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Concerning continuous curves ).
| .
R. L. Wilder (Austin, U. 8. A)).

It has been shown' by Hahn ?), and independently by Mazur-

‘kiewiez?) that in order that a closed, bounded and connected *)

point-set should be a continuous curve (une ligne de Jordan) it is
necessary and sufficient that it be connected im kleinen at every
point. A point-set M is connected im Kkleinen at a point P if for
every &> 0 there corresponds an %> 0, such that if K, and K,
are circles with radii & and #, respectively, and centers-at P, every
point X of M interior to K, lies with P in a connected 5) subset
of M that lies wholly interior to K,. A point-set that is connected
im kleinen at every point is said to be connected im" kleinen.

The present paper has three main objects, viz.,

(1) To study the analogy between ordinary two-dimensional
space and a plane continuous curve,

(2) To characterize and analyze the boundaries of the domains
complementary to a plane continuous curve, and

1) Dissertation offered to the Depsirtment of Pure Mathematics, University of
Texas, U. 8. A., in partial fulfillment of the requirements for the degree of Doctor
of Philosophy, June, 1923. - | | |

3) Mengentheoretische Charakierisierung der stetigen Kurve, Wiener Aka-
demie Sitzungsberichte, CXXIII Band. Abt, 1la, pp. 2433 —2489.

- 3) Sur les lignes de Jordan, Fund. Math,, Tom I, (1920), pp. 166 —209.

%) A point-set is sdid to ‘be conmected if it is not the sum of two point-sets
neither of which contains a limit point of the other, A point-set is bounded if it
lies wholly in a finite portion of the space under consideration.

£) According to Hahn’s definition X and P must lie together in a closed and
connected subset of M that lies wholly interior to ¥, .’ The word ,closed“ is un-
necessary, however, when dealing with closed point sets.
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(3) To give a new characterization of continuous eurves, sui-
table for any number of dimensions.

I wish to thank Professor R. L. Moore for many . valuable

~suggestions and criticisms, and to express my gratitnde to him for
first interesting me in a field of mathematies that is as fascinating

as it 18 fruitful.

I. A continuous curve in the role of a- space 1),

For the present, I shall consider a space S, which consists of
all the points of a plane continuous curve. I shall define a“region
in that space as follows: If P is a point of S, and % a circle with
center at P, then the set of all points of S which (1) lie interior
to k, and (2) lie with P in a connected subset of S that lies who-
lly interior to k, constitutes a region R. A point P is a limit point
of a point-set M in space S if and only if every region that con-
taing P contains at least one point of M distinct from P. This de-
finition of limit point is equivalent to the ordinary definition of
limit point for two-dimensional space, in that a point P which is
a limit point of a point-set M in space S is also a limit point of
M in the ordinary sense, and vice versa. The set of all limit po-
ints of R that do not belong to B constitute the boundary of R.
Every boundary point of R lies on k. A domain with respect to 89),
or an S-domain is a connected subset D of S having the property
that if P is a point of D, P lies in some region that .is a subset
of D. The set of points, that are limit points of D but that do not
belong to D, constitute the boundary of D.

Using the above definitions, it is interesting to note that many
of the properties of ordinary two-dimensional space are also pro-
perties of space 8. In particular, Theorems 1—16, inclusive, (with

the, exception of -the latter part of Theorem 16) of R. L. Moore's

paper On the foundations of plame analysis situs %) all hold true for
space S with no change in the wording, except that the word
pdomain® should- be replaced by , S-domain¥. '

!) Presented to the American Mathematical Society, in part, .April 15, 1922,
and in more complete and generalized form, Feb. 24, 1928,

. %) Kuratowski has used an analogous definition for what he calls »domaine
connexe par rapport a C«, Cf. C, Kuratowski, Une dédfinition topologique de
la ligne de Jordam, Fund. Math, I, (1920), pp. 40— 43. .

3) Transactions of the Amer. Math, 8oc., Vol. XVII, (19186), pp. 131—164.
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Two of these theorems which are of fundamental importance are:

If 4 and B* are distinet points of a domain M, there exists
a simple continuous. are 1) from A to B that lies wholly in M.

Every two points of a region B can be joined by an arc lylng
entirely in B.

The close analogy between space S and ordinary two-dlmenslo-
nal space can be further exhibited by a consideration of accessibi-
lity conditions 2). For this purpose, I shall establish the following

* theorem:

Theorem 1. In order thai a boundary point x of an S-domain
D should be accessible from amy point y of D, it is sufficient either
that (1) there exist a circle C, with center at x, such that the set of
all points of the boundary, B, that lie interior to Cy is a subset of

@ connected im Kleinen subset of S—D, or that @) = beZong to no

continuum of condensation?) of B.
Proof. T shall consider these two conditions separately.
(1) There exists a circle C, with center at x, such that if T,

- is the set of all points of B that lie within C;, L is a subset of

a connected im kleinen subset K of S—D. The circle C, may be
taken so small that it does not énclose ¥ or contain . |
Since 2 is a boundary point of D, and therefore a limit point
of D, there exists in D a sequence of distinet points y,, ¥y, ¥g,..
having 2 as a’sequential limit point#). C, encloses some polnt of
this sequence. Call one such point P,. Let-'C, be a circle con-
centric with (), of radius <C /2, (where » is the radius of C;) and
such that P, is exterior to .C,. C, encloses some point of the above

') A simple continuous are, or an are, from 4 to B is a closed, bounded.
and connected set of points that is disconnected by the omission of any one point
except 4 and B. 4 and B are called the end-points, ‘or extremities, of this are,
and all other points of the arc are tnterior points. Two points are said to be
Jjoined by an arc if they are the end-points of that are.

%) If # is a boundary point of & domain (in the ordinary sense, or an- S—domam)
D, and y a point of D, x is said to be accessible from y provided there. exists
an arec from 2 to y which lies, except for z, wholly in D,

5 A continvum is o closed and connected  point-set consisting of more than
one point, A point-set €' is a continuum of condensation of a point-set M if C
is & sub-continnum of M such that every point’ of Cis a limit point of M—C,

4) A point P is a sequential limit point of a sequence of points b, F, B,

provided that if B is a region containing P thele exists a& number N auch that
if n >N, P, lies in R.
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sequence; call one such point P,. Let 0, be a circle concentric
with C,, of radius < /3, and such that P, is exterior to it. C,
encloses a point P, of the above sequence. Continuing this pro-
cess indefinitely, there is obtained a sequence of cireles, C,, C,, Ci..
with centers at x and such that for every positive integer n> 1,
C. is of radius <r/n; and a sequence of points, P,, P, P,,... be-
longing to D, such that for every positive integer n, P, lies inte-
rior to C,, but exterior to C,,. .

Sinee, as pointed out above, any two points of D are the ex-
tremities of an arc lying wholly in D, y and P, are the extremi-
ties of an arc a,, P, and P, of an arc fy, P, and P, of an arc #,
etc., such that a,, f,, %, #.... all lie wholly in D. Let' z, be the
last point of @, on the are from P, to P, in the order from P, to P,.
(See Fig. 1). That portion of ¢,
from z, to P, constitutes an arc a; g, x
Since a, + a, is a closed set of ¥
points, there will be a last point
of it on the are'#, in the order
from P, to P,; call this point 2.
That portion of #; from =z; to Iy
constitutes an arc a;. The set'a; |-
~+ a, + a; is closed, and there
therefore exists a last point of it,
z,, on the arc f, in the order from

Py to P, That portion of #, from - Fig1

x, to P, constitutes an arc a,... Continuing ;hls process indefinitely,
there is obtained a sequence of arcs, &, ay ay,... such that for
every positive integer #, a, has only one point, an end-point ,, in

common with the set a; 4~ ay + ag + ..+ Gy

There are two cases to consider: Either (1) for every value of
n there, exists a positive integer %, such that a, is the last arc of
the sequence a,, Gy, @y,... having points on C,; or (2) there exists.
an 7, such that an inﬁmte number of ares of the sequence a, s Gay-
have points on C,,. |
. Case 1. For every value of » there exists a positive integer k,
such that a, is the last are of the sequence [af] 1) havmg points

1) Hereafter, in' the proof of this theorem, I shall denote the sequence a,
@y, Gy ... DY the symbol [&].
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on C,. Then the point-set constituted by all the ares of the sequehce,
[a] together with the point 2 is a continuous curve and containg

~an arc from x to y 1) every point of which, except 2, belongs to D.

In this case, then, the theorem is true.
Case 2. There exists an n, such that an infinite number of the
arcs of [a] have points on C,. It is certain that an infinite number

~of ares of [a)] have points exterior to C,,,, and points interior to

C.42- For every such are, a,, let 4, be the first- point of C,., on

a, in the order from A to a,. (See Fig. 2). Then, let B, be the

first point of C,., on that portion of 4, from 4, to P, in the order

A from A4, to P,. Then from A4, to
B, there exists an are which is
a subset of a,, and such that if
I.., is the set of all points of the
plane between C,,, and C,,,, 4, B,

Cnes is a subset of I, except for the
points 4, and B, The set of all
such arcs call [a*].

No two arcs of the set [a*]
“Fig2 have any points in common. For,
: suppose 4, B, and 4, B, are two
ares of the set [¢;*] having a point, ¥, in common, and that &k < m.

