On a property of linear fractional sets of points.
, By
G. Walker (Emmanuel College, Cambridge, England).

§ 1. This paper is devoted to the question of the density of

s-dimensional sets of points, 0 <C ¢ << 1. Hausdorff!) has defined the
measure of his fractional sets as follows.

Let p be a positive integer, £ a set of points in p-dimensional
space, u(g, £) a finite or enumerable sequence of sets of points,
Uyy Uy, Uy, ..., whose sum Zu, contains the set K, the diameter
of u, being less than a positive number ¢, for each 4, i=1,2, 3, ...
Denoting the diameter of u, by I,, the s-measure s —mE, of the
set £ has been defined as the lower limit as ¢ tends to zero of

21;, the summation extending over all members u, of u(g, E).
#(g,E)

We consider only s-sets of finite positive s-measure and as there
will be no ambiguity we write mZ instead of s — mE.

Now let e be any point of an s-set X in a straight line, (¢ — 2,

e+ z) the segment of the line whose centre is the point e and
whose length is 22, D*(¢, £) and Dy(e, E) the upper and lower
two-sided *) densities respectively of the set /& at the point e. Then 3)

D*(e,E):lTsz —m[EX(e—2 e 2)]

z—>0 (22)3
Dy(e, E) =limi T m{E X((; )T 2, ¢ z)]
=0 2z

In his paper Besicovitch¢) has proved the following theorem.
At almost all points of an s-set, 0<s<1, the upper density is

') Math, Ann. 79 (1918) pp. 157 et seq,

%) Since we are only conmcerned in this paper with fwo-sided density we shall
in the sequel, refer to this property as denaity.

%) Besicovitch, Math, Ann, 101 (1929) p. 163.

%) loc. cit. pp. 176 et seq,
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included between the limits FAFAf and 1, where h is defined by
the equution
2+ k) =2,
If s, be the value of s for which
14-r=3 (s = § approx.),

the lower bound given in the theorem is exact for s<Cs,. This
result we prove in the second part of the paper by considering
one of the s-sets defined by Besicovitch.

Denoting this set by E we show that the upper density at al-

. : 2
most all points e of £ is FAF R 0 <8< 8y, and for s> s,

is greater than . The latter balf of this statement is trune

__ 2
22(14-hy
for all s-sets i. e. for s> s, the upper density at almost all points

of any s-set exceeds This follows from the theorem

2
which we prove in the first part of the paper, where we find new
limits for the lower bound of the upper density in the open inter-
val (s, 1).

§ 2. We require the following lemma?).

Let & be a positive number, V(d) a finite or enumerable set of
segments lying in o given siraight line, the length 1 of each segment
being less than 8. Thew corresponding to any positive number & , and
to any s-set E, contained in the given line we can find 0 = 6(E, &)
such that the inequality

JE>mEXTVE] -~
140)]

is satisfied for any V(0) '
§ 8. We define the functions g,(s), ¥;(s) by the equations

o= 2.20° (LR
[88(1 + hy + 8]
oy ={t— o) —1

1) Besicoviteh, loc, cit, p. 164.
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Now let s;,s;, and s be the values of 5, 1> > 5 which sa-
tisfy (1), (2) and (8) respectively.

M 1ol —w(l— o) =273
) 22 h 42t 1) F1F =3
(3) 2[10(2 — k(L + by — 19] [28 b 25 (h 1) 1 = T(1+ Ay.

We have s, = 072, s, = 076, s, =082 approx. Now we de-
fine f(s) as follows,

2
(1 hy’ 0<s<s
38(1 -+ hy -+ 3
%_(TEZ{EL —;—‘]1:)-2?’ 88 << 8y

| 76 3(1 -+ hy

() = 50.9°(1L & hy §<s < 5

2 1 i
38[2s A 425 (A1) 417 4-7[1 4- A] ) 88 < 5

20-8°(1 + B [2 b 25 (h 1) + 1F
2k
23 b

Gg<Ls<1

Theorem I.
At almost all points of an s-set, 0 <5< 1, the upper density is
greater than or equal to f(s).
It is only necessary to prove the result for s, <Cs << 1.
We assume the theorem false; then there exists a positive
number d and an s-set E, of positive measure for which the upper

density at all points is less than (—1%

We choose ¢,¢, and g to satisfy the following conditions.
4) g=2¢, 28g 4 g <d,
(5a) =1 —gflmE=9¢ 4 be, 5<<s<s,

