Une application de l'équation fonctionnelle f(x+y)=f(x)+f(y) à la décomposition de la droite en ensembles superposables, non mesurables.

Par

Stanislas Ruziewicz (Léopol = Lwów).

Nous prouverons dans cette Note une propriété fort simple de la fonction f(x) satisfaisant à l'équation fonctionnelle

$$(1) f(x+y) = f(x) + f(y),$$

propriété qui nous permettra de décomposer la droite en m ensembles superposables, partout denses, disjoints, non mesurables (L), m étant un nombre cardinal quelconque, satisfaisant aux inégalités: $\kappa_0 \leq m \leq 2^{\kappa_0}$). Soit f(x) une fonction définie pour tous les x réels et satisfaisant à l'équation (1). Posons, pour a réels

$$E_a = \mathbf{E}[f(x) = a]:$$

je dis que si les ensembles E_a et E_b ne sont pas vides, ils sont superposables.

Supposons, en effet, $E_a \neq 0$ et $E_b \neq 0$: il existe donc un x_1 tel que $x_1 \in E_a$, donc $f(x_1) = a$, et un x_2 tel que $x_2 \in E_b$, donc $f(x_2) = b$.

1) Une décomposition de la droite en un ensemble non dénombrable d'ensembles non mesurables a été traitée par C. Burstin dans les notes: "Die Spaltung des Kontinuums in R. überall dichte Mengen" (Sitzungsber. d. Akad. d. Wiss. in Wien, Bd. 124 (1915)) et "Die Spaltung des Kontinuums in c im L. Sinne nichtmessbare Mengen" (ibidem, Bd. 125 (1916)) et par N. Lusin et W. Sierpiński dans la note "Sur une décomposition du continu en une infinité non dénombrable d'ensembles non mesurables" (C. R. t. 165); v aussi W Sierpiński: Bull. de l'Acad. des Sciences de Cracovie 1913, p. 150.

Posons $d = x_2$ x_1 et soit x un élément quelconque de l'ensemble E_a : nous aurons: f(x) = a, donc, d'après (1):

$$f(x+d) = f(x+r_2-x_1) = f(x) + f(x_2) - f(x_1) = a+b-a = b,$$

ce qui prouve que x+d est un élément de l'ensemble E_b . Or. soit $y \in E_b$: nous aurons f(y) = b, donc, d'après (1):

$$f(y-d) = f(y-x_2+x_1) = f(y) - f(x_2) + f(x_1) = b - b + a = a,$$

ce qui prouve que y-d appartient à E_a . Les ensembles E_a et E_b sont donc superposables par une translation de longueur d.

Remarquons que lorsque l'ensemble E_a contient plus qu'un point, il est dense dans tout intervalle. En effet, il résulte sans peine de (1) que f(r, x) = rf(x) pour tout x réel et tout r rationnel.

Supposons maintenant que E_a contient plus qu'un point: il existe donc un x_1 et un $x_2 \neq x_1$. tels que $f(x_1) = a$ et $f(x_2) = a$: nous avons donc, pour r rationnel:

$$f(x_1 + r(x_2 - x_1)) = f(x_1) + rf(x_2 - x_1) = a + r(a - a) = a;$$

l'eusemble de tous les nombres $x_1 + r(x_2 - x_1)$, où r est un nombre rationnel, étant partout dense (pour $x_2 \neq x_1$), il en résulte que l'ensemble E_a est partout dense, c. q. f d.

Soit maintenant m un nombre cardinal satisfaisant aux inégalités:

$$\kappa_0 \leqslant m \leqslant 2^{\kappa_0}$$

Désignons par B une base de M. Hamel, non mesurable $(L)^1$. Toute base hamelienne ayant la puissance 2^{*_0} , il existe une décomposition $B = M_1 + N_1$, telle que M_1 et N_1 sont des ensembles disjoints tous deux de puissance 2^{*_0} . L'ensemble B étant non mesurable, un au moins des ensembles M_1 , N_1 , soit N_1 , est non mesurable. En extrayant de M_1 un ensemble borné M de puissance $\mathbb{R} \leq 2^{*_0}$ et en posant $N = N_1 + (M_1 - M)$, nous obtenons une décomposition

$$B = M + N$$

telle que M est un ensemble borné de puissance m, MN = 0 et $m_{\varsigma}(N) > 0$.

¹⁾ Une définition de la base se trouve dans le mémoire de G. Hamel, Math. Ann. 60, p 459. Qu'une base peut être non mesurable (L), démontre C. Burstin dans son second mémoire cité. Cf. aussi W. Sierpiński: Fund. Math. t. I, p. 105.

