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une coupure enire p et 1— E'1). Or, en s'appuyant sur le.théor. g ot le théor.
de Janiszewski, on proave facilement?) que tout continu Péanien qui est une
coupure entre denx points contient une courbe simple fermée qui est aussi une
coupure entre ces points, Il existe donc une courbe simple fermée S qui est une
coupure entre p et 1 — E. La région-composante B de 1-~S qui contient p est
bien la région demandde, car R(l —FE)=0, donc R E ot solon le théor, de
Jordan, S constitue la frontiére de R.

1) ibid. p. 809, proposition 4,/.
3 of, ma note de Fund. Math, VI, p. 140.
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On the set of all cut points of a continuous curve.
By
G. T. Whyburn (Austin, U. 8. A).

In this paper ‘it will be shown that as a consequence princi-
pally of the author's results on the structure of a continuous curve
relative to its cyclic elements it follows that the set of all cut points
of any continuous curve in a metric space is homeomorphic with
a certain kind of subset of an acyclic continuous curve. It is also
shown, conversely, that a subset of this kind of any acyclic conti-
nuous curve is always identically the set of all cut points of some
continuous curve. Thus we obtain a complete characterization of
a point set which is topologically equivalent to (i. e, homeomorphie
with) the set of all cut points of a continuous curve. Incidentally,
the results in this paper answer, indeed more tban answer, a ques-
tion raised by C. Zarankiewiez in the Bulletin de I Académie
Polonaise des Sciences et des Letires, 1926, p. 362.

The customary notation and terminology of point set theory will
be used; S(P,r) will denote the set of all points of the space whose
distance from the point P is less than the number #, (M) denotes
the diameter of the set M, o(X,Y) is the minimum distance bet-
ween the sets X and Y, a continuous curve is a compact connec-
ted im Kleinen continuum, ete. For definitions of the terms used
in connection with the cyclic elements of a continuous curve the
reader is referred to my paper Concerning the structure of a conti-
nuous curve, (American Journal of Mathematics, vol. 50, April, 1928,
) 67—194). This paper will be referred to simply as , Structure”.

Let W @enote the universal acyclic continuous curve of Wazew-
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skil), let C(W) denote the set of all cut points, E(W) the set
of all end points, and R(W) the set of all ramification points of W.
It is well known that R(W) is countable and dense on every sub-
continuum of W. We proceed now to show that.

@). The set .G of all the cut points of any continuous curve M
whatever is homeomorphic with a subset K of C(W) such that (a) if
A and B are any two points of K and AB is the arc of W from
A to B, then K-AB is the sum of closed set and a countable set, and
(b) K containe the center point?) in W of every group of three
points of K. ’

Proof. There exists a finite or countably infinite sequence
81y 8, Ss, ... of simple eyclic chains of M such that

(1) both end elements of S, are nodes of M,

" () if > 1, one end element of S, is a node of M and the
other is a cut point of M which belongs to an interior element of
some chain S, where m << a, :

(8) if ¢ and j, i <Cj, are two positive integers, then either S, and
§; are mutually exclusive or else they have in common just one
point A; which is a cut point of M and is one end element of §,

(4) Lim d(S,)==0, and

(5) ;;::-y point, if any, of M — 3§, is an end point of /®).
By (1) it follows that the end elements of S, contain non-cut points
4, and B, respectively of M. For each n > 1, it follows by (2)
that the end element of S, which is a node of M contains 5 non-
cut point B, of M. For each #n > 1, let 4, be the end element of
S, which is a cut point of M. Now for each m, S, contains an are
t, from 4, to B, (see Structure, Theorem 8). For each u, let K, be

1) See T. Wasewski, Sur les courbes de Jordan ne renfermant aucune courbe
simple fermée de Jordan, Aunn. Soc. Polon. Math, Cracovie, 1928, vol. 2. p. 49
Also see Menger, Fund. Math. vol. 10, p. 108,

*) By the center point 0, relative to an acyclic curve W, of three points
4, By and C of W is meant the point 0 of W which is the lmit point in 4B
of the component of M— AB which contains C, when C is not on AB, and Q== C
if CC 4B.