‘Then a, was taken -subsequently to a,, and can therefore have at

most one end-point, ,, in common with a,. Other than x,, @, and

" a, can have no points in common. Hence #* must be identical with

x.. But 4, is the first_point of C,; on a, in the order trom P,
to z,, and 4,B, is therefore a subset of that portion of g, from
P, to A,, and unless 4, is identical with x,, 4, B, can have no
point in common with' 4,8,. But if A, is identical with =z,, a,
an have no points exterior to Cota, which is contradictory, since

1) Every two points of a continnous curve M can be joined by a simple
continuous arc which is a subset of M., For a prodf of this, see R. L, Moore,
A tHeorem concerning continuous curves, Bull, Amer. Math, Soc. 2d. series, XXIII
(Feb. 1917), 8. 233—236. See also R. Tietze, Uber stetige Kurven, Jordansche
Kurvenbogen und geschlossene Jordansche Kurvem, Math. Zeitschr, V (1919),

‘B. 284 -291; and 8. Mazurkiewicz, Sur les lignes de Jordan, loc, cit, In this

article, Mazurkiewicz establishes numerous results and Indicates that some of them

“were published in 'a journal (C. R. Soc. Sc. Varsovie) to which, I have not

‘had access,
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a, was taken as one of the ares of [4] having points exterior to
C,.,. Hence 4,B, and 4, B, have no point in common,

The infinite set of points of the type 4, has at least one limit
point on C,,,. Let 4.be one such point. If z is any other point
on C,i,, then at least one of the ares into which 4 and 2 divide
C.yy must contain an infinite set of points of the type 4; having

4 as a limit point; call this arc 42 Then from the points of the

type 4 can be selected (See Fig. 8) an infinite sequence A, 4,, 4.
in the order from 2 to A4 on Az and having A as a sequential
limit point. The set of points _1-3'1, _ﬁs, B,,... where B, is the other
eﬁd-poil_lf of the are of [a* to Q.4
which 4, belongs has a sequential
limit point B. There is obtained
thus a sequence 4, B, A, 1-3‘;
4y By,... of ares of the set [a¥]
arranged in a definite order. Call

this sequence the set [4, Bj.
i

The set [4,B] has a closed
and connected limiting set 1), M,,

b
k3

Cnet

which has at least one point (4) fg.3
on C,,, and at least one point (B) on C,,,. Let w be a point of
M, within I,,,, and let K, be a circle with center w and lying
wholly in I, but not enclosing C,,,. Because of the property of
connectivity im kleinen of S, there exists, concentric with, and lying
interior to K,, a circle K,;, such that every point of § interior to
K, is joined to w by an are%) of S lying wholly interior to K,.
Let 4, B, be the first arc of the set [4; B)) having points interior
to K. . - -

It is certain that mo point on any are 4. B, canbe joined to w
by an are lying wholly interior to K, unless this arc contains po-

~ints of all ares of the set IZ-E:] of subseript >n.

1) Cf, B. Janiszewski, Sur los continus irréductibies enire deux points, Jour-

“nal de 1'Ecole Polytechnique, (2), XVI, (1913), p. 109. Th. 1.

%) It is permissible to say »arce here instead of »connected set« since all
points of S lying interior to K, belong to that region of S determined by K,
and since every two points of a region are the extremities of an arc lying wholly
in that region, | | o
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There are two casses: | ‘,
(a) If w is a point of D, K, can be taken so small as to con-

tain no points of §—D, in which event all arcs of the set [4, 'E']
of subseript = K are connected by an arc of D lying wholly 1n-

‘terior to K,.

(b) If w is a point of B:

For each n, 4, B, and 4, B,,+1, together with those arcs A, A,,+,
and B, B,,+1 of C,,_H and Crta, respeotlvely, that contain no end-
-points of the' set [4, B, form a mmple closed curve K, which
cannot enclose w.-Let ¢ be a point of A, B, interior to K,. An

~are of § from ¢ to w lying wholly interior to K,, must contain,

for every K, (where n>>k) an are 6,. such that b, lies wholly in-

terior to K, except for its end-points; but for each K, there can
be at most a finite number of arcs' such as b,. If w is not the
first point of M, on the are from ¢ to w, in the order from i to w,
let m be that first point. Let [b,] deaote the set of all ares of the

type b, on the arc from ¢ to m.

If only a finite number of ares of [, contam points of S——D

then there exigts an # (» = k) such that if i > n, 4, B, and Ai+1 Bc+1,
are connected by an arc of D lying wholly interior to K,.

I shall show next that it is impossible that an infinite number
of the ares [b,] contain points of S—D.

If any are, b,, contdins points of §—D, it must, since its end-
points are in D, contain points of B So, if an mﬁmte number of
arcs of [b,] conta,in points of §—D, the same arcs contain points
of B; that is, every such b, contams ‘at least one pomt d,, of B.
Call the set of such points [d,). '

Clearly, m is the limit point in M, of the set of end. pomts of

‘the set [5,]. For the end-points belong to the set "[4, B), so that

their limit point must lie in M, and if any other point, m’, of M,,
were this limit point. it would mean that a set of points m the are
from ¢ to m has a limit point exterior to the arc (m is the first
point of M, on the arc), an impossibility, since an are is a closed
set. But if m is the limit point of the end-poinis of the set [b,] it

- is the limit point of the end points of those ares to which the set
[d,] belongs, and hence also the limit point of the set [d,]. There-
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fore m must belong to L since B is a closed set. But L is a sub-
set of K; thus m is a point of K and the set [d,] belongs to K.

Let Ki be a circle with center atm and lying in I,,,, but not
enclosing C, . Since K is connected im kleinen, there exists, con-
centric with, and lying interior to K¥, a circle K¥, such that all
points of K lying interior to K can be joined to m by a connee-
ted subset of K lying interior to K¥. But K¥ must enclose points
of [d,], and a connected set.containing a point of [d} and m and
lying interior to K must contain points of D; that is, points not
belonging to K. Hence the contradiction:

In any case, then, there must exist a number d,, such that for.
z> 6, and j> d;, any arc A, B, is connected to any other are

B, by an arc of D lying entirely interior to K. This means,

then, that those ares of the set [a] of which the arca of [4, F]
of subseript >> d;, are subsets, can be joined by ares of .D in the
same manner. Call the set of these ares S,.

For each arc a, of §;, that contains points interior to C,., let
D, be the last point of €, on'_ a, in the order from g; to P, and
E; the first point of C,,4 on.that portion of a; from D, to P, in
the order from .D, to- P,. Then each such a; contains an arec D, E,
such that D, B, lies wholly in I, ; (where I,,, is the set of all po- -
ints of the plarte between C,., and C,.) except for its end-points.
The set of all such ares call [D; E;] It can be proved, by the me-
thod used above, that the ares of the set [D; K, can be ordered
in a sequence D, £;. D, E,, D, Ei,... having the property that
there exists a dy, such that for >4, and j > d,,"any arc D, E, is
connected to any other are D, E by an arc of D lymg wholly in
I Those arcs of S whlch contam ares of [D, E] of subscript
> 0, call §,. | - |

This process may be repeated indefinitely, since S, eontains an
infinite number of arcs of the set.[a] and thereafter any 8, will
have the same propexty Furthermore, for any j, (1) S; will be
a subset of 821, (2) if a, and g, are any two ares of |a;] which
belong to S, there exists an arc ad or D such that. (i) one end-
-pomt of this are, a, is a point of a,, and thé other end-point, b,
is & point. of a,, (i) the arc abd lies wholly interior to some circle-
which lies in I, (the anoular domain bounded by C,; and Cors)
but which does not'enclose C,;;, and (iii) the ares aP, and bP,,
subsets of a, and a,, respectively, lie wholly interior to C,y, |
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The first are of the sequence [a,] belonging to S, -eall ¢;. The
‘first arc of [ after ¢, which belongs to S; call ¢;. Then there
exists, interior to K, an arc of D from a point 2’ on ¢, to a po-
int 4’ on ¢, and such that the arc y' P, a subset of the are ¢, = a,
lies wholly interior to C,; (See Fig. 4). The first arc of [a)] after
¢, which belongs to Sy call ¢;. Then there exists, interior to I,
an are of D:from a point 2 of the arc y' P, to a point " of the
- arc ¢y, and such that the are 3’ P,
(where ¢, = a,,) subset of ¢,, lies
wholly interior to C,,,. Continue
this process indefinitely. Then, if
a,==c,, the set a, + ay +.... - a, +
-|-x’y’—}-y’P,+w" H+y1IP _+_
+ ...+ can be shown, as in
Case 1, to contain an are from z
to y, every point of which, except
%, is a point of D. This completes.
the proof for Case 2.

(2) « belongs to no continuum

of condensation of B.

Choose the sequence of circles Cy, Cy, C,..., the sequence of
points P,, Py, P,,... and the sequence of arcs a,, a3, ay,... as in
(1) starting, however, with C; as any circle with center at x. Asin
(1), there are two cases to consider:

Case 1. Suppose that for every value of n there exists a posi-
tive integer k, such that a, is the last arc of the sequence a,, ay, a;....
having. points on C,. This situation is handled exactly as in Case 1
of (1).

Case 2. Suppose there exists an #, such that an infinite num-
ber of ares of [,] have points on C,. Select the set [4,*] as in Case
2 of (1), with the difference that to each 4, B, has been added the
arc B, P, forming the are 4,P,= a¥. As above, it can be shown
that no two ares of [a?] have puints in common.