Posons

$$f(x) = x$$
 pour $x \in M$.
 $f(x) = 0$ pour $x \in N$.

la fonction f(x) sera ainsi définie pour tous les nombres x de la base B. Pour les autres x réels définissons la fonction f(x) comme le fait M. Hamel pour obtenir une solution de l'équation fonctionnelle (1), c'est à-dire posons

$$f(x) = r_1 f(x_1) + r_2 f(x_2) + \ldots + r_n f(x_n)$$

pour

$$x = r_1 x_1 + r_2 x_2 + \ldots + r_n x_n.$$

où $r_1, r_2, ..., r_n$ sont des nombres rationnels et $x_1, x_2, ..., x_n$ sont des nombres de la base B.

La fonction f(x) sera ainsi définie pour tous les x réels, et on voit sans peine que l'ensemble V de toutes les valeurs différentes de la fonction f(x) a la puiss nee m. La fonction f(x) satisfaisant à l'équation (1), les ensembles $E_a = \mathbb{E}[f(x) = a]$ qui correspondent aux nombres a de V sont, comme nous savons, tous superposables. Or il est bien évident que l'ensemble X de tous les nombres réels est une somme disjointe de tous les ensembles E_a , la sommation s'étendant à tous les nombres a de l'ensemble V.

D'après (1), nous avons f(0) = 0, donc $0 \varepsilon V$; les ensembles E_u (où $a \varepsilon V$) étant superposables, il suffira, pour démontrer qu'ils sont tous non mesurables (L), de prouver que l'ensemble E_0 est non mesurable (L).

D'après la définition de la fonction f(x) nous avons f(x) = 0 pour $x \in N$ et $m_{\epsilon}(N) > 0$: il existe donc un nombre $t \neq 0$, tel que f(t) = 0, et nous pouvons supposer t > 0, puisque d'après (1): f(-t) = -f(t).

Désignons par G la portion de E_0 contenue dans l'intervalle $0 \le x < t$, et par G(d) l'ensemble qu'on obtient par une translation de l'ensemble G de longueur d. Nous prouverons que l'ensemble G est non mesurable G.

Remarquons d'abord que si $d \varepsilon E_0$, G(d) est la portion de l'ensemble E_0 contenue dans l'intervalle $d \leq x < d+t$. En effet, si $d \leq x < d+t$, $d \varepsilon E_0$, $x \varepsilon G(d)$, on a $(x-d)\varepsilon G \subset E_0$, donc f(d)=0, f(x-d)=0, et, d'après (1): f(x)=f(d)+f(x-d)=0, ce qui donne $x \varepsilon E_0$. Or, soit $d \leq x < d+t$, $d \varepsilon E_0$, $x \varepsilon E_0$: nous aurons $0 \leq x-d < t$ et, d'après (1): f(x-d)=f(x)-f(d)=0, donc $(x-d)\varepsilon G$ et parsuite $x \varepsilon G(d)$.

Il en résulte, d'après $t \in E_0$ et f(kt) = kf(t) = 0 pour k entiers, $E_0 = \sum G(kt)$, la sommation s'étendant à tous les nombres entiers k. Les ensembles G(kt) $(k=0,\pm 1,\pm 2,...)$ étant superposables, nous en concluons, d'après $E_0 \supset N$ et $m_e(N) > 0$, que l'ensemble G = G(0) ne peut être de mesure nulle.

Il résulte de la définition de la fonction f(x) que $f(d_1) \neq f(d_2)$ pour $d_1 \in M$, $d_2 \in M$, $d_1 \neq d_2$. Il s'en suit que $G(d_1)$. $G(d_2) = 0$ pour $d_1 \in M$, $d_2 \in M$, $d_1 \neq d_2$. En effet, soit x un nombre, tel que $x \in G(d_1)$ et $x \in G(d_2)$. On aurait donc $(x - d_1) \in G$ et $(x - d_2) \in G$, donc $f(x - d_1) = 0$ et $f(x - d_2) = 0$, donc, d'après (1): $f(d_1) = f(d_2)$. ce qui est impossible. Les ensembles G(d) sont donc sans points communs deux à deux lorsque d parcourt les nombres de M. Or, G et M étant bornés, les ensembles G(d), pour $d \in M$, sont bornés dans leur ensemble. L'ensemble M étant infini, il en résulte que les ensembles G(d) (tous superposables) ne peuvent être de mesure positive.

Nous avons donc démontré que l'ensemble G est non mesurable (L). Donc aussi E_0 est un ensemble non mesurable (L), et la décomposition de la droite en ensembles E_a (où a appartient à V) jouit de toutes les propriétés désirées.