two subcontinua of M. Hence Y is not a continuum of order two of M, contrary to what we have just shown. Thus the supposition that G is not countable leads to a contradiction. In conclusion I will point out the following interesting fact concerning regular subcontinua of a continuum. Let G be any collection of mutually exclusive subcontinua of a bounded continuum M (in n-space) each of which is a regular subcontinuum of M relative to G. Then if T denotes the point set obtained by adding together all the point sets of the collection G, it is readily seen that each component of M-T is closed, and hence is a bounded continuum. And if E denotes the collection of all continua [X] such that X is either an element of G or a component of M-T, then with the aid of a theorem of M enger's 1) it follows that all the continua of E are regular subcontinua of E are regular subcontinua of E are elements, E and hence with respect to the continua of E as elements, E is a E and E is a E and E is a E in E and E is a E in E and E is a E in E in E in E in E and E in E is a E in i The University of Texas. ## On a problem of Menger concerning regular curves 1). Ву ## J. H. Roberts (Austin, U. S. A.). In his paper Zur allgemeinen Kurventheorie²) Karl Menger raised the following question: If M is a regular curve³) is it true that for every positive number ε the curve M is the sum of a finite number of continua of diameter less than ε such that any two have at most one point in common? The purpose of the present paper is to give an example which shows that the answer to Menger's question as stated is in the negative, but that for a regular curve M whose ramification points ') are not dense on any subcontinuum of M the answer is in the affirmative. - 1) Presented to the Amer. Math. Soc., Dec. 28, 1928. - 2) Fundamenta Mathematicae, vol. X (1927), pp. 96-115. - ³) See Menger, Grundzitge einer Theorie der Kurven, Math. Ann. vol. 95 (1925), pp. 287—306. If M is a continuum and for each point P of M and each positive number ε there exists a connected open subset of M containing P and of diameter less than ε whose boundary with respect to M is finite then M is said to be a regular curve. If R is an open subset of M (i. e., no point of R is a limit point of M-R), then the boundary of R with respect to M is the set of points R. (M-R). See R. L. Moore, Concerning simple continuous curves, Trans. Amer. Math. Soc., vol. 21 (1920), p. 345. - 4) A ramification point of a continuous curve M is a point of order greater than 2. See W. Sierpiński. Comptes Rendus, vol. 160, p. 305. A point P of a regular curve M is said to be of order n if n is the smallest integer such that for every positive number ε there exists an open subset of M of diameter less than ε which contains P and whose boundary with respect to M contains at most n points. See Menger, loc. cit., and Urysohn, Comptes Rendus, vol. 175, (1922), p. 481. ¹⁾ K. Menger, loc. cit., Theorem 8. Let R_1 be the interior of a square ABCD. Let r_{11} be the rhombus such that P_{11} and Q_{11} , the mid points of AB and CD, respectively, are opposite vertices, and the angles of r_{11} at P_{11} and Q_{11} are $\pi/4$. Let M_1 be the point set R minus the points of R in r_{11} plus its interior. Clearly M_1 is the sum of two mutually exclusive domains, R_{21} and R_{22} , whose boundaries have just P_{11} and Q_{11} in common. The domain R_{2i} is bounded by a simple closed curve $A_{2i}B_{2i}C_{2i}D_{2i}$ where $A_{2i}B_{2i}$ is the sum of two sides of the rhombus r_{11} and the arcs $B_{2i}C_{2i}$, $C_{2i}D_{2i}$, and $D_{2i}A_{2i}$ are straight line intervals (i=1,2). Let P_{2i} and Q_{2i} be the mid points of the arcs $A_{1i}B_{2i}$ and $C_{2i}D_{2i}$, respectively, and let r_{2i} be the rhombus with P_{2i} and Q_{2i} as opposite vertices and whose angles at P_{2i} and Q_{2i} are equal to $\pi/4$ 2. Let M_2 be the point set M_1 minus the points of M_1 in r_{21} and r_{22} plus the interiors of r_{21} and r_{22} . Clearly M_2 is the sum of 2^2 