The points of the type 4, have at least one limit point 4 on
Coa- Let z be any point of C,,, distinet from A Then at lenst
one of the arcs into which 2 and A divide (.41 contains an infinite
number of points of the type A4,; call this are 4 2. Choose on Az,

_in the order from -z to 4, an infinite sequence of points of type A,
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namely. A¥, 4%, AF,.... having 4 as a sequential limit point. The
set of points, P, P¥, P{, ..., where for every positive integer u, P¥
is the other end-point of the arc of [a¥] to which A* belongs, has
x as a sequential limit point, since « is a sequential limit point of
the set P, Py, Py,.... The sequence of ares 4¥ P¥ A¥ P¥, A} PE,.
has a continumra M, as a sequential limiting set; M, contains 4
and z |

~ Either there exists in M, an infinite set of points of D having
x as a sequential limit point, in which event a proof similar to that
used in Case 2 (a) of (1) can be used to show the accessibility of
2 from g, or there exists no such sequence. In the latter event we
can consider C,y, to be so small that all points of M, belong o
S—D. Then M, is a subset of B, since each point of*itis a limit
point of D and does not belong to D.

Let e, be any point of M, interior to C,,; and distinet from z.
Let K; be a circle with ¢, as center, not enclosing = or containing
2, and lying entirely interior to C,;;. K; determines a concentric
circle K, such that every point of S interior to K, is joined to ¢
by an arc of S that lies wholly interior to K. There exists a po-
sitive number N such that for » > N, K; cuts off at least one seg-
ment of A¥* P* Let t be a point of 43 P¥ (K > N) interior to K,
and let m be the first point of M, oo an arc of S from ¢ to ¢, that
lies entirely interior to K, (in the order from £ to ¢,). For every

n> N let p,q, and puy; guy, be ares-of A¥ P¥ and 4%, Pl re-

spectively, cut off by K; (i. e. p,g, lies entirely interior to K, ex-
cept for the points p, and g,, etc) and such that one of the arcs
into which p, and p,,, divide K; does not contain g, or ¢.i:. Let
Poguss be that simple closed curve formed by the ares p.g., Pua
.1, that are p,p,,; of K which contains neither g, nor g, and
that arc ¢,9,,, of K; which contains neither p, nor p,.,.

Two possible situations have to be considered. I shall say that
e, possesses property F if, no matter how K is selected, subject to
the conditions noted above, or how ¢m is selected, ‘the are im con-
tains, for an infinite number of distinet values of n, a point of

S—D that lies interior to p,q.i,. Either e, possesses property F
* or it does not; in the latter event, ¢ will be said to possess pro-

perty G. - ‘
If ¢, possesses property G, let C%, be a circle concentric with

C,,., not enclosing ¢ and lying interior to C,i2. There exists
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- a subcontinuum M; of M,, which contains # and at least one po-

int on C¥,, but no points exterior to C¥,. Bither a point ey of
M; interior to G}, and distinet from x can be found possessing
property G or such a point cannot be -found. If such a point can
be found, let C¥; be a circle concentric with Cf,, not enclosing €,
and lying interior to C,i;, There exists u subcontinuum M, of M,
which contains x and at least ome point on (4, but no points
exterior to CF. A poiilt eg of M, interior to C,,, and distinet from
# can be found possessing property G, or no such point can be
found. If such a point can be found, continue as before. In the event
that this process can be kept up indefinitely, that is, if for every
new C¥ lying within C,,; a point ¢ interior to C¥, can be found
possessing property G, then there exists a circle K% with center at
¢; and lying within C, such that an infinite number of ares of |4
that have points interior to K} can be connected by an are, of D
lying wholly interior to Ki. The method used in Case 2 (b) of (1)
can' now be used to show the accessibility of w.

In the event that this process can not be kept up indefinitely;
that is, if finally a circle C¥, is found such that every point of

M, interior to C¥; possesses property F, we may proceed as follows:
‘Consider C,, taken so that every point of M, other than w inte-

rior to C,,, possesses property F. But then every point of M, other

than z is a limit point of boundary points of B that do not belong

to M,, and since M; is a contibuum, x itself is a limit point of
such points. That is, # belongs to a continunum of condensation, M,,
of B. contrary to hypothesis.

Hence, in every case, z is accessible from y if it belongs to no
continuum of condensation of the boundary.

This completes the proof of Theorem 1.

It will be noticed that in the above proof no properties of space

S are made use of, that are not also properties of ordinary two-

-dimensional space. The arguments used. apply, therefore, in the
latter spacd. Hence the following theorem:

Theorem 2. In order that o boundary point x of a connected
domain D in ordinary two-dimensional space should be accessible from .
all points of D, it is sufficient either that (1) there exist a circle C

with centre at x such that the set of ll points of the boundary, B, in-

terior to C is a subset of a connected im kleinen subset of S—D (8 being
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the set of all points in the space considered), or that (2) x belong to
no continuum of condensation of B 1Y), -

It is clear that the conditions of Theorem 2 are satisfied if any

one of the following simpler conditions are satisfied, viz, that (a)

B be connected im kleinen, (b) B a continmous curve, since in this
case (a) is fulfilled #), (c) # belong to a connected im kleinen subset,
K, of B, such that z is not a limit point of B—X.

The accompanying figures are given to show that the two condi-

tions of the above theorem are independent, and that they are only
sufficient, not necessary. |

Figure 6 is an illustration | P C
showing the independence of :
the condifions 4BCDisasquare, o* K

E the center point of its inte- £

Fig.5

h Hy
ints of DC and 4B, respectively, 73 I ,11/4 7‘5 I 75
P, P,, P,,... is a sequence of A Gy 6, 64 F 05 63 65 8
points such that if the distance : .
LP=1. P, lies on the straight line EP and at a distance 1/n
from P. G, and G, are the mid-points of AF and FB, respectively,
and G, H, and G, H, are perpendiculars to AB of length 1/2;
(g, Gy, Gs and Gy are mid-points of 4, G, G, F. FG,, G;B, res-
pectively, and H, Gy, H,G,, H; G5, Hy Gy, are perpendiculars to 4B
of length 1/4; and so on. Consider the bounded domain D* whose
boundary is the set of points consisting of the square ABCD, the
sequence of points P), F,. P,,... and the straight line intervals EF,
G, H,, G, H,, Gy H,,... Every boundary point of R is accessible
from any point of R; every point of the side 4B of 4BCD is on

. %) 1 will remark here that, if P is & point of D, and arcs are taken from P
to two points 4 and B’ of B in such a way that D is divided into two domains
D, and D,, x being on the boundary of D,, as well as on B, that x is acces-
sible from D, provided that the conditions of the theorem are satisfied for D, at .
That is, the conditions of the theorem are sufficient for accessibility from all sides
of the point =, I shall'not, however, make use of the idea of accessibility from
all sides in this paper. ' s

7 Schoenflies showed that. all boundary points of an ordinary two-dimensional .
connected domain are accessible from the domain if its boundary is a continuous
curve, Of. A, Schoenflies, Die Entwickelung der Lehre von den Punktmannigsol-
tigkesten, Zweiter Teil, Jahresbericht deér Deutschen Mathematiker-Vereinigung,
vol. 2 (1908), p. 215



ICM Biblioteka Wirtualna Matematyki

362 R. L. Wilder:

a -continuum of condensation of the boundary of R, yet condition
(1) of Theorem 2 is satisfied for all points of 4B; condition (1) is
not satisfied at P, yet P is accessible from any point of B by con-
dition (2).

It can be shown that the above conditions are not necessary by
taking as part of the-boundary set of isolated points of the domain
having F as sequential limit point, somewhat as P is the sequen-
tial limit point of the sequence P,, P, P,,...

A point of the boundary may be a limit point of continua of
condensation of the boundary and yet be accessible from any point
of the domain provided the point does not itself belong to a con-
tinuum of condensation of the
boundary, as in Figure 6. The
D A - points P, P, P,,... are situa-
ted on the straight line interval
OF, in such a way that for

A
A{ﬂ\[\ every positive integer n. P, is
0GRl A A
By
% .
8

at a distance 1/n from O, and
A, B, is a straight live interval
! perpendicular to OP,, of length
By ‘ 1/n and wid-point P,. The li-

"Fig. 6 nes 4, B, are continua of con.
| densation of curves of the type

sin 1/z, and O is then a limit point of continua' of condensation, .

‘but is accessible from any point of D,

An extension of space S can be made by considering S to con-
sist of any connected im kleinen, closed and bounded set of points.
For this purpose, the following theorem is introduced:

Theorem 3. In order that a closed and bounded point-set should

 be connected im kleinen, it is necessary and sufficient that it should

be the sum of a finite (or vacuous) set of mutually ewclusive conti-
nuous curves, together with a finite (or vacuous) set of isolated points.

Proof. 1. The condition is necessary. Let K be a closed, boun-
ded and connected im kleinen set of points. By virtue of the pro--
perty of connectivity im kleindh, every point P of K is the center
of two circles C, and C, such that every point of K interior to C,
lies with P in some continuum of K that lies entirely interior to

G If L denotes the set of all those points of K interior to C,

which lie with P in some continuum of K that lies interior to Cy,

o~
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together with the limit points of such points, then L is either the iso-
lated point P, or a continucus curve which contains every point of
K interior to G, ). -Since K is closed and bounded, there exists,
by virtue of the Heine-Borel Theorem, a finite number of circles
of the type Cy, namely Cf, C3, C3,... Ci, such that if = is any
point of K, there exists a positive integer i such that z lies inte-
rior to (3. To each of these circles corresponds a set, L, which
is either a continuous curve or a single point P, and which con-
tains all points of K interior to C;. Hence, K consists of a finite
(or vacuous) set of continuous curves together with a finite (or va-
cuous) set of isolated points. Sinee a finite number of continuous
curves which have points in common form one eonfinuous curve,
the continuous curves in the theorem can be considered to be mu-
tually exelusive 2),

2. The condition is snfficient. Let K be a closed, bounded set
of points which is the sum of a finite "set of mutually exclusive
continuous curves L, Ly, Ly..., L, and a finite set of isolated po-
ints Py, B,.... P. If # is a point of the continuous curve L,
(n==1, 2,... i) there exists a circle C with center at z which con-
tains no points of any other continuous curve of K, nor any point
of the sequence P,, P,,.... P,. Since L, is connected im kleinen
at , it follows that K is connected im kleinen at 2. If z = P,,
(n==1, 2,... j), there exists a circle C with center at x containing
or enclosiug no points of the set L, + L, +... -+ L,. and no po-
int of the sequence P,, P,,... F. The conclusion is obvious.