!) This statement is proved on the busis of the results in Structure by a me-
thod essentially the same as that outlined in the proof of Theorem 2 in my pa-
per Concerning Menger regular curves (Fund, Math,, vol. 12 (1928), pp. 264—294:
also see R. L. Moore, Monatsheften fiir Math. u, Phys, vol. 86 (1929), p. 86,
and W. L. Ayres Are-curves and basic subsets of u continuous ourve, Sscond
poper; Trans, Amer, Math. Soc., vol. 30 (1929), pp. 696612, Lemma 15A.
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the set of all those points of M which separate 4, and B, in M,
and let 0, be the set of all those points of K, each of which cuts
M into three or more components.

Let Uy and ¥, be points of E(W) and Z, the arc in W from
Uy to V;. Now since B(W) is dense on Z, and!) I, is countable,
it follows by a theorem of Fréchet-Urysohn? that there exists
a biunivalued and bicontinuous transformation J, of # into Z, such
that Jy (D) CR(W). Now for esech maximal cyclic curve O,
(i=1,2,3,...) of M belonging to S, and containing two points
X, and Y3, of K, (where we have the order 4,, Xy, Yy, B, on #,),
then since (7.C, is countable it follows readily with the aid of
a theorem of Sierpinski's®) together with the Fréchet-Ury-
sohn theorem just used that there exists a biunivalued and bicon-
tinuous transformation .Jy, of & (), into a subset Jy,(G - C,) of the
interval of Z; from Jy(Xy) to J,(¥;) so that J,(G - Cy) C R(W),
Sy (X)) =J, (Xy), and Jy(¥Yy)==J,(Yy). We now define a trans-
formation 7\ over G 8, as follows: if X is a point of @S, belonging
to Ky, let 73(X)==J,(X); if X does not belong to K, it belongs
to Cy, for some 7, and we let T)(X) = Jy,(X); if X belongs both
to K, and to some Cy, then it is an X, or a ¥, and hence
Ju(X) =J,(X) == 7y (X). Thus it is easily seen that 7} as thus
defined is biunivalued and bicontinuous. :

Now for n > 1, I shall define a transformation 7, over G -8,
aceording to the following procedure. By (2), 4, is a point of
G- 8,, for some m < n, and hence there exists a point 7,(4,)
in . And since clearly .4, belongs to D,,,—I—?’Om,-, where C,,,

i==1,2.3,..., is the collection of those maximal cyclic curves of
M belonging to 8, and containing two points of K, +4,,,, th-en
Ty (A) C R(W). Since each point of E(W) is a ramification point
of infinite order of W, it follows thgt W contains an arc Z, having
one end point 7,(4,) and the other in (W) and such that

Zy— T(A,)]- S % =0 and 8(Z,) > 6(N,) — 1/n, where N, is the
fm=]

1) See Kuratowski and Zarankiewicz Bull. Amer. Math. Soc, vol. 33
(1927), p. 571.
) =§’ Cf.'M. Fréchet, Math. Ann., vol. 68 (1910), p. 169, and P. Urysohn,

Fund. Math,, vol. 7 (1926), p. 88.
) Of. W, Bierpifski, Fund, Math, vol. 2. p. 89.
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component of W——S‘lz, containing Z, — T, (A,). It follows now just
1

as in the case of n==1 that biunivalued transformations J, and
J,, exist such that J,(t,) = Z,, J.(4,) = Tn(4s), Js(Dn) CR(W),

and if [C,] is the collection of all those maximal cyclic curves of

M which belong to S, and contain two points X,, and ¥, (in the
order 4,, X, Yoy, B, on t,), of K, 4 4,, then J,,(G - C,) belongs
to the interval of Z, from J,(X,) to J,(¥.), Ju(G - Cu) C B(W),
T (X =Jy(X,) and J,(¥,) = J, (¥, for i=1,2,3,... We now
define the transformation 7}, over G'-.S, as follows: 7,(4,) = T),(4,),
T,(X) = J,(X) if X belongs to K,, and 7,(X) = J,(X) if X be-
longs. to %’ C,. It follows just as in the case of 7} that 7, is bi-

univalued and bicontinuous.

