overline{OC'} = \sin \vartheta + \cos \vartheta$$

Done

$$m(E_{\lambda}) = \sin \vartheta + \cos \vartheta - m[C(E_{\lambda})].$$

Soit maintenant δ_i un intervalle noir de E_x . Si $\delta_i \leq \operatorname{tg} \vartheta$, il n'existe pas de droite d normale à $\partial \lambda$ et telle que α et β appartiennent à δ_i . Supposons donc $\delta_i > \operatorname{tg} \vartheta$.

La longueur de l'intervalle noir de E_{λ} qui est dû à δ_i est alors $=(\delta_i - \operatorname{tg} \vartheta) \cos \vartheta = \delta_i \cos \vartheta - \sin \vartheta$.

Par conséquent

$$m[C(E_{\lambda})] = \sum_{i} (\delta_{i} \cos \vartheta - \sin \vartheta),$$

la somme étant étendue à tous les i tels que $\delta_i > \operatorname{tg} \vartheta$. D'où

$$m(E_{\lambda}) = (i+1) \sin \vartheta + (1 - \Sigma \delta_i) \cos \vartheta.$$

Lorsque ϑ est compris entre $\frac{\pi}{4}$ et $\frac{\pi}{2}$, ce sont les intervalles noirs de E_{ν} qui interviennent dans l'expression de le mesure de E_{λ} . Corollaire. Comme $\Sigma \delta_{i} < 1$, on a

$$m(E_{\lambda}) > (i+1)\sin\vartheta;$$

la mesure de E_{λ} est donc toujours positive, si $O\lambda$ ne coïncide pas avec l'un des axes O_x , O_y .

4. Aucune de ces conclusions ne subsiste intégralement lorsque les ensembles E_* et E_y ne sont pas de 1^{re} espèce. En voici un exemple:

Supposons que E_x (E_y) soit l'ensemble de tous les points dont les abscisses (ordonnées) s'écrivent dans le système de numération de base 4 avec les seuls chiffres 0 et 3. On voit immédiatement que les ensembles E_x , E_y ne sont pas de 1^{re} espèce. Aucune des propriétés I et II ne subsiste et la fonction $f(\vartheta) = m(E_{\lambda})$ s'annule pour une infinité de valeurs de ϑ , entres autres pour $\vartheta = \pi/4$.

On voit donc que les propriétés de E_{λ} que j'ai établies dans cette note sont caractéristiques des ensembles de 1^{re} espèce et que les distinctions introduites ne sont pas artificielles.