II. An analysis of the point-set which constitutes the boun-
dary of a complementary domain of a plane continuous eurve 2),

In the present section I shall analyze the boundary of a com-
plementary domain of a plane continuous curve in terms of the
elementary notions of point, arc and simple closed curve, and prove
certain fundamental properties about such sets:

1) Hahn has shown that L is connected im kleinen. L is obviounsly what Hahn
calls M* (P, r). Cf. pg. 2448, loc. cit,

3) Point-sets are said to be mutually cxclusive when they have no points in
common, ()

5) Presented to the American Mauth. Soc., Deec, 29, 1922.

Fuondamenta Mathematicas VII. o 23



ICM Biblioteka Wirtualna Matematyki

]

354 R. L. Wilder:

If S isa continuous curve in ordinary two-dimensional space &',
and P a point of §'—S8, that maximal 1) connected subset of §'—S

" determined by P is a complementary domain D of the continuous

curve S. One of ‘the complementary domains of S is unbounded,
and the unbounded complementary domain always exists; S may
or may not have bounded complementary domains. The boundary,
B, of D, consists of all limit points of D that do not belong to D.
Evidently 8 is a subset of S.

Since S is bounded, there exists a circle C, which encloses all
points of § but contains no points of S. If D is a bounded com-
plementary domain of S, then the outer boundary of D is the bo-
undary of the point-set composed of all points [z] such that z can
be joined to some point of C' by an arc which contains no point
of D+ 8. R. L. Moore has shown ?) that B, the outer boundary of
D, is a simple closed curve. By a theorem due to Miss Torhorst %)
f is itself a continuous curve.

Theorem 4. If S, is the set of all simple closed curves (exclu-
ding the outer boundary in case the domain is bounded) contained in
the boundary, 8, of a complementary domain of a continuous curve 8,
then (1) S, is countable, (2) if C, and C, are two distinct simple
closed curves of the set S,, C, and C; have at most one point in com-
mon, and théir interiors have no point in common; (3) in case D is
bounded and C is any simple closed curve of 8,, C lies inierior to
B, the outer boundary of D, or has at most one point P’ in common
with B, such that C—P' is interior to B. |

Proof. In case D is bhounded, no points of §, can lie exterior

to B, since all points of § must be accessible from D by Theorem 2.

If C is any closed curve of S,, C cannot have more than one
pomt in eommon with B. For, suppose C has two points, 4 and E,
In common with B. Then C W111 contain an are, 4’z E’, which hes,
except for 4’ and E’, wholly interior to B. 4’z E’ Wﬂl divide the

') If M is a point-set and P a point'of M, the maximal connected subsst
of M determined by P is the sct of all points of M that lie, with P, in a con-

’

mnected subset of M.

) R. L. Moore, Concerning continuous curves in the plane, Math, Zeitschr,
Band 15, (1922) pp. 254260,

% Ueber den Rand der einfach zusammen h&ngen@n ebenen Gebiete. Math.

© Zeitschr. 9 (1921), 8. 64 (73).
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interior of B into two domains, B, and By, which are mutnally
exclusive ), and such that if T is the interior of B,

I=RI+R2+A’ZEE’—A’—-—F'.'

D must lie wholly in either R, or RB,. Clearly points on one of the
arcs into which 4’ and E’ divide B are not accessible from D,
a contradiction of Theorem 2. Hence G ean have at most one point
P, in common with B, and the set ¢ — P must lie interior to Bj

I.u'ax}y case, D being bounded or unhounded, if C, and C; are
two distinet simple closed curves of the set S, the interiors of C
and C; ean have no point in common; for if their interiors have
a point in common, points of C, lie interior to €, or vice versa,
and a contradiction of Theorem 2 results.

Furthermore, C, and C, can not have more than one point in
common. For suppose they have two points, 4 and E in commoan.
C; must contain at least one point, » which is exterior to C,, since
C, and C; are not identical and their interiors have no point in
common, and there will exist two points, 4’ and E’, common to
C. and C;, such that the arc A’z E’ is exterior to C,. From The-
orem 27, of R. L. Moore’s Foundations of Flane Analysis Situs,
it follows that one of the arcs into which 4’ and E’ divide C, is
interlor (except for end-points) to the simple closed curve formed
by the other arc of C, and 4’z E’, a contradiction of Theorem
2 again.

8,, then, is a totality of simple closed curves whose interiors
have no point in common, and such that any two have not more
than one point in common. The closed curves of this set must the-
refore form .the boundaries of a set of mutually exelusive domains.
As every set of mutually exclusive domains is countable, S, must

‘be a countable set C), C,, Ci....

‘Theorem 5. The boundary, B, of a complementary domain, D,
of a continuous curve, S. cannot contain an uncountable infinity of
simple continuous ares mo two of which have a point in common.

Proof. Suppose that 8 does contain an uncountable set, T, of
simple continuous ares, such that no two ares of T have a point in
common. Then there exists some positive number & such that there

&

1) Cf. R. L. Moore, Foundations ygf plane Analysis Situs, loc. cit. p. 141.
23#*
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€.

are uncountably many arcs of T of diameter *) greater than e Call

the totality of these 7".
In each arc of 7" there are two points x and y such that

(1) d (x, ?/)> €.

Assign z to a set [4] and y to a set [B]. The set [4] will have at
least one limit point, 4, since it is bounded. Then from [4] can be
selected a sequence of points ;. Zy, #,... which bas 4 as a se-
quential limit point. Let y,. %s, ¥s,... be points of {B] such that
for every positive integer a, z, and y, are points of the same arc
of T -

The set y,, s, Ys... must have at least one limit point, B¥, and
contains a subsequence B,, By, Bj,... which has B as a sequential
limit point. Let 4, 4,. A;,... be a subsequence of the sequence
T,, Xy, Ty,... such that for every positive integer n, 4, and B, be-
long to the same arc of the set 7”. Then 4 and B¥ are sequential
limit points of the sequences 4,, Ay, 4s,... and B,, B,, By,..., re-
spectively, since if a sequence of points has a sequential limit pomt
every subsequence of it has the same sequential limit point. 4 and

~ B* are distinct points, since, as a result of (1),

0(4,B¥) =« -
Let "
0 (A, B*) = 8.

Hahn has shown 2?) that a connected im kleinen continuum is
uniformly congected im kleinen. That is, for every positive number

‘& there exists a positive oumber d,, such that if P’ and P are two

points of the continuum such that

§(P', P")y <4,

‘then P’ and P” are the extremities of an are, L, such that if a’

is any point of L.
d(z', Py ¢
and |

0 (', P"y<e.

1) The diameter of a point-set M is the upper limit of d,fx,y). where x and
y are any two points of M and 6 means distance; i. e., ¢ (x.y stands for the
distance from x -fo y. P

% Loc. cit. '
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Since § is a continnous curve, and therefore a connected im klei-
nen continuum, it is uniformly connected im kleinen.

Therefore, corresponding to the number # there exists a num-
ber d, satisfying the conditions for uniform connectivity im kleinen.

There exists a positive number N such that if » > N, 4, is in-
terior to a circle of diameter 6,? with 4 as center, and B, is inte-
rior to a circle of diameter 6,7 with B* as center. Hence, for any
such value of #n,

0 (4,, 4,11) < 5,?
and

0 (B,, Buy) < 9,

Then 4, and A4,,, are the extremities of an arc of § such that
if P is a point of this are,
0 (P, 4,) <mn.
and
d (P, An-}-l) < 1y
and, since 4, =<7, :

(P, 4) < 2q

Similarly, for » > N, B, and B,,, are the extremities of an arc
of §-satisfying similar conditions. These two arcs can have no point
in common, and-the ares A, B, and A,,, B,,, have no point in
common by hypothesis. From the pointset composed of these
four arcs can be selected a simple closed curve which consists of
intervals of the four ares. This simple closed curve bounds a do-
main which is bounded. The totality of such domains form a sequence
Dy, Dy, Dy,..., each of whose boundaries belongs to S; (except for
one which may be the outer boundary. B, and which, for conve-
nience, may be considered as omitted from the sequence). By The-
orem 4 (2), these domains are mutually exclusive; furthermore, they -
constitute an infinite set of domains complementary to f, each of
which is of diameter greater than 4 #. But this is a contradietion
of a theorem due to Schoenflies ) to the effect that if ¢ is any gi-
ven positive number, there do not exist infinitely many domains
complémentary to a continuous curve, each of which is of diameter
greater than e

Y Loec. ¢it.,, p. 221, IX,
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Hence 8 cannot contain uncountably many arcs no two of which
have a point in common.

Theorem 6. The boundary, B, of a complementary domain of
a continuous curve, cannot contain an infinite set of simple continuous
arcs of diameter greater than amy positive number & such that no
two of these arcs have an interior point of both in common.