We now define the transformation 7' over G as follows: for
each point X of @, by (4) it follows that there exists a smallest
integer # such that X belongs to G- 8,; so for each point X of G,
let T(X)==T,(X), where n is the least integer such that X belongs
G- 8,. It is clear from the way the transformations 7), were defined
that 7 is biunivalued. That 7' is bicontinuous is readily .established
with the aid of the following ’

Lemma on transformations. Suppose [H,),n=1,23, ..
is a sequence of point sets and [T,] is a corresponding sequence of
univalued transformations such that

a) for each n, T, is defined and continuous on H,,

b) for each pair of integers i and j, T\,(H,- H)= T (H,- H)

¢) Lim 0[T,(H,)]==0, and ‘

d) if for each point P of H—=3H,, H, is the sum of all thos
sets [H,] of [H,] which contain P, and X, X,, X,,... i8 any se-
quence of points in H — H, having P as sequential limit point, then
there exists a corresponding sequence of points Y, Y,, Y,,... in
H, such that }_12 o[X,, Y, ]=0= }llg o[T.,(X.), T, (Y,)], where
Sfor euch n, @, and b, are integers such that X, C H, and Y, C H,, .
Then the transformation T such that for each n and each point P(n)
of H,, T[P(n)]= T,[P(n)] is defined and continuous on H.

Proof. Let P be any point of H and let I be any neighborhood
of T(P'), and let ¥ be any sequence of points of H having P as
sequential limit point. If [H,) is the collection of sets of [H,] which
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contain P, then by e¢) it follows that there exists an integer % such

that ;:‘j T'(H,) C B. Since each of the transformations 7}, , 7, T,

ny Lngyec -ty
is continuous, it readily follows now that all save possibly a finite
number of point of 7'(V - H,) belong to R. Now arrange the points
of V.(H — H,) into a sequence of X, X,, Xj,... By e) it follows
that for the corresponding sequence Y, Y,, Y;,... in H,, T(P) is
the sequential limit peint of 7'(Y;), 7'(Yy),... Then from d) it re-
adily follows that 7'(P) is likewise the sequential limit point of
7(X)), T(X,),... Thus R contains all save a finite number of points
of V, and hence T is continuous.
Proof of the continuity of T. To show that T is continuous, we
let H,= @G-8, for each n Then clearly the transformations [7,]
satisfy conditions a) and b) in the Lemma. They satisfy condition
¢), because 7, (H,) C Z,, for each n,-and Lix;x 4(Z,)=0. To show

that d) is satisfied, we pick the points of [¥,] as follows: For each

n let N, be the component of M — H, containing X,, where

H,= 3 H,, the sum of all those sets of [H,] which contain P, and

let ¥, be the limit point of N, which belongs to H,. Then since

Lim 8 (N,)==0, therefore Lim ¢(X,,Y,)=0. Now for each n, let
n-»00

=00

L, be the component of 7, — 27, containing 7'(X,). Then since,
for each n, it fdllovv‘s from (2) that a finite number S,,, 5,,, .. S, of
the chains [S,] exist whose sum is connected and contains both
X, and Y, and lies in N, + Y, and remains connected upon the
omission of ¥, it follows that (Z, + Z, + ...+ Z,)— T(¥,) is
connected and contains T(X,). Hence (Z,, + Z,,+ ...+ Z,) — T'(Y,) -
lies in L,, and therefore 7'(Y,) is the limit point of L, belonging
to 3Z,,. Then since Lim d(L,) =0, it follows that ”Lir:.} o[T(X.),

n—-oo

7(Y,)]=0. Therefore all the conditions of the lemma are fullfilled,
and consequently T is continuous. That 7" is continuous follo_ws
by an argument highly analogus to the one just given, by a.pplyimg
the lemma, using H,= T'(G - 8,), for each n. Thus 7T is biuniva-

. lued and bicontinuous.

