Continuous curves homeomorphic with the bound-
ary of a plane domain.

By
W. L. Ayres?) (Vienna).

In a recent conversation Professor C. Kuratowski suggested
to me the problem of characterizing by interior properties those
continuous curves which may be topologically transformed into the
boundary of a plane domain. R. L. Wilder?) has shown that if
a continuous curve M is the boundary of a plane domain, then no
two simple closed curves of M have more than one point in common.
This property is easily seen to be a homeomorphic invariant, and
Professor C. Kuratowski suggested the question as to whether
every continuous curve having this property is homeomorphie with
the boundary of a plane domain. In this note we shall show that
such is the case. The condition that no two simple closed curves
of M have more than one point in common-may be stated in two
other equivalent ways: (a) M contain no f-curve, (b) every maximal
eyclic curve of M be a simple closed curve. A f-curve is a set
consisting of three arcs with common end points and no two having
any other point in common. We shall prove the following

Theorem. In order that a compact continuous curve M be homeo-
morphic with a plane continuous curve which is the boundary of one
of its complementary domains it is mecessary and sufficient that every
mazximal cyclic curve of M be a simple closed curve.
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It is seen that this theorem contains as a special case the Wa-
zewski-Menger-Gehman theorem 1) that every acyclic contin-
uous curve is homeomorphic with one in the plane. From the
method of proof of our theorem it may be seen that the plane
domain, with whose boundary M is homeomorphic, may be taken
as bounded except in the case where M is acyclic. The necessity
of our condition follows from the theorem of R. L. Wilder and
the topological invariance of this property. In proving the sufficiency
we shall make use of two lemmas:

Lemma 1. If = and y are two points of a continuous curve M in
which every mazimal cyclic curve is a simple closed curve, then the
arc-curve M(zt-y) [i. e the sum of all the arcs xy contained in M|
consists of an arc xy together with a countable set of arcs a by, asb,,
agby,... such that

1) (arc a,b)). (arc a;b) C (a, -+ b) (o, + ), (G F2),
2) [arc zy]. [(E are a;b] = 3(a,+ b)),

3) the subarcs a;b, and a;b; of the arc zy (i=Ej) have at most
an end point in common.

Lemma 2. A compact continuous curve M contains a countable
set of poinls @y, Y, Tg, Ys,... such that (1) every point of M is either
an end point of M or a point of one of the arc-curves M(z - y.),

(2) for any positive integer n, the set Z"M(x‘—i—y,) is a comtinuous
im]l

curve M,, (3) M, has just one poini in common with the arc-curve
M(%.iy+Y.yy) and this is either the point 2,y or Y., (4) for any
>0 there exists an infeger n* such that for n>n* the set M—M,
contains no component of diameter > &

The first lemma follows easily out of the properties of the arc-
curves %) and the second may be proved in much the same manner
as a theorem of R. L. Wilder's of which it is an analogue 3).

1) T. Wazewski, Sur les courbes de Jordan ne renfermant aucune courbe
fermde de Jordan, Ann. Soc. Pol. de Math, vol. 2 (1923), pp. 49—170; K. Men-
ger, Uber regulire Baumkurven, Math, Ann., vol. 96 (1926), pp. 572—582;
H. M. Gehman, Concerning acyclic continuous curves, Trans. Amer. Math. Soc.,
vol. 29 (1927), pp. 553—b68.

3) W, L. Ayres, Concerning the arc-curves and basic sats of a continuous
ourve, Trans, Amer. Math, Soc., vol. 30 (1928), pp. 567—578.

%) R. L. Wilder, loc. cit., p. 365.
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Proof of the theorem. Consider the set of points, @, ¥, , 25, ¥y ..,
of M given by Lemma 2. By Lemma 1,

M(2, +) = arc g, +Zam @y by
i

Let I, be the interval from (1,0) to (0,0) in a plane E,, and let
® be a homeomorphism between the are z,%, and the interval I,.
In the plane E, on each of the subintervals ®(a,,), D(b,) as base
construct an equilateral triangle 4,,, We define a homeomorphism
between the arc a,.b;, and that arc of 4, from @(a,,) to D(b,,) that
does not belong to I, so that a;, and @(a,) and b,, and B(3,,) cor-
respond, and call this correspondence @ for the arc a,,b,,. Then
O is a homeomorphism so that

B(Ma,+y) = L + J'4= ;.

M(2y+y,) has either x, or y, in common with M, and we may
suppose that it is x,. Let D, be a triangle in , having ®(x,) as
ome vertex, of diameter <{4}, whose interior contains no point of
N, and which lies except for ®(z,) in the unbounded complemen-

tary domain of N,. Let I, be an interval which lies within D,

except for one end point @(z,). We have
Mz + ) = are a3y, + Y'arc aydy,
i

Take any homeomorphism between the arc z,y, and the interval
I, so that z; and ®(z,) correspond and call this @. On each sub-
interval @(a,,), @(b,) of I, as a base construct an isosceles triangle
4y, with altitude less than d(®D(a,,), D(b,,)) and lying wholly within D,.
As above we define @ for the arcs a,b,,. Then

OM) =N, + 1, + Y4 =N,

Continue this process. Mz, +v,). M, , ==z, or Y 83y @,. Let
D, be a triangle such that d(D,) << 1/2%, (N,_, —{-S'-TD,).(D,, -} inte-
{m3

rior D,) = ®(z,) and D, lies inside those triangles D,(i<<n) which
O(z,) is inside and only those. Let Z, be an interval which lies
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ingide D, except for one end point &(z,). We have.

Mz, + y,)=arcz,y, +2‘arc @by

i
Let @ be a homeomorphism between the arc ,y, and the in-
terval I, as before so that z, and the point previously defined as
®(x,) correspond. On each subinterval @(a.), DP(b.) as'a base con-
struct an isoseeles triangle 4,; lying within D, and having altitude
less than d(®P(a,), @(b,)). Define @ for the ares a,ub,, as before.
Continue this process indefinitely unless for some n,

M= I'¥(x+y)
Tl
In this case it is obvious that M is homeomorphic with N..
In the other case we may show, following the methods due to

H. M. Gehman ), that the correspondence @ between §M(x‘+y‘)
i=1

and XN, is uniformly coatinuous. Hence & may be extended to
fm]

a 1—1 bicontinuous correspondence between I M(z,+y)= M
. i
and SN =N
1

From the construction we see that N is a continuous curve and
is the boundary of the unbounded complementary domain of N
If it is desired to have N the boundary of one of its bounded
complementary domains it is only necessary to invert the plane
with center inside one of the triangles 4,.

1) loc. cit., pp. 553—5356.
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