-1
(0b) [I—(1—hdf|mE—e, — De,> &[22 — k) 5 —1]°, 5<s<1y
1___1 s CHN '
(6&) ( .,_l?‘p) {21,11 (1 %(ptp)} —_—> (1{‘(‘32)1’1' 1052 )
P2 462 —fpy(l — o)

88 << 8
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(Gb) 2%05*(—2—1:%(})'4!)5 >(1{£821)s+1081; 58 <5y,
21462 Q-4

(6¢) 3—3(1—%091)5“2( 139/ (I—doy) ~(U—bo) (I —dou)(1—bpby,
2o — 2+ T +H1— 40 ow+(1—169) 1— o))

>(_1%+ 18+, B <e <y,
2 1__ D) — 1 3 hs 2 S — b
64) (1 —&y) (i -j-hedgs (1424 (‘f‘;+ 3)” g <Ts<<1,

where @(s), ¥(s) and 6(s) are defined by the relations:

{p @) = {f(s))™
ey ={1—4p@E)~*—1
6 =@Er{l—ie6pe) —1

Since
(1 —3or2y —(1— oy =
AL — 2 — pp{l—(L— o) F,  ss<s
29 —(1 — Jou)y > 2/(s) DR S
and

3—3(1—49) —2(1— 49y (1— d @) — (1— 4@y (1—4oy)y (1— 09y

> 2 f(5) g —2F +(1—39) {3 pw+(1—369) (1 — towll,
59 <8 < 8y,

it follows that & and & can be chosen to satisfy (6&), (6b) and (6¢).
§ 4. Since the upper density at all points of K is less than
f(s)
(14 ay
sity of £ on any segment whose centre is a point of E and whose
length is less than y,, is less than or equal to

AC I
(1+4d—g)
Further let y, >0, and ¢ any point of E at which the mean
16)

density of E is less than Tt on any segment uwhose centre

we can find a positive number y, such that the mean den-

is ¢, and whose length is less than y,.
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Let E, be the set of points ¢,, then we can choose y, 8o small that
(7 mB, > mE —&.

Write y = min (y,,7,) and let 6 be a positive number less than
4y such that the inequality of the lemma is satisfied for any V(d).
Then by the definition of the set E and by Vitali's argument,
we can find a set of non-overlapping segments U(d, E), each of
length iess than J, covering almost all points of £ and such that

(8) mE — & <Zl’<mE—|—sl
U(.E)
where ! denotes the length of a typieal segment of U(d, B).
Let U, be the set of segments of U(d, £) on which the mean
density of £ is less than or equal to 1— &, and write

U= U1 + Us.
Then from (6)
©) r+Yr<mEta
[/ Us
and from the definition of U,
(10) mEX U] <(1—) J'F.
, o

Writing U; = V(d) in the lemma, we have

(11) Dr>mEXT] —e.
Uy

From (9), (10) and (11) it follows that

2'13 <4g
Us

and from the lemma
(12) m[E XU} < & -+ &

§ 5. We first consider the case s, <Ts < 4.

Denote any segment of U, by #, (and also its length) and its
end points by a and b. From the ends of », cut off two segments
ac and db of length J, =(1— 4¢)», (fig. 1). Next from both ends
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of ac and db cut off segments ae, f¢ and dg, hb respectively, each
of length ly =(1 — }ov)l,. Finally from the ends of a¢c and kb
cut off segments ak,je and hm,nb respectively, each of length
Iy =(1—%0¢)l,.

We suppose that all the segments »; of U; have been operated
on in this way. If there are, among the segments enumerated
above, segments on which the mean density of E is greater than
or equal to 1-}+¢&, we denote the largest of them by ; in the
event of there being two segments of the same length with this
property we -take any one of them. '

< vy >

L, <——L2—-> -q—-—-Lz—.)
a kj e f (o d d, g h mn b
Fig. 1.