Proof. If such a set exists, select from it a sequence ?y, fy, fg,..
For every positive integer =, i,, being of diameter greater than e,
must contain an arc # which does not contain the end points of 2,
and is itself of diameter greater than e Then the set #;, o, f, ...
is an infinite sequence of arcs mo two of which have a point in
common, and each of which is of diameter greater than & An ar-
gument similar to that used in the proof of Theorem 5 may be
used to complete the proof of this Theorem. |

Definition: If M is a continuous curye, I shall define an end-
-point of M to be any point P of M. such that if o is an are of M
whose end-points are Pand any other point P’ of M, the set. M —
— (a — P) contains no connected subset consisting of more than
one point which contains P. If o point P’ can be found such that
this condition is not satisfied, then P is not an end-point of M.

Definition: If M is a continuous curve, and P a point of M,
then if M — P is not connected, P is called a cut-point?) of M
If M — P is connected, I shall call P a non-cut-point of M. *

Theorem 7. In order that a point of a continuous curve that
contains no simple closed curves should be an end-point, it is necessary
antl sufficient that it be a non-cut-point.

.Proof. (a) The condition is necessary. For, let P be an end- po~
int of a continuous curve M which contains no simple closed curve,
and let P’ be any other point of M. P and P’ are the extremi_ﬁé?
of an arc @ of M. Since P is an end point, M— (a — P) contains
no connected subset consisting of more than one point that conta-
ins P. Supposé that P is a eut-point of M Then

M. P=M+M,

1) This-definition was given by R. L, Moore in Concerning the cul-poinis of
continuous curves and of other closed and connected point-sets. Proe, Nat, Acad,
Sei vel IX, (1923), pp. 101—106
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where M, and M, are two non-vacuous mutually separated !) sets.
Now P, being an end-point of a, does not disconnect a. And a—P,
being connected, must lie wholly in M, or M,. Suppose it lies in
M,. Since M, bas no limit points in M,, M, contains a domain d
with respect to M, whose boundary with respect to M is the point
P. If z is a point of M;, # and P are the extremities of an arc a’
which lies wholly in d and hence in M,, except for the point P,
by Theorem 1. But since a— P lies wholly in M,, |

M—(@—P)D My+PDa'?)

That is, M— (a — P) contains a connected subset consisting of more
than one point which contains P. Hence under the supposition that
P is a cut-point of M a contradiction results. Therefore P must be
a non-cut-point of M.

(b) The condition is sufficient. Let P be a non-eut-point of

. a continuous curve M that contains no simple closed curve. Sup-

pose P is not an end-point of M. Then there exists a point.P’ of
M, such that if o be an arc of M whose extremities are P and P,
M — (a— P) contains a connected subset M,, consisting of more
than one point, which contains P.

Since P is a non-cut-point, M — P is connected. Divide M — P
into two sets, a — P and M;. Then

MO M,—P.

Let d be- that maximal connected domain with respect to M such
that ' |
MyDd
and |
| d7) M, — P.

Then d must have some limit point z distinet from Pin a.
Let y be a point of d. Thére exists an arc o’ whose extremities
are z and y and which lies wholly in d except for z (see Theo-
rem 1); also an ar¢ a’ whose extremities are y and P, and which

lies wholly in d except for P. Then a, a and a’’ contain a simple
closed curve. But M contains no simple closed curve by hypothesis.

1) Two point-sets are said to be mutually separated when they arp mufnally
exclusive and neither contains a limit point of the other.
2) The symbol D should be read ,conmtains or is identical with¥,
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Hence the supposition that' P is not an end-point of M leads to
a contradiction, and P must therefore be an-end-point of M. .

Theorem 8. If M is a continuous curve that contains no simple
closed cufve, then M cannot contain. for any given positive number g,
an infinite number of arcs of diameter greater than & and such that no
two of these arcs have an interior point of both in common.

Proof: The proof of this theorem is nearly identical with the
proofs of Theorems 5 and 6, except that a Gontradiction is obtained
as soon as it is demonstrated that M contains a single simple clo-
sed curve. Or, it may be considered a special ease of Theorem 6,
since such a continuous curve is the boundary of only one domain,
namely, its unbounded complementary domain.

Theorem 9. If M is a continuous curve, and N is a closed pro-
per ') subset of M, then M — N is a countable set of domains with
resp;,;ct to M whose boundary poinis with respect to M are contuined
in N.

Proof: Let P be a point of M — N. Then that maximal conneec-
ted subset, d, of M— N determined by P is a domain with respect
to M. To show this, let

1) R=M— (N + d).

Then R and d are mutually separated. For, R can contain no limit
point, z, of d, since d +x would be connected and z therefore
a point belonging to d, contrary to (1). On the other hand, if d
contains a limit point, y, of R, there exist two circles, ¥, and F,,
with centers at y, neither of which eneloses a point of N, and such
that every point of M interior to %, lies with x in a connected
subset of M that lies wholly interior to k,. and furthermore such
that at least one point, z, of R. lies within %,. Then z and y lie
in a counected -subset L of M that lies wholly interior to %,. But
no points of N lie interior to %,, aund therefore

M—NJOL

As d is a maximal connected suhset of M — N, y must belong
to d. This is impossible, since £ and 4 are mutually exclusive ac-
cording to {1). Hence no points of B can lie interior to ky and y

N If N is a subset of & point-set M, then N is a proper subset of M if
M — N is not vacuous
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cannot be a limit point of B. As R contains no Limit points of d
and d contains no limit points of R, and as, moreover, the two set;
are mutually exclusive by (1), R and d are mutually separated.
Hence, if P’ is dny point of d, there exists a cirele C, which
encloses P’, but no points of B or N. It follows at once that d
is a domain with respect to M. The boundary of d with respect to
M must be a subset of N, since d can have 1o limit points in R,
Since every point P of M — N determines a maximal cohnected
subset of M— N, i. e, a domain with respect to M, M— N is a to-

tality of domains, [d], with respect to M, whose boundaries with
respect to M belong to N.

To show that these domains form a countable set, it is only ne-
cessary to make use of the fact that every uncountable point-set
containg at least one of its limit points. For, if ( be a point set
which consists of points of [d] such that one and only one point
of each domain of [d] belongs to @, @ contains at least one limit

| point of itself. Call such a point 4. Let d be that domain of [d]

of which 4 is a point. If R be defined as in (1), then

(2) | k2D [d] —d.
But '

3 [d] —dD 9— 4.

From (2) and (3) it follows that 4 is a limit point of R, which is
impossible, as shown above. Hence the set of domains [d] is co-
untable. _

 Theorem 10. If M is a continuous curve that contains no sim-

- ple closed curve, and N a closed proper subset of M, ihen for any

positive number &, M — N contains at most a finite numher of ma-
ximal domains with respect to M of diameter greater than e.

This theorem is a direct consequence of Theorems 8 and 9,
and the fact that every two points of a domain with respect to
a continuous curve are the extremities of an are of that domain.

Theorem 11. Every closed and connected subset of the boundary
of a complementary domain of a continuous curve is itself a conti-
NUOUS CUTDE. :

Proof: Let 8 he the boundary of a complementary domain of
a continuous curve S, and N a closed and connected subset of §.
To show that Nis a continuous curve, it is necessary to prove it con-
nected im kleinen.
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Let P be a point of N at which it is not connected im klei-
nen. Then there will exist!) two concentric circles &, and k,, and
a countable infinity of closed and conneeted point-sets, M, M, M,, M,,...
such that (1) each of these point-sets is a subset of N and conta-
ins .at least one point on %, and at least one point on k,, but con-
tains no point exterior to k; or interior to ke, (2) no two of these
point-sets have a point in common, and indeed, no one of them
is a proper subset of any other connected subset of N which con-
tains no point without k, or within k, (3) the set M is the se-
quential limiting set 2) of the sequence of sets M, M, M,,...

Let ¢ be the lower limit of the distance zy, where z is any
point of M, and y is a point of M, -+ M,. Since § is a continuous
curve and therefore uniformly connected im kleinen, there exists
a number 5 such that if a and & are any two points of B8, such
that | -

6o, 0) <17

then a and b arc the extremities of an arc ab of 8, such that every
point ¢ of the arc ab satisfies the relations
| da,c)<e
6 (be)<e

Since M, is a continuum, there exists in M, a chain of points
Ty, Tgy... Xy, SUch that '

0 (0 Topy) < 1, (i=12.k—1)
x, is a point of k,, and x, a point of k,. Then there exists an are
; %, of B, such that if #' is any point of this are, ’ '
| 6 (ay ) < @

0 (Teyy, 2') < 0

1) Of. R L. Moore, 4 characterization of Jordan regions by properties ha-
ving no reference to thelr boundaries, Proc. Nat. Acad. 8ci, IV (1918), pp.
364 870, ‘ | | f

?) A point-set ¢ is said to be the sequential limiting set of a sequence of po-
int-sets 2,, t,, t,,... provided that (a) each point of ¢ is the sequential limit point
of an infinite -sequence of points, P,. P,, P,.... such that, for every n, P, belongs
to t,, and (b) if P,, P,, P,,... is a sequence of points such that, for every s,
P, belongs to ¢, then ¢ contains the sequential limit point of every subsequence
of P,, P, P,,... which has a sequential limit point. ’ ‘
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The set =3z, 2., is a continuous curve, since any connected
set consisting of a finite number of arcs is a continuous curve, and
therefore contains an arc whose end-points- are z, and.z,. Let ]
be the last point of this arc on k, in the order from z, to z,, and
z, the first point of this arc on %, in the order from z, to .
Then zjx, =1, is an arc of § which lies. except for ils end-boints,
wholly interior to %, and wholly exterior to £,.