Let A and B be any two points of K= T(G), and let Z be
the arc in W from A to B. Let S be the simple cyclic chain m M
from T-'(4) to 7-'(B), and let F be the set of all those p01‘nts
of M which separate 7-'(4) and 7(B) in M. The transformation
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T was defined in such a way that 7(G-8)D K-Z ) T(F). The-
refore, since (see Structure, Theorem 1), G+ S= the closed set
[F+ T-(4)4 T (B] + 2 countable set H, and since 7' is con-
tinuous, it follows that K.Z is the sum of the closed set 7'(F)-|-
-+ A+ B and the countable set K :Z- T'(H). That K satisfies con-
dition (b) in (a) follows immediately from the fact that K was con-
structed so that it contains every ramification point of the acyelic
curve 37 ,.

We now consider the following converse proposition.

(B). If K is any subset of the set of all cut points of an acyclic
continuous curve N (in a euclidean space of n =2 dimensions) such
that (a) for each pair of points A and B of K, K-Z is the sum of
a closed set and a countable sct, where Z is the arc in N from 4 to
B, and (b) K contains the center point relative to N of each set of
three points 4, B and C of K, then there exists a continuous curve
M such that K is identically the set of all cut points of M.

Construction of the curve M Let 4, and B, be points of K such
that ¢(4,,B,)> d(K)—1, and let Z, be the arc in N from A,
to B,. By hypothesis K:Z, = K, -+ H, where K, is closed, H,
is countable, and K, - H, = A4, - B,. Let the components (maximal
segments) of Z, — K; be [8,), 1=1,2,8,... and for each i, let
X, and Yy be the endpoints of Sy, on Z in the order 4,,X,, ¥,
B,. It is readily seen that there exists a collection of ares [t such7
that (1) for each 4, ¢, is an arc from X, to ¥, and has only these

points in common with N and is of diameter <2 times the dia- -

meter of the component of N — (Xj, + Y73) containing Sy, (2) the
arc segments by — (X + Y3,)] are mutually exclusive, and (3)
1%_1:2 0(fy) =0. Let the points of H, be ordered P, Py, Py, ....

Then for each 4, there exists a simple cl

mple closed curve J;, such that
JH.KN-I—EtI,—{— ) =P, and 8(J,,) <1/i. Let M, denote the
continuum 7, + 34, 3J,;.

Now for each » > 1 we shall construet a continuum M, accord-
ing to the following procedure, If X C'SM, then let M, = 0. If
> 1 i .
not, then there exists a point B, of K in N --I;IZ, such that if X
1

is any point of K

@ 0(X32) <elB,5z) +1/n
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n-1 ‘

Let C, be the component of N — 3 Z; conlaining B, and let 4, be
1

. . ; i3
the limit point of C, belonging to- 5%, and let Z, be the are in
1

N from A4, to B,. It follows by hypothesis b) that 4, belongs to
K. Bence, just as in the case of n=1, K-Z, =K, + H,, where
K, is closed, H, is countable and K, - H, = 4, -+ B,; and there exist
segments [S,], points [X,] and [Y,], and ares [t,] such that (1)
for each i, £, is an arc from X, to ¥, which has only these points

n~1
in common with N -4 %‘Mi and 4(t,) < two times the diameter of

the component of N— (X,;+ Y,;) containing S, (2) the arc seg-

ments [t,,— (X, ¥,)] are mutually exclusive, and (3) Lim d(¢,) =0
l=yo0

[thie follows from (1) Likewise if the points of H, are P,,P,,
P,...., then for each i, there exists a simple closed curve J,; such

n—1 I~
that Ty [N+ M, 4 Sty + 3 J,) = Py, and 6(J,) <1/ni. Then
1 i J=1
let M, be the continnum Z, 4 Zt, + 3 J,.
i I
Now let LSE'M,,. By (i) it follows that each point, if any, of
1