Let M denote the set of segments u, for all », of U;. Then

mEX M| > (1+e) Ju

and writing M ="(J) in the lemma we have

m[EX M]> (14 &) m[E X M] — 25
and hence

(13) 2.“7‘ <g

. M
Now write

U, =U; 40

where U is the set of segments of U; to which belong members
of M., Since 8p* =, it follows from (13) that

Jn<ss
v’

" Then putting Uy’ = V(J) in the lemma we have
(13) mEX U] <88 + &

§ 6. We now denote by », any segment of U; and by ¢ any
point of E X %, and let 7», be the distance of ¢ from the centre
Fundamenta Mathematicae t. XV. 8
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of »,. Then the segment a, centre ¢ and length (1 --2#)», com-
pletely covers », and hence

m[E X o > 1—g
A-F2ry e~ T F2r7
Since (1427)», <y we have
1—8, S8
(F2ry <GFd—ay
and from (4)
2r>@—1,

Now the length of the segment cd (fig. (1)), whose centre is the
midpoint of », is by construetion (p —1)»,, and hence ¢d con-
tains no points of E. Further since

m{EX ]

v

m[E X ac]
(acy

>1—g
and
<l+g
it follows that
m[E X db]> (1—s&) Y (1+8) (acy
(dd)y (db) (dby

='ps'_'£8;

where
Y=01—49)"—1, and g==94 @ +2) <3e,.
Similarly

m[E X ac
_-(a_cj’—_ > —g.

We now repeat the argument on the segments ac and db and
prove that in each of these there exists a segment of length (py—1)
(1—4¢)»,, whose centre coincides with the midpoint of ac and
of db respectively, which contains no points of E. In the constru-
otion of §5 these are denoted by ef and gh (fig. (1)) respectively.
Then since the mean density of Z on q¢ is greater than ¢ —g,,
and that on f¢ is less than 1-}-&, it follows as above, that

m[E X ae]
(aey —> e,

icm
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where

F=y9v1—fpp)~—1, and =&l —3pp)+e <Ts.

Similarly it may be shown that the mean density of £ on the
segments fc, dg and b exceeds 6 —¢,.

Finally we apply a similar argument to the segments ae¢ and
hb and prove that in each of these there exists a segment, denoted
in our construction by &j and mn respectively, of length fp—1)
(1—%9y) (1— 4¢)»,, which contains no points of E.

Then since the mean density of E on ae exceeds ¢ — &, and
that on ak is less than 1+ g, it follows that

m(E X je]
ey
where & =¢,(1 — L0p)~+ ¢ < 15¢,.
In the same way we may show that the mean density of E on
hm exceeds ¢°(1 — 46¢p)~ —1— &.
§ 7. We now operate on each », of U; as follows; from the
ends a,b of », we cut off two segments ac;,bd, (fig. 1) of length

>0l —40g)*—1—g,

1
(1 — &5)»,/2+, denoting the set of such segments by N, and any mem-
ber of the set by 7. Let Z= (£} be the set of strips of {»,} which
remain,

Then
2’f=(1 _56)327’{’
N Ul
<(—eymE—+s, from (8).
Writing N="V(d) in the lemma we have
(18) mEXNI< Y7+
N

< (1—;- &) mE - 2¢,.
Now m(EX Z) = mE — m[E X U] — m[E X U] — m(E X N,
Hence from (14), (12) and (15) we have
mEX Z] > [1—(1 — g)]mE — 4, — 9¢,

and from (5a)
m[EX Z] > ¢.
8'
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From (7) it follows that there aré points of K, v.vhich .belong to Z.

§ 8. Let £ be any segment of Z which contains points of E},wl
the segment of U’ to which £ belongs and consider the operations
defined in §§ 5, 6 as applied to this »;. From § 7 it follows that
one at least of the segments cc,,dd, (fig. 1) contaius points of E,.
Let us suppose that dd, has this property, and let e, be a point of
E, belonging to dd,. We write

r=df, ry=db ry= dyj.