Now let ¢’ be the lower limit of the distance ry, where z is
any point of My, and y any point of M, 4 ¢,. There exists s num-
ber #' such that if ¢ and & are any two points of g such that

d (@, 0) <7
then a and b are the extremities of an arc ab of B. such that every
point ¢ of the are «b satisfies the relations

d (a,c) < ¢
d (b c) < ¢

As M; is a continuum, there exists in M, a chain of points z,,

&,,... 7, such that
0(@,zn) <9, (i=1,2,...n—1)

z, is a point of k,, and z, a point of k,. By a discussion similar
to that used above in showing the existence of the arc #, it can
be proved that there exists an arc #, having properties similar to
those of t,. |

Continuing in this manner indefinitely, it can be shown that
there exist an infinite sequence of ares, &, #, t,,... such that for
every positive integer »n > 1,

gt

the diameter of t, i8 >r/2, where r is the numerical difference
of the radii of %, and %, and such that ¢, has no point in commeon
with any other arc of the sequence ¢, f, ¢,,... Clearly this is
a contradiction of Theorem 6. Hence N must be connected im klei-
nen at P, and as P is any point of N. N must be connected im
kleinen.

It might be noted in passing that Theorem 11 is a generalization
of a result oblained by Mazurkiewicz !) to the effect that every

Yy 8. Mazurkiewicz, Un thdoréme sur les lignes de Jordan, Fund. Math,, II,
(1921) pp. 128-—12b.
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closed and connected subset of a continuous curve that contains no
simple closed curve is itself a continuous curve.

Theorem 12. If M is a continuous curve that contains no sim-
ple closed curve, N a closed and connecled proper subset of M, and
d a mazximal connected domain which is a subset of M— N, then d
has only one boundary point with respect to M, and that point be-
longs to N.

Proof: The boundary points of d all lie in N asa consequence
of Theorem 9. Suppose there exist two boundary points of d with
respect to M. By Theorem 11 N is itself a continuous curve and
therefore contains an are from P, to P,. But by application of The-
orem 1 there exists another arc from P, to P, which lies, except
for P, and P,, wholly in d. As d and N have no points in com-
mon, these two ares have in commoun only the points P, and P,,
and thelr sum is therefore a simple closed curve. But this is a con-
tradiction of the hypothesis that M contains no simple closed curve.
Hence d has only one boundary point with respect to M.

For eonvenience, the major results of Theorem 9, 10 and 12
are embodied in one Theorem as follows:

Theorem 13. If M is a continuous curve that contains no clo-
sed curve, and N is a closed and connected proper subset of N,
then M — N consists of a countable set-of domains with respect to M,
viz., dy. d,, dy,... such that (1) for every positive integer #, d, has
one and only one boundary point with respect to M, and this point
is a point of N, (2) no two of these domains have a point in com-
mon, and (3) if € is any positive number, at most a ﬁmte number
of these domains are of diameter greater than &

"Theorem 14. If  and y are two distinct points of a continu-
ous curve M that contains no simple closed curve, then no point of
the arc xy of M, excepting the points x and y, is an end-point of M.

Proof: As shown by Mazurkiewicz 1), there exists id M only one
arc from x to y. Let P be a point of 2y, distinet from z and Y-
Then

zy — P= M, 4+ M,,

where M, and M, are mutually separated sets. As a consequencek
of Theorem 13 M— a2y consists of a set of domains with respect
to M each of which has one and only one boundary point with

1) See Un théoréme sur Iesvlz'gnés de Jordan. Loc. cit,
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respect to M, that point being a point of zy. Let [d'] be the col-
lection of all those domains of M— N whose boundary points with
respect to M lie in M,, and .[d"] the collection of all those doma-
ins of M — N whose boundary points lie in M,. |

If P is the boundary with respect to M of a domain d;, then
d; and M — (d; -+ P) are two mutually separated sets (see Theorem
13), whence by Theorem 7 P is not an end-point,

If P s not the boundary with respect to M of any domain,

then the sets [d'] -+ M, and [d"”] + M, are mutually separated, and
P is not an end-point of M.

In any case then, P canunot be an end-point.

Theorem 16. 4 continuous curve M that contains no simple clo-
sed curve consists of (1) u sequence of arcs Cis Coy Cgy-.. MO [WG Of
which have in common an interior point of both. and sich tha (@)
if n is any positive integer, ¢, + s dceg ...+ ¢, is a continuous
curve M, and:a proper subset of M, (i) for &€>0, there exists
a number ¢ such that it »> o,

d{c,) e
and the diameter of any one of the countable set of mazximal doma-
ins with respect to M lying in M — M, is less than € and (2) a to-
tally disconnected set of end- (or non cut-) points, P,, each of which
is a limit point of the sequence M,, M,, M,,... and which contains
all the end- (or non-cut-) points of M.

Proof: The continuous curve M is of diameter greater than some
pusitive numnber, say.l. Then there exist two points, # and y be-
longing to M, that are not end-points of M, and whose distance
apart is greater than 171). Let ¢, be that arc of M which has »
and y as end-points. As a result of Theorem 13, M—c¢, is a set
of domains with respect to M, whose boundary points with respect
to M lie on ¢,, and such that only a finite number of these doma-
ins, dy, dy, dy,...d,. are of diameter greater than 1. Let P, be the
boundary point of d;, with respect to M (i =2, 3.... k). Since the

!) That two such points can be found is a direct consequence of a theorem
proved by R. L Moore, viz,, in order that a élosed, connected and bounded
point-set M should be a continuous curve which contains no simple closed curve,
it is necessary and sufticient that every closed and connected subset of M should
contain uncountably many cut-points; (See R. L. Moore, Concerning the cul-points

. of continuous curves and of other closed and connected point-sels, loc. cit. Th.

B), and of Theorem 7.
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diameter of d, is greater than 1, there exist in &, two points z,
and y, such that
| 0 (24, y:) > L.
It is clear, then, that either
0 (B, x) > %
or |
0 (Pn y1)>%-
Suppose that
0 (P, x)>14.
Then the set composed of d; and F, contains an arc from a; to

P, whose diameter is greater than }.
Now the set

Ff=t+c—+..+¢

where : ,
¢, == arc x, P, (t=2,3,...k)

is a continuum. Then M— My consists of a set of domains?)
only a finite number of which can be of diameter greater than 1;

let these be d,,,, dy4,... dyy. Since :

bAu)>1  G=1,23.,))7

~ there exist in d,,, two points z;, and g, which are not end points,

such that
0 (z,, y) > 1.

Then, if P, be the boundary point of ‘cl,‘+; with respect to M,
' 0 (B x) > 3

or

J(‘Pia y) > 4.

N M— ]M;* is not vacuous, since M?* contains no end-points by Theorem 14

(the points x; and P; being also mnon-cut points) and jt has been shown by R. L.
Moore that every bounded continuumn contains at least two mon-cut points. Cf.
R. L. Moore, Concerning smple continuous curves. Transactions of the American
Mathematical Society, vol. 21 (1920), pp. 340—341, Theorem 2; Concerning the
eut-poinis of continuous curves and of other closed and connected pont-sets, loc. cit.
Also see B. Masurkiewicz, Un théordme sur les lignes de Jordan loc. cit. Pp.
119—130,

?} Where the notation for a point-set is placed in the parenthcsls the d should
be real ,the diameter of“.
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Suppose that

‘Then by virtue -of Theorem 1, d,.,- P, contains an are Crts
whose extremities are z, and P,. Thus a continuum

.Mg* a.Mi*—!‘- Ck+1 +"'+ck—{-j
18 obtained.

Continuing this process, there is obtained, - eventually, a con-
tinuum

] Mi=c+e+...+q

such that M — M¥ consists of a set of domains only a finite num-
ber of which are of diameter > , and none of which is of dia-
meter > 1. For if domains of diameter > 1 could he obtained in-
definitely, plainly an infinite set of ares of diameter > 1 would
also be obtained, a situation contradictory to Theorem 8. M — M7,
be?ng non-vacuous, let its domains of diameter > §, if any exist,

be denoted by Ayyay Bppoy-.. dhy,. Let the boundary point of d,,,
(t=1,2,... 9) be P,. Since

d (dh-i—i) >%7

it can be shown that there exists in d,y: & point z; such that

0 (P m) > 1
and hence d,,, - P, contains an arc try: from P to z,.
If the process indicated above be continued indefinitely, there
is obtained a con scted set of ares ¢;, ¢,..., such that (1) none of
these arcs contains any end-point of M by virtue of Theorem 14,

~and no. two of them have in-common a point which is an interior

point of both, (2) if e is any positive number, there exists a num-
ber # such that if » is any positive .integer > 7,

| 0 (c,) <&,
and the diameter of every one of the countable set of maximal do-
mains with respect to M lying in M — M,, where

M,=c¢ +c+...4¢.

(a continuous curve since it consists of a finite and connected set
of ares) is less than e _ ‘

- If the set of points consisting of the totality of ares in the se-
quence ¢, ¢y, Cy,... be denoted by M¥, then M* is non-vacuous.
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For M* contains no end-points of M by (1) above, and M must
contain at least two end-points, as already indicated.

Every point of M-— M¥ is a limit point of M* Tor, suppose P
is a point of M — M* that is not a limit point of M¥ Then there
exists a circle % with center P that contains no point of JM* But
P must belong to some proper connected subset s of M — M* that
lies interior to %k, by virtue of the properties of connectivity and
connectivity im kleinen of M. Let ¢ denote a positive number

such that
d (s) > o.

Now there exists a number #, such that if » is any positive
number > 5, M — M, consists of a set of maximal domains with
respect to M no one of which is of diameter greater than g¢. Ho-
wever, s must belong to some domain of M — M,, since

M—M,OM—M* s,

and thizs domain cannot be of diameter greater than @. Therefore
the supposition that P is not a limit point of M* leads to a con-
tradiction; hence all points of M— M* must be limit points of M*.