K — K- L is a limit point of L. And since ;S'OZ,, is connected and
1

the condition of convergence clearly are such that I — L C3Z,—
— 3 %,, and each point of K is a cut point of N, it follows' that for
each point X of K — K - L there exists a component C,of N—X
which contains no point of L. It readily follows then that the set
of all such points X is countable and if they are ordered X, X,
X,, ..., then for each i there exists a simple closed curve C; such
that - L= X,, G- 3¢ =0, and (if) 4(C) < 1/i. Now finally let
M=L+4+3C. ' :

Then by (ii) it readily follows that M is a continuum. And since
M clearly is the sum of the continuum 3Z,, a subcontinnum of N,
together with the elements of the countable collection composed of
the mutually exclusive arc segments [, — (X4 Y.)] and the
,simple closed curves less one point* [J,; — P,) and [C,— X}, re-
membering that at most a finite pumber of the arcs and curves are
of diameter > any preassigned positive number, it easily follows
that M is a continuous curve. That K is identically the set of all
cut points of M follows immediately from the construction of M..
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It is interesting to note also that all the maximal eyclic curves of
M are simple closed curves — indeed they are the simple closed
curves (S, +t,/], [J.) and [C].

Results (¢) and (8) together yield the following theorem:

Theorem 1. In order that the point set G should be topologi-
cally equivalent to the set of all cut points of some compact conti-
nuous curve M in a metric space it 18 necessary and sufficient that
@ be homeomorphic with a subset K of C(W), (the set of oll cut
points of she Wakewski curve W), such that 1) if A and B are
any two points of K and Zis the arc in W from A to B, then K+ Z
is the sum of a closed set and o countable set, and 2) K coniwing
the center point in W of cvery group of three points A, By and C of K.

It is clear that the transformation 7' set up in the proof of (a)
is such that it not only preserves limit points among the point of
G (i e, is continuous) but also it preserves a certain degree of or-
der among the points of G not belonging to the same eyclic element
of M. Indeed, the methods of construction and proof given under

(@) together with the method of construction of the set M under

() contain all the essential features necessary for the demonstration
of the following theorem which elucidates the simplicity of the
structure of the set of cut points of a continuous curve

Theorem 2. If M is any locally connected, compact and metric
space (i e. any compact continuous curve), them there exists, in the
plane, a compact continuous curve K such that

1) every maximal cyclic curve of K is a simple closed curve,

2) if the cyclic elements (i. e., cut points, endpoints, and mazimal
cyclic curves) of M and of K are regarded as points, then there exists
a biunivalued and bicontinuous correspondence between the cyclic cle-
menis of M and the cyclic elements of K which preserves class, i. e.,
T(C) is a cut point, end point, or maximal cyclic curve of K accor-
ding as C is a cut point, end point, or mawimal cyclic curve of M;

8) there exists in K an acyclic continuous curve N which contains
all the cut points and all the end points?) of K.

!) Yor the case whers M is a continuous curve, Theorem 2 contains the re-
sult, recently published by C. Zarankiewicsz (cf, Uber Endpunkte, Bull, Acad.
Polon. des Sciences et des Lettres, 1928, pp. 44b—458) that the set of all end
points of any continuam J is homeomorphic with a subset of the et of all end
points of the universal acyclic curve W of Wazowski. I note here the fact
that Theorem 4 in Zarankiewicz's paper is a special case of Theorem 11 in
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To demonstrate the truth of Theorem 2, we would take the

-chains }8,] in M just as in (z) and select the ares [Z,] from the

curve W (which for convenience we may assume such that each
of its ares is free on one side). Then define the transformation 7
over G as in (@) and comstruct ares [f,] on the maximal segments
[S.] of Z, — T(K,) for each n, after the manner used in (f), for
convenience placing them on the free side of Z,. For each maxi-
mal eyclic curve C, belonging to a chain S, and containing a seg-
ment E,; of t, — K,, we take the correspoinding segment S, of
Z,— T(K,) and let 7'(C,)==S,-+t,. The correspondence can be
extended so as to include the endpoints H of M as follows: if 4,
is an end point of M, let 7'(4,) ==J; (4,); for each point B, which
is an end point of M, let T'(B,)==J,(B,). For each point P of M
not in X §,, there exists a sequence S, S,,... of the chaing [S,]
such that §=3§,, is connected and S - P is a continuum. The

¢
corresponding sequence [Z,] of ares also has a connected sum Z

and there exists a point @ in W, in fact in & (W), such that 2@
is a continuum. For each such point P of M — X' §,, let T(P)= Q.