Then
=l 275 82T — fpu (L — 49)lu,
Ty == [1 _'%‘P]Vi,

=g — 20 4 62 (1 — $9){3Pv-+ (L — how) A— 30 @)Yy

First suppose that s lies in the interval (s,,s;) and consider the
segment o; whose midpoint is ¢, and whose length is 27,. Since
the mean density of Z on f¢ exceeds 6°— ¢, and that on bd ex-
ceeds ¢ — &, then provided @, covers the segment /5, we have

m[E X o] > (* — &) (b)Y 4 (6" — &) (fo)’
@ny) @n)y
_(—foprf2y—(1 ;a);w)’] v —& Iy (s)9}
o (2ry)
o U—drRY—(—dpwll 4,
2[1—27 &2 s—3pp (L —4p)f
where

Fig)=242(1—49r + 1 — 49y (L — $oy) <5
From (6a) it follows that

mEXa) _fO)
@y — 0+

Now in order that /6 C @, it is sufficient that d, f > db,

e Hl—w(— o) >2+.

By the definition of s, it follows that this is satisfied for values
of s in the interval, s, <Cs<s,.

icm
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Thus, since 27, <y we have a contradiction and the theorem
is proved for this interval of s.

Secondly suppose s, < s<(s, and consider the segment g

1
whose length is 2(r, 4 &2 *#,) and whose midpoint is e,. Since
the segment /5 @, we have

mBEXel o o (Uodewy g,
25(7'2'{"652—_”’1)5 25[1‘,_86(1_%90)—12 S]S

and from (6b) the mean density of Z on a, exceeds (—1];(_2)5. Again
since the length of @, is less than y we have obtained a contra-
diction for this case also.

Thirdly, we take a value of s in the interval (s;,s,). In order
to obtain the required contradiction in this case we consider the
segment oy, whose midpoint is ¢, and whose length is 27,. For
the range of s under consideration it is easy to see that the seg-
ment jb has no points exterior to ;.

Then since

m[E X bd] > (¢ — &)(1—F9)+
m[E X cf]> (6 — &) (1— }o) 1 — fo)si

and
m[EXje) > {6 — (1 —409) (1 + &)} (1 — 49 1— fpu)H
we have:
m[E X a]
(2rg)y

> 3—3(1 -3¢y —2(1—49) (1 —3pv)y—(1—39) (1 —$ou) (1—46p)— & . Fy(s)
Pp—2 a2 T (1—39) oy + (L — $09)(1— vl
where
Fy(s)=313(1—49y4+2(1—3p) (1 —3puwy+(1—4oy(l—3pw)(1—30p).

Since Fy(s) << 9 and the denominator of the expression on the
right exceeds % it follows from (6¢) that

mEX ] [
(2ry) (14 ay

>
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Then since 27, <y, we have a contradiction and the theorem
is proved for 8, < s <Cs,.

§ 9. Note on the determination of the function f(s).

In order to obtain the best possible value for f(s), which the
above method will yield it is necessary to find a function /(s) which
satisfies the following equations, where

T T

(16) 9(—3p)2w —(1 —hpury = 21— 25— fpu(t—gq),
' 8 T8 < 8y
(17) PP — (1 — ppuy)i =2, <s<s,

(18) ¢{3"‘3(1"%90)"‘2(1“%'P)’(1"Ww)s—(l—%q?)’(1“&9”‘/’)‘@‘%@’}%

=2[p— 27 (1 — 40) how + (1 — 300) (1 — bou)]
88 << g

Then the value of the lower limit of the upper density would
be given by {p(s)}~. The function p(s) which has been used in
the theorem is such that the left hand side of equations (16), (17)
and (18) exceeds the sight hand side. In fact’ any function ¢(s)

. . 1
which is less than 2(h--1)/2% in the intervals of s stated above,
and which provides definite inequality in this way will give a func-

. . 2
tion f(s) which exceeds FAF Ay for s> 3,.