The set M — M* is a totally disconnected set, since if it con-
tains a connected subset s a contradiction will result as in the
preceding paragraph.

Since M* contains no ead-points of M, and since M must have
at least two end-points, all end-points of M must lie in M — M¥,
It remains to show that every point of M — M* is an end-point
of M.

Suppose there exists in M — M* a point P thal is not an end-
-point of M, then P is a cut-point of M by virtue of Theorem 7.
Hence

M—P=H, -} H,,

where H, and H; are mutually separated sets. M* is a connected
set that does not contain P, and therefore P cannot disconneet M¥.
Hence M* must lie wholly in H, or H,. say in H,. As H, can-
not contain any limit points of H;. and as all points of M — M¥
are limit points of M*, the set M — (M* - P) must be a subset of H,.

But .

M—P= M4+ M—(M*-P).
Hence, if
| H, D M* 4 M— (M* -+ P)
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H, must be a vacuous set. Thut is, M— P does not allow of divi-
sion into mutually separated sets, and is therefore connected. P ig
therefore & non-cut point of M, and by Theorem 7 an end-point
of M. This completes the proof of the Theorem, the set M — A+
being the set P, . -

The following theorem is a generalization of Theorem 13:

. Theorem 16. If M is the boundary of a complementary domain
of a continuous curve, and N a closed and connected proper subset
of M, then M— N consists of a countable set of domains with respect to M,
viz, &y, dy, dy,... satisfying the conditions of Theorem 13, except
that (1) should be made to read, ,, for every positive integer n, d, has
at most two boundary points with respect to M, ind these points be-
long to N“.

The proof is very similar to the proof of Theorem 13,

Theorem 17, The boundary of o complementary domain of a conti-
nuous curve is the sum of three mutually exclusive point-seis Sy , S, and [P),
where (1) S} is a countable set of stmple closed curves no two of which have
more than one point in common and whose inderiors have no point in com-
mon (unless one of these sumple closed  curves be the outer boundar
in the case of a bounded complementary domain), (2) S; is a coun-
table set of simple continuous ares no two of which have in common
an tnterior point of both, and (3) [P] is a totally disconnected set of
limit points of the set 8,4+ S;. |

Proof. (1) has been established in Theorem 4

Let 8 be the boundary of a complementary domain of a eon-
tinuous curve, and P a point of § — 8. That maximal connected
subset of 8— 8 determined by K I shall call a set of type Q,
provided it consists of more than one point. A set of type (, to-

‘gether with its limit points, I shall eall a set of type N.

By Theorem 11, a set of type N is a continuous carve. Furt-
hermore, it is a continuous curve that contains no simple closed

curve. For, suppose N is a set of type N that contains a simple
closed curve C. Then : '

| S;DOC
and as )
B—8,00
where @ represents that set of type Q- which determines N, then
must
N—@gDdC

Fundamenta Mathematicae VII. - ‘ 24
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That is, every point of C is a limit poim; of () that does not
belong to . .

Let d be that maximal domain with respectto § which is a sub-
set of f— ¢ and of which @ is a subset. Then every point of C
is a boundary point of d with respect to §. Clearly this is a econ-
tradiction of Theorem 16. Hence no set of type N can contain
a simple closed curve. '

Applying Theorem 15, every set of type N is the sum of a co-
untable set of ares, no two of which have in ecommon an interior
point of both, together with a totally disconnected set of limit po-
ints of these arcs. All arcs of § so determined assign to a set S,.

" The sets S, and S, are mutnally exclusive. For, suppose they
have in common a point z. Then x belongs to some are, a, of some set
N of type N, and, as determined, no points of a are end-points of
N (see proof of Theorem 15). It follows, that x is a cut-point of
N. Hence N—z is the sum of two mutually separated point-sets,
N, and N,. Both IV, and N, must contain points of ¢, the set of type
@ which determines N. But this is impossible, since @ is a connected sub-
set of 8 — S;, and hence of § — . It follows that the sets S; and §,
are mutually exclusive, and it also follows that every arc of S, is
a subset of some set of type @.

If a and b are two arcs of S,, then (1) if a and & belong to
the same set of type ¢, they bave in common no puint which is
an interior point of both, and (2) if @ and b do not belong to the
same set of type ¢ they have no points in common. It follows that
the arcs of S, are countable (as a consequence of Theorem 5).

The set of points
[P]=8—(S:+ 5)

is a totally disconnected set of points. For, if there exists a con-
nected subset, ¢, of [P], then ¢ is a subset of some set of type ¢, as

. g— 8t |
If N is the set of type N determined by this set of type @,
and [a] the set of ares common to N and S,, then N—f{a]is to-
tally disconnected by Theorem 15. But
N —[a] Dt
It follows that ¢ cannot be a connected set, and that [P] is to-

tally disconnected. '
This completes the proof of the Theorem.
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ITI. Characterizations of continuous curves, and of the bounda-
ries of the complementary domains of plane eontinuous eurves?),

In this section I shall establish a condition which continua that
are not connected im kleinen must satisfy. By means of this eon-
dition I shall characterize continuous curves for any namber of di-
mensions, and the boundaries of the complementary domains of
plane continuous curves. ‘

Lemma I If a bounded continuum M is not a continuous curve,
then there ewist two concentric circes K, and K,, and a sequence
of sub-continua of M. _ ' :

Mooa 'B[l) Miﬁ- Ma::--'-

such that (1) each of these sub-continua contains at least one point on
K, and K,, respectively, but no points exterior to K, or interior fo
K,, (2) no two of these sub-continua have a point in common, and
no two of them contain points of any connected subset of M which
lies wholly in the set K, + K, + I, (where I is the annular domain
bounded by K, and K,),(3) M, is the sequential limiting set of the
seguencé M, M, M, ...., (4) i¥ K is that mazximal sub-continuum
of M containing M, and lying wholly in the set K, 4 K, + I, then
all of the continua My, My, M, ... ., lie in a connected subset of M—K.

Proof: R. L. Moore has established conditions (1), (2) and (3)
of this Lemma 2). It remains to establish condition (4).

R, being the radius of the circle K,, Let K; and K, be two

circles concentric with K, and such that
Ee, > Rg, > B > Ry,

For every value of #, (n =100, 1, 2, 3,...) there exists a conti-
puum MZ* such that
M. M7,

and sﬁah that if in the statement of this Lemma each M, is repla-
ced by M7, K, and K, replaced by K, and K,, respectively, and
K replaced by T, statements (1), (2), and (3) hold true, but (4)

1) The theorems and lermnmas in this section were presented to the American
Mathematical Society, Dec, 29, 1922,
) A characterization of Jordan regions by properiies having no reference
to their boundaries, loe, eit.
24%
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niz;y or may not hold true. If statement (4) does hold true, the proof
is complete. If statement (4) does not hold true, let Ky and K, be
circles concentric with K, and such that

Ry, > Ry > By, > By,
For every value of*n, (n==o00, 1, 2, 3,...), there exists a conti-

nuum M, such that

M, M,

and such that if in the statement of this Lemma each M, is repla-

ced by M;, K, and K, replaced by Kj and K,, respectively, and
K replaced by W, statements (1), (2), and (3) ‘hold true, but (4)
may or may not hold true. I shall prove that (4) must hold true.

There exists an infinite sequence of distinct sets, Ly, Ly, Ly,...
such that (1) for each n. L, is a maximal connected subset of M—T,
and contains at least one set, but at most a finite number of sets
of the sequence My, M,, M;,..., (2) every set of the sequence M,,
M,, M,,... belongs to some set of the sequence Ly, L,. Ly,...

For every value of n, (n=1,2,3,...), L, has a limit point in
T, For, suppose L, is a set of this sequence that has no limit po-
int in 7. Then, since L, is a maximal connected subset of M — T,
L, is closed. L; and 1" are “then two mutually separated continua.

There exists & connected domain D, containing L;, but conta-
ining no point of 7 nor having a point of I' on its boundary.
 If 4 is a point of L, and B a point of T, then M is a con-
tinuum containing 4 and B. That is, M contains a point 4 interior
to D, and a point B exterior to D,. Then there exists a sub con-
tinuum ¢ of M, which contains 4 and at least one point x on the
boundary of D,, but no point exterior to D;.?).

z cannot belong to 7' and hence belongs to M— T furthermore
x is joined to A by a subset @ of M — T, and must therefore be-
long to L,. But no points of L; lie on the boundary of D. The-
refore the supposition that L, has no limit point in I' leads to
a contradiction. Hence every set L, (n=1, 2, 3,...) has a limit
point in T.

Not more than one set of the sequenece L, Ly, L,... has a li-

1) Cf. Anna M. Mulliken, Certain theorems relating to plane connected point-

_sets, Trans, Amer. Math, Soc.,, XXIV (1923) Th. 1.
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it point in W. For if one of these sets, say L, has a limit point
in W, then must |
Low,

and. no two of these sets have a point in eommon. We can consi-
der L, as being omitted from the sequence Ly, L,, L,,... We have,
then, an infinite sequence of connected sets, L,, L,, L,,... such
that for every n (n=1,2,3,..)), o

. M—WDL,
and L, has a limit point in T. Since T is connected, the set

U=L+L+Li+.. 4T

is a connected subset of M— W, Since every set of the sequence

M, M, M,,... belongs to some set of the sequence L,, L,, L.,
and therefore to U, condition (4) of the theorem is satisfied by the
sequence W, -.Ztr_[;,‘j-!-,, M,,... as also are conditions (1), (2), and (3),
if, as already pointed out, K is replaced by W, each M, by M,,
and K, and K, by X; and K, respectively.

