un G_b). Reste la deuxième propriété. Une droite x=a rencontre P seulement dans le cas où $a \, \varepsilon \, E_1$. Si $a \, \varepsilon \, E_2$ cette droite rencontre M_n , donc elle contient pour toute valeur de n un point (a, y_n) tel que $2 - \frac{1}{n} \leq y_n \leq 2 - \frac{1}{2n}$ Donc le y-maximum de P sur cette droite aurait l'ordonnée ≥ 2 , ce qui est impossible, car P est situé d'après (4) dans la bande 0 < y < 2. On voit ainsi que la droite x = a ne rencontre pas H si $a \, \varepsilon \, E_2$ ou si a est en dehors de E_1 .

Supposons maintenant que $a \, \varepsilon \, E_1 - E_2$. La droite x = a ne rencontre alors aucun M_n c. à d. tout point (a, y) contenu dans P est situé dans K_1 . Soit y(a) la borne supérieure des ordonnées des points $(a, y) \, \varepsilon \, K_1$. Supposons, que le point (a, y(a)) n'appartient pas à l'ensemble P. Il existe alors une suite $\{y_k\}_r \, k = 1, 2 \dots$ telle que:

(5)
$$y_{k} < y_{k+1}; \quad \lim_{k \to \infty} y_{k} = y(a); \quad (a, y_{k}) \in K_{1}.$$

Ces relations entraînent en vertu de la définition de K_1 :

(6)
$$0 < y_k \le 1; \quad 0 < y(a) \le 1; \quad a = f(y_k).$$

Donc, f(y) étant continue du côté gauche pour $0 < y \le 1$:

(7)
$$f(y(a)) = \lim f(y_k) = a$$

(8)
$$(a, y(a)) = (f(y(a)), y(a)) \varepsilon K_1 \subset P,$$

contrairement à la supposition. Donc $(a, y(a)) \varepsilon P$. Mais, d'après la définition de y(a), c'est un y-maximum de P, donc un point de H. C à d.: Si $a \varepsilon E_1 - E_2$, alors la droite x = a rencontre H.

Les considérations précédentes montrent que $E_1 - E_2 = E$ est la projection de H sur l'axe des abscisses, c. q. f. d.

Une propriété des continus de M. Knaster.

Par

Paul Urysohn +.

M. Brouwer à introduit dans la science mathématique les continus indécomposables.

M. Knaster a donné ensuite un exemple d'un continu indécomposable dont tout sous-continu est lui aussi indécomposable. Nous appellerons continu de M. Knaster tout continu jouissant de cette propriété.

On pourrait introduire dans le même ordre d'idées la notion d'un semicontinu 1) indécomposable: nous entendons par là un semicontinu S qui ne peut être représenté comme somme de deux semicontinus S_1 et S_2 dont aucun ne coıncide avec S tout entier.

Le but de cette note est de démontrer la propriété suivante des continus de M. Knaster:

Tout semicontinu agrégé à un continu de M. Knaster est indécomposable.

Soit S un sémicontinu quelconque agregé à un continu K de M. Knaster. Supposons qu'on ait

(1)
$$S = S_1 + S_2, S_1 \neq S \neq S_2,$$

où S_1 et S_2 sont des semicontinus. Il résulte de (1) qu'on peut trouver deux points a et b tels que

(2)
$$a \subset S_1 - S_2, b \subset S_2 - S_1.$$

1) Nous entendons dans cette note par un sémicontinu un ensemble S non fermé et tel qu'il existe pour tout couple de points x, y de S un continu C_{xy} vérifiant l'inclusion:

$$x + y \subset C_{xy} \subset S$$
.

icm

Soit $C_1 \subset S$ un sous-continu de S contenant les deux points a et b. S n'est pas fermé, l'ensemble $S - C_1$ est donc non vide; soit d un point de cet ensemble. Le point d appartient à l'un au moins des semicontinus S_1 , S_2 ; supposons, p. ex., que $d \subset S_1$.

Considérons maintenant un sous-continu C_2 de S_1 joignant les deux points a et d:

$$(a+d)\subset C_2\subset S_1$$
,

et posons

$$C = C_1 + C_2$$

C est un continu (puisque C_1 . $C_2 \supset a \neq 0$).

Aucun des deux continus C_1 et C_2 ne coïncide avec C (puisque $b \subset (S_2 - S_1)$. $C_1 \subset (S_2 - C_2)$. C_2 et $d \subset C_2$. $(S - C_1)$).

Il en résulte que C est décomposable, contrairement à notre supposition. Notre proposition se trouve démontrée.

Sur un problème conduisant à un ensemble non mesurable.

Par

W. Sierpiński (Varsovie).

Considérons toutes les fonctions d'une variable réelle x qui ne sont pas constamment nulles. Divisons ces fonctions en paires, en rangeant dans une même paire deux fonctions qui ne différent que par leur signe: soit P l'ensemble de toutes ces paires.

Le but de cette Note est de démontrer que si l'on savait nommer un ensemble N contenant une et une seule fonction de chaque paire appartenant à P, on saurait aussi nommer un ensemble non mesurable au sens de M. Lebesque.

Supposons que nous savons nommer un ensemble N contenant une et une seule fonction de chaque paire appartenant à P.

Soit a un nombre irrationnel donné. Quels que soient les nombres rationnels r et r', il ne peut être jamais r+a=r'-a (puisqu'il en résulterait que a est rationnel, contrairement à l'hypothèse). Par conséquent on peut définir une fonction $f_a(x)$ d'une variable réelle x par les deux conditions suivantes:

- 1) quel que soit le nombre rationnel r, on a $f_a(r+a)=1$ et $f_a(r-a)=-1$,
- 2) si x est un nombre réel qui n'est pas de la forme $r \pm a$, où r est un nombre rationnel, on a $f_a(x) = 0$.

Désignons maintenant par E l'ensemble de tous les nombres irrationnels a, tels que la fonction $f_a(x)$ appartient à l'ensemble N. Je dis que l'ensemble E est non mesurable (L).

A ce but nous prouverons d'abord la propriété suivante de l'ensemble E. Quels que soient le nombre rationnel ϱ et le nombre irrationnel ξ , de deux nombres $\varrho + \xi$ et $\varrho - \xi$ l'un appartient toujours à E et l'autre à CE.

12