mutually exclusive domains R_{31} , R_{32} , R_{33} , and R_{34} . For each i ($i \leq 4$) R_{3i} is bounded by a simple closed curve $A_{3i}B_{3i}C_{3i}D_{3i}$ such that $A_{3i}B_{3i}$ is the sum of two sides of the rhombus r_{2j} (j = 1 or j = 2), and each of the arcs $B_{3i}C_{3i}$, $C_{3i}D_{3i}$, and $D_{3i}A_{3i}$ is a straight line interval. Let P_{3i} and Q_{3i} be the midpoints of $A_{3i}B_{3i}$ and $C_{3i}D_{3i}$, respectively, and let r_{3i} be the rhombus with P_{3i} and Q_{3i} as vertices and with angles at P_{3i} and Q_{3i} equal to $\pi/4$ 3 ($i=1,\ldots,4$). Let $M_{\rm s}$ be the point set obtained by taking from $M_{\rm s}$ all points which belong to $\stackrel{4}{\Sigma}$ ($r_{\rm s}$, plus its interior). Continuing in this manner one can build up an infinite sequence of distinct rhombi, r_{11} ; r_{21} , r_{22} ; ...; r_n , r_{n2} , ..., r_{n2}^{n-1} ; ... with the following properties: (1) r_{11} is defined as above, (2) for each n and i (n > 1, $i \le 2^{n-1}$) the interior of r_{ni} lies in some component R_{ni} of M_{n-1} , where M_{n-1} is the point set obtained by taking from R every rhombus r_{mk} plus its interior, where $k \le 2^{m-1}$, $m = 1, 2, \ldots (n-1)$, (3) R_{ni} is bounded by a simple closed curve $A_{ni}B_{ni}C_{ni}D_{ni}$ where $A_{ni}B_{ni}$ is the sum of two sides of the rhombus $r_{n-1,k}$ for some value of k and the three arcs $B_{ni}C_{ni}$, $C_{ni}D_{ni}$ and $D_{ni}A_{ni}$ are straight line intervals; P_{ni} and Q_{ni} denoting the mid points of $A_{ni}B_{ni}$ and $C_{ni}D_{ni}$, respectively, the rhombus r_{ni} has P_{ni} and Q_{ni} as opposite vertices and has the angles at P_{ni} and Q_{ni} equal to $\pi/4n$. Let M be the set of all points common to $\overline{M_1}$, $\overline{M_2}$,... Obviously M is a regular curve, every point of which is of order greater than 2 (but not greater than 6). It is also readily seen that M is the sum of two continua N_1 and N_2 such that N_1 . $N_2 = P_{11} + Q_{11}$ and both N_1 and N_2 are strongly equivalent.) to M. The curve M contains no cut point, and contains just one pair of points which cuts it. Suppose $M = \sum_{i=1}^{\infty} a_i$ (n > 1) where a_i is a nondegenerate 2) continuum and a_i , a_j is vacuous or a single point $(i, j \le n, i + j)$. Let K denote the set of all points common to two continua a_i and a_j (i + j). Since N_1 and N_2 have two points in common and $N_1 + N_2 = M$ it follows that N_{i_1} $(i_1$ equals 1 or 2) contains points distinct from P_{11} and Q_{11} of at least two continua of the set $a_1, a_2, \ldots a_n$. If no one of the continua a_1, a_2, \ldots, a_n contains both P_{11} and Q_{11} it is easily seen that a_i , N_{i_1} is a continuum, or is vacuous. Let $a_{21}, a_{22}, \ldots, a_{2m_1}$ $(2 \le m_1 \le n)$ be the sets $a_1, N_{i_1}, a_2, N_{i_1}, \ldots, a_n, N_{i_1}$, which contain more than one point. If a_i contains both P_{11} and Q_{11} then a_i , N_{i_1} is the sum of at most two continua with no point ¹⁾ Obviously the point P_{2l} is a vertex of r_{11} . ¹⁾ A plane point set N is said to be strongly equivalent to the plane point set M provided there exists a continuous transformation of the plane into itself which throws N into M. ²⁾ A point set is said to be degenerate if it consists of but a single point. in common. In this case call these two continua a_{21} and a_{22} , and let a_{23}, \ldots, a_{2m_1} be the other continua $a_1 . N_{i_1}, \ldots, a_n . N_{i_n}$. Let K_1 be the set of all points a_{2i} . a_{2j} $(i, j \le m_1, i \ne j)$. Obviously K_1 is a subset of K. Suppose P_{21} and Q_{21} are the points of N_{i_1} which correspond to P_{11} and Q_{11} under a continuous transformation which throws N_{i_1} into M, and let N_{21} and N_{22} be the continua such that $N_{21}+N_{22}=N_{l}$, and N_{21} . $N_{22} = P_{21} + Q_{21}$ and both N_{21} and N_{22} are strongly equivalent to M. Then one can readily see that either for i equal to 1 or 2 (for convenience suppose 1) $N_{31} = \sum_{i=1}^{m_2} a_{3i}$ where (1) $m_2 > 1$, (2) a_{3k} is a nondegenerate continuum, (3) a_{3k} . a_{3s} is either vacuous or is a single point $(k, s \leq m_2, k + s)$ and (4) K_2 , the set of all points a_{3k} . a_{3s} $(k, s \leq m_2, k \neq s)$ is a subset of K_1 . Continuing this process one obtains a curve N_{kl} strongly equivalent to M which contains only one point of K (since the diameter of N_k approaches zero as k increases indefinitely), but which is the sum of two or more nondegenerate continua $a_{k1}, a_{k2}, \ldots, a_{km_k}$ such that $a_{ki} \cdot a_{ki}$ is vacuous or is a single point, and the set of all such points belongs to K. But N_{kl} contains no cut point, and contains only one point of K. Hence $N_{ki} - N_{ki}$. K is connected, and we have reached a contradiction. Theorem I1. If M is a compact regular curve and the ramification points of M form a null dimensional 2) set then for each positive number ε M is the sum of a finite number of continua of diameter less than E, the common part of any two of which is vacuous or a single point. **Proof.** Let ε_1 be $\varepsilon/4$. By a theorem of Menger 1) $M = \hat{\Sigma}a_i$, where a_i is a continuum of diameter less than ε_1 and a_i , a_i is finite $(i, j \le k; i \ne j)$. Let F be the finite point set $\sum a_i \cdot a_j (i, j \le k; i \ne j)$ and suppose $F = P_1 + P_2 + ... + P_n$. Let ε_2 be the smallest of the numbers $\delta(P_i, P_j)^2$ $(i, j \leq n; i \neq j)$. Clearly $\varepsilon_2 \leq \varepsilon_1$. Since the ramification points of M form a null dimensional set it follows that for each i for which the point P_i is a ramification point of M there exists a closed subset F_i of M of diameter less than $\varepsilon_2/4$, every point of which is of order 1 or 2, which separates P_i from P_i in M $(i, j \le n; i + j)$. For each point Q of F_i there exists a domain D_Q of diameter less than $\varepsilon_2/4$ such that (1) D_Q contains Q, (2) the boundary of D_Q contains not more than 2 points of M, and (3) $M.\overline{D}_Q$ is a continuum. Let $D_{i1}, D_{i2}, \ldots, D_{ik_l}$ denote a finite set of such domains covering F_i . In case P_i is of order 1 or 2 let D_{ii} be a domain containing P_i of diameter less than $\varepsilon_2/4$ and with properties (1), (2) and (3) as stated above. Clearly D_{ii} and D_{km} have no point in common if $i \neq k$. The closed point set $M = \sum_{i=1}^{n} \sum_{m=1}^{n} M \cdot D_{mi}$ is 3) the sum of a finite number of mutually exclusive continua of diameter less than 2 &1, b_1, b_2, \ldots, b_r . Let c_1, c_2, \ldots, c_s denote the set of all continua $M.\overline{D}_{ij}$ $(j \leq k_i, i \leq n)$. If c_i and c_j have at least two points in common their sum has but two boundary points with respect to M. Hence it follows that there exists a set of continua $c_1', c_2', c_3', \ldots, c_{s'}'$ each two having at most one point in common and such that (1) $\sum_{i=1}^{s'} c'_i =$ $=\overset{\circ}{\Sigma}c_i$ and (2) c_i' has at most two boundary points with respect to M $(i \leq s')$. If for some integer j there exists an integer i such that b_j and c_i have two points in common, then let d_j be the sum of b_j and c_i' . Otherwise let d_j be the same as b_j . Let d_{r+1}, \ldots, d_t be the continua $c_1', c_2', \ldots, c_{s'}'$ which do not belong to $\sum_{i=1}^{s} d_i$. Since d_i is ¹⁾ I have proved the following theorem: If M is a compact regular curve and (1) only a countable number of points of M are of order greater than 2 or (2) only a finite number of points of M are of order greater than 3, then for each positive number e M is the sum of a finite number of continua of diameter less than e, the common part of any two of which is at most one point. In a discussion of this theorem and its proof, G. T. Whyburn raised the question as to whether or not the proposition herewith stated as theorem I holds true. The proof here given of the truth of this proposition is a slight modification of my original proof of the theorem stated above. ²⁾ Both Urysohn and