Although the above proof is given for two dimensions, it should
be observed that a similar proof can be given to show that the

"Lemma holds for any number of dimensions.

Lemma 2. If ¢ and y are two points of the boundary, B, of
a complementary domain of a continuous curve, there erist at most
two distinct arcs from z to y; i. e, arcs that have in common a

~most their end-points, x and y, and if two such arcs exist every are

from x to y which belongs to § is identical with one of these arcs.

(This Lemma is a corollary of Theorem 4). . :

It has recently been shown by R. L. Moore that every two po-
ints that lie together in a connected subset of an open !) subset of
a continuous curve, lie. in a sub-continuum of that open subset 2).
Using Lemma 1, it is easy to show that any bounded coutinuum
which has this property is a continuous curve.

Theorem 18. In order that a bounded continuum M should be
@ continuous curve, it is necessary and sufficient that every two points
that lie in a connected subset of an open subset of M lie in a sub-
continuum of that open subset,

1) If L is a closed proper subset of & continuum, M, then M — L is an open
subset of M, ' o

3) R. L. Moore, Concerning continuous curves in the plane, loc. ¢it. Theorem 1.
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[The proof of this theorem for the two-dimensional case is
given below. An analogous proof may be given to show that the
theorem holds in m dimensions] ,

(1) The condition stated in the theorem is necessary, as shown

" by BR. L. Moore.

(2) The condition stated in the theorem is sufficient. For, sup-
pose M is a bounded continuum satisfying the condition stated in
the theorem, but which is not a continuous curve. Then the condi-
tions of Lemma 1 are satisfied.

Let A4 and B be two points of M, that lie in I, and let C; and
C, be two circles with centers ‘A and B, respectively, such that
(i) €, and C, have no point in common nor have their interiors
any point in common, and (ii) C; and ¢, lie wholly in I, but do
not enclose K,.

If Q, an @, denote the sets of all points of K interior to C,
and (;, respectively, let

T:K““(Q1+ @s)- 4
T is closed, and therefore M — T is an open subset of M. Since
KDOT,

all of the continua M,, M,, M, ... lie in a conneeted subset. U, of
M—T. | |

Since 4 and B belong to M, they are limit points of the se-
quence M,, M,, M,,... and therefore limit points of U. The set
U+ 4 + B is therefore a connected subset of M— T

By hypothbesis every two points that lie in a connected subset
of an open subset of M lie in a sub-continuum of that open sub-
set. Then A and B must lie in a continuum N, such that

M—TON.

Since N is a continuum containing a point 4 interior to ¢ and
a point B exterior to C,, there exists a sub-contiuum N, of N
which contains 4 and at least one point P on (), but no point
exterior to ;. Since C; lies wholly in [, and does not enclose Kj,
P is joined to 4 by a continuum of M that lies in I and must
therefore be a point of the set K, but not of the set ¢}, or the
set ¢J,. That is. P must be a point of the set T. But P also is
a point of the set’N, which is a subset of the set M — T. Hence the
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supposition that M is not a continuous curve has led to contra-
diction, and M must therefore be a contitiwous curve.

Theorem 19. In order that the boundary of a simply connected
domain should be a continuous curve, it is necessary and sufficient that
every connected subset of it be connected in the strong sense?).

4. The condition stated in the theorem is necessary. Let M be
a continuous curve which is the boundary of a simply connected
domain D, and let N be any connected subset of M. I shall show
that any two points z and y of N are the extremities of an are
that lies wholly in N. There are three cases to consider:

(1) = and y the extremities of two distinet (in the sense defined
in Lemma 2) ares, a, and a,, of M,

If N contains no arc from z to y, there exists at least one po-

“int, P,, on a,, and at least one point, P,, on a,, such that neither
P, nor P, belongs to N.

Add to N its Limit points, and ecall the resulting set N By vir-
tue of Theorem 11, N’ is a coutinuous curve, and hence contains
an arc, a, from z to y. As a result of Lemma 2 either a =a,, or
4 = a,. Suppose that a =a,. Then P, belongs to N’, but not to N.
But the set N'— P, must then contain a connected subset N, con-
taining « and y, and therefore an arc from z to y *). By Lemma
2 this arc must be the arc a,. However, the set N’ — (P, - F,)
also contains a connected subset, N, containing z and y, and henee
an arc from x to y; call this arc a;. We have, then, two distinet

ares, a; and a;, from z to y, and a third are, a,, which is identical

with neither a; nor a,.°But this is a contradiction of Lemma 2. In
this case, then, N must contain an arc from z to v.

(2) z and y the extremities of only one arc, a. of M.

In this case, if P is a point of a not belonging to N, the set
N’ — P contains an are from z to ¥ which cannot be identical with
a, thus giving an immediate contradiction of the hypothesis that M
contains only one are from x to y. In this case also, then, must
N contain an arc from z to.y.

(3) x and y neither the extremities of two distinet arcs of M,
nor of only one arc of M, but the extremities of a totality of ares,
T, such that if a;, and a, are any two arcs of I, a, and ¢, have

) A point-set M is said to be connected in the strong sense if every two

points that le in a connected subset N of M lie also in a sub-continuum of N,

2) Cf. R. L, Moore, Concerning continuous curves in the plune. loc. cit.; Th, 1.
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interior points in ecommon, and each bas interior points that do not
belong to the other.

Let F denote a set of points such that (1) if P is any point of
E, P lies on every arc of T, and (2) if P is a point that lies on
every arc of 7, P belongs to F. That such points exist, distinet
from z and y, ean be easily shown as follows: Let a, be any arc
of T. Suppose a, is any other arc of 7, and let P he a point of

'@y not on @,. P is an interior point of an are ¢, which is a sub-

set of a,, and which has in common with o, only its end-points;
call these end-points 4 and B. Either 4 is distinct from x and y
or B is distinet from x and y. Let 4 he distinet from x and .
Then A is a point of F. For, suppose 4 is not a point of F. Then
some are, as, of T, does not contain A. Let 4’ be the last point
of ay on the arc x4 of a, in the order from x to A4; on the arc
A’y of ag, in the order from 4’ to y, let B’ be the first point that
ag has in common with the point-set consisting of the arc Ay of a,
and the arc a;. That arc of a; from 4’ to B’ call ai. The set
a, + a2+ a; contains two points that are the end-points of three
distinet ares, a contradiction of Lemma 2. Therefore 4 must be
a point of F distinet from « and y. Similarly, all points common
to a; and @, are common to all arcs of T and hence belong to F.

Either N contains all points of F or it does not.

Suppose N contains all points of F. If P is any point of a,
that is not a point of F, let a, be an are of T that does not con-
tain it. In the order from  to y let 2’ be the last point @, has
in common’ with the arc P of «,, and y* the first point after o’
that a, hag in common with the arc Py of a,. Since, as shown
above, ' and y’' are points of ¥, they belong to N, and as they
are the end-points of two distinet arcs of M, the proof of case (1)
of this theorem shows that N contains one of these arcs. Similarly,
every point P of a, that does not belong to F determines two po-
ints 2’ and 3’ of F which are the end-points of an arc that belongs
to N. Let L dencte the point-set obtained hy addmg together the
points of all the-ares of the set L.

The point-set L 4 F' contains an are ¢ from & to y. This fact
can be established by showing that -+ F is a continuous curve.
L} Fis a closed set. For, (1) F is closed. If P is a limit of F,
then, since F' is a subset of «,, and a, is closed, P must helong
to a;. If ¢y is any other arc of T, P lies on for the same rea-
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son. That is, P is common to all ares of T, and hence belongs to
F. Also, (ii) all limit points of L, if they do not belong to I, be-
long to F. For, let P be a limit point of I, that does not belong
to L. Let &k be a circle of arbitrary radius » and center P, and
k' a circle of radius /2, concentric with k. %' must contain points
of an infinite set of ares of L. But since L is a subset of M and
M cannot contain an infinite set of arcs of diameter greater than

- 7/2 that have only end-points in common (Theorem 6) then must

an infinite set of ares of L lie wholly interior to k. But the end-
-points of each such arc of L must then lie interior to %, and as
the radius of k£ is arbitrary it follows that P is a limit point of
such end-points; i. e, of F. Therefore if P is not a point of L
it is a point of F. Since F is closed, and L is either closed or
those limit points that it does mot comtain belong to F, it follows
that F L is closed. As L+ F is connected and a subset of M,
L'+ F is a bounded continuum, and by virtue of Theorem 16
a continuous curve, therefore containing an arc from z to y. As L+F
is a subset of N, it follows that N contains an are from z to .
Suppose N does not contain all points of F; that is, that there exists
some point P of F that N does not contain. If, as in case (1) of
this theorem, N’ denotes the set N together with its limit points,
then N’ is a continuous curve and therefore contains an arc from
x to y; this arc must belong to T, and hence contains P. That is,
P belongs to N’, but not to N. Then N’— P contains a connected
subset, N, containing z and y, and as shown in case (1) of this
theorem must therefore contain an arc from z to y that does not
contain P. But this is impossible, since P is a point of F and the-
refore common to all arcs from « to y. Hence N must contain all
points of F, and therefore, as shown above, an are from « to y.
B. The condition is sufficient by Theorem 18. |
It will be noted that the above proof also establishes the following
theorem: | -
Theorem 20. In order that the boundary of a simply connected
domain should be a continuous curve, it is necessary and sufficient that
every connected subset of it be arc-wise ') connected.

1) A point-set M is said to be arc-wise connected when every two points

of M are the extremities of a simple continuous arc that lies wholly in M.