Then K= 37, + 33, satisfies (1), T satisfies (2), and the acyeclic
" n i .

carve = Z, satisfies (3).
We note here the fact that the ares [f,] may be drawn in such
a way that the interior of each of the simple closed curves [¢,; - S,]

(i. e, the maximal cyclic curves of K) is free of points of K; and

as so constructed K would be the boundary of a plane domain,
namely, its own unbounded complementary domain.

‘We note also that (a) together with the result of Zarankiewicz
mentioned in the predeeding footnote, or indeed, Theorem 2 alone
yields the interesting fact that the universal acyclic continuous curve
W of Wasewski is a universal space for the set G+ E of all cut
"points g and endpoints e of any compact continuous curve M, C(W)
being a universal space for sets G and E(W) for seis E.

It has been pointed out by Zarankiewicz (Bull Acad. Po-
lon.,, 1926, p. 362) that the set & of all the cut points of a continuous

Structure. This clearly is the case, since every cut point of a continuous carve
is by definition a cyclic element of that curve, and since (see Siructure, Theo-
rem 8 and the reference therein to C. M. Cleveland) the words ,constituant*
and ,component* are equivalent when applied to any set of cut points of 2 con-

tinnona curve,
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curve M is not necessarily a subset of an acyelic curve K lying
in M. The following theorem giving conditions under which this
is the case shows that the question, like so many questions con-
cerning continuous curves (see Structure § 6) reduces to the same
question about the subsets of G lying in the maximal cyclic cur-
ves of M.

Theorem 3. In order that the continuous curve M should con-
tain an acyclic continuous curve K containing the set G of all the
out points and the set E of all the end points of M it is necessary
and sufficient that for each maximal cyclic curve C of M, G.C is
@ subsel of some acyclic conbinuous curve in M.

Proof. The condition is obviously necessary. It is also sufficient.
For it follows by hypothesis and by Structure, Theorem 30, that
for each maximal eyclic eurve C, (i==1,2,8,...) of M, G.C, is
a subset of an acyelic continuous curve K, lying wholly in C,. Then
if K= @G-+ E 4 3K, it readily follows from the results in Struc-
ture that K is an acyclic continuous curve,
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Sur les images de Baire des ensembles linéaires.

Par .

W. Sierpifiski (Varsovie).

E étant un ensemble lindaire donné, on-définit par Pinduction
les fonctions de classe < o sur E. Les fonctions de classe O sur E
sont des fonctions définies sur £ et continues sur E, et les fonctions
de classe <C o sur F sont des fonctions qui sont sur E limites des
fonetions de classes < a sur E.

E étant un ensemble linéaire donné et f une fonction de classe
< @ sur B, nous appellerons V'ensemble f(E) (de valeurs de f(z)
pour z¢E) image de classe < a de l'ensemble E (obtenue & l'aide
de la fonction f). Nous désignerons par I',(E) la famille de tous -
les ensembles lindaires qui sont des images de classe <Ca de Pen-
semble E.

Le but de cette Note est de démontrer le suivant

Théoréme?): Pour tout ensemble linéaire analytique E on a l'égalité

Pa(E) =P1(E):

quel que soit le mombre ordinal positif «<<Q.

Démonstration.

Lemme: Si E est un ensemble au plus dénombrable, toute fonction
définie sur E est de classe <1 sur E.

Toute fonction définie sur un ensemble fini étant évidemment
continue sur cet ensemble, il suffira de traiter le cas, o I'ensemble

E est dénombrable.

1) Jai signalé ce théoréme, pour a =2, dans ma conférence Sur les images
continves des ensembles lindaires, faite au I Congrés des Mathématiciens des Pays
Slaves & Varsovie, le 24 septembre 1929,
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