Menger have shown that a set K is null dimensional if and only if for every point P of K and every positive number s there exists a closed subset F_{P_E} of M of diameter less than ε such that $M - F_{P_E} = M_P + M_Q$, where M_P contains P and is of diameter less than e, and M_{Pe} and M_0 are mutually separated sets. See Urysohn, Sur les multiplicités Cantoriennes, Fund. Math. vol. 7 (1925) and Menger, loc. cit. ¹⁾ Loc. cit. ²⁾ The symbol $\delta(P,Q)$ should be read "the diameter of the point set P+Q". ³⁾ This follows from the fact that its boundary with respect to M is finite. Concerning either an element of the set $b_1, b_2, \ldots, b_r, c'_1, \ldots, c'_{s'}$, or is the sum of two such elements, and furthermore $\delta(b_i) < 2\varepsilon_1$ and $\delta(c_i) < \varepsilon_2$ where $\varepsilon_2 \leq \varepsilon_1 < \varepsilon/4$, it follows that $\delta(d_i) < \varepsilon$. Since in addition $M = \sum_{i=1}^{t} d_i$ and $d_i \cdot d_j$ is at most one point $(i, j \leq t; i \neq j)$ it follows that the theorem is established. In his paper On regular points of continua and regular curves of at most order n^{1}) G. T. Whyburn proves the following Theorem B. If for the closed subset N of a continuum M there exists an integer n such that the set K of points of N which are points of order $\leq n$ of M and which locally separate 2) N in M is dense in N, then the points of M of order $\leq n/2 + 1$ are dense in N. This theorem will be used to help establish the following Corollary to theorem I. If M is a compact regular curve and the set of points of M of order greater than 3 is not dense on any subcontinuum of M then for each positive number ε M is the sum of a finite number of continua of diameter less than ε , the common part of any two of which is at most one point. **Proof.** Let H denote the set of points of M of order greater than 3, and let N denote any subcontinuum of M. Since by hypothesis H is not dense on N it follows that N contains a continuum N_1 which contains only points of order not greater than 3 of M. Now it is easily proved that every subcontinuum K of a regular curve M contains a dense set of points each of which locally separates K in M. Therefore by theorem B the continuum N_1 contains points of M of order 2 or 1. Hence R the set of points of M of order greater than 2, is punctiform (i. e., contains no continuum). And since by a theorem of M enger's 3) R is an F_{σ} (i. e., the sum of a countable number of closed sets), it follows by a theorem rem of Mazurkiewicz¹) that R is homeomorphic with some linear set. Therefore, since R is punctiform, it is ²) null dimensional ³). I have therefore shown that the set of points of M of order greater than 2 is null dimensional, whence the conclusion of the corollary follows from theorem I. The University of Texas, March 30, 1929. ¹⁾ Bull. of the Amer. Math. Soc., vol. 35 (1929). ²⁾ The point P of a continuum M will be said to locally separate a given subset N of M in M if there exists a compact neighborhood G of P such that if R is any neighborhood of P lying in G, then $M \cdot \overline{R} - P$ is separated between some two points of $N \cdot R$, i. e., $M \cdot \overline{R} - P = M_1 + M_2$, where M_1 and M_2 are mutually separated and $M_1 \cdot N \cdot R \neq O \neq M_2 \cdot N \cdot R$. See Whyburn, loc. cit. ³⁾ Loc. cit. ¹⁾ S. Mazurkiewicz, Bulletin de l'Académie des Sciences de Cracovie, 1913. ²⁾ Cf. W. Sierpiński, Sur les ensembles connexes et non connexes, Fund. Math. vol. 2 (1921), p. 89. ³⁾ The last two sentences are copied from Whyburn's proof of his theorem 5, loc. cit., which reads as follows: In any regular curve M of at most order n, the set H of points of order > n/2 + 1 is null dimensional. In view of the above argument it is clear that a slight addition to Whyburn's argument proves the following more general theorem: If the points of a regular curve M of order > n are not dense on any subcontinuum of M then the set H of points of M of order > n/2 + 1 is null dimensional.