The method adopted in the interval (8, 1) for finding the lower
limit of the upper density of s-set is essentially different to that
employed in the interval (s,,s,) and the value of /(s) given by
the method adopted in § 10, is the best possible function of which
the method is capable.

§ 10. Finally we consider values of s lying in the interval
58 <1l We assume the results already proved in §§°2, 3, 4.

The set A is now constructed in the following way. From each
end of each segment vy of U; we cut off a segment 4 of length

1
(1—Ad)»,25 and write A ={4}. Then in the same way asin § 4
we prove that ‘

MmEX (U — 4)] > [1 — (1 — hdy|mE — g — 3g,

icm
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and from (5b)

-1
(19) > 26+ 522 — BF — 1],

Then from (7) it follows that there are points of Z; belonging
to U —A. Let ¢, be such a point, #, the segment of U, to which
it belongs, r», the distance of e, from the centre of 2.

Then

1
0<r<<4h(l42d)275.

From the end of », remote from ¢, cut off a segment w of
length 27%,. We suppose the operation performed on each », of U,
which possesses the property that the corresponding member of
U, —A contains points of K, and write Q — {o).

. We.divide Q into two sets 2, and Q,. The latter is the set of
segments of Q on which the mean density of E is greater than or
equal to 14 &. Then ‘ :

m(EX Q)= (1+ 52)2'(2%):
. Q.
Writing £, = V(J) in the lemma we have
S @ro) >mEX Q) —e,

Qs
and, since & = 2¢,

M[E X Qz] <&
and a fortiori
(20) - 2(2 o) < &.
ey

Then either (a) the value of r for each member of Q, exceeds

—II«—% or (b) there exists at least one r for which
@—k)
1 1
< ———— .
2— k)
If (o) be satisfied then

- Jemy>ee—mri-iy I,
Qe U
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where U} is the set of segments of Uy, to which 2, belong.
Then from (20)

Su<e—mi—1s
“

1

and from the lemma

@) mEXT] < &+ {22 — B+ — 1),

In case () we consider the segment § of length (1 2#)»,
whose centre is the point ¢,. Since #, is interior to this segment,
and the mean density of E on », exceeds 1 — & we have from (4)

nEXE (1= &) @~
(T 5
2 —
> FAFdy

Hence sinee (1 27)v, <y we obtain a contradietion, and so
if (b) be satisfied the theorem is proved. '

We return to the consideration of the other possibility.

Let A’ be the set of segments of A which belong to U, — Uyj:

Then from (19) and (21) we have

m[EX{({U,—U)— A Y|=m[EX (U3 — A)]|—m[EX{U;—(A— A}
Zm[EX (U, — A)|—m[EX U]
>8.
and from (7) it follows that
(U, —Up—aA
containg points of E;.

Let e, be the point of E, )X {(U; —U;)— A’} wsed in the defi-
nition of 2, #, the segment of U; — U; to which it belongs, r»,
the distance of ¢, from the centre of »,.

-1
K O0<r<<(2—R) " —4¢, then as before we take a segment
with centre ¢ and of length (14 27)», and show that the mean

density of Z on this segment exceeds -2—,%:—4_%); Suppose then that

-7 —j<r<yrt2927}
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Let , be the segment of length 2r», which belongs to Q,, so
that the mean density of E on w, is less than 1-}- g,

We take §, to be the segment whose midpoint is e, and whose
length is (1 — 2#)v,. Then since the mean density of Z on », ex-
ceeds 1 — g, we have

m[E X 3] ~ 1—g —2rf(14g)
(1—2¢Fe; 1—27rF :

Now the expression on the right decreases as r increases and

1
takes its least value when r=31A(1 4 2d)2 ~.
Then from (6d) we have

MEX B 2(L—&) —F(1+&) 1+ 2d)
=2 21— hady
2— k-
> AL ay

Since (1 — 2r)v»; <<y it follows from the definition of K, that
this is impossible. Thus our assumption that the upper density at

all points of E is less than —'ﬁ'-gl—;, is false and the theorem is
P 1+ d i
proved.
§ 11. We now show that the lower limit of the upper density

of s-sets given in theorem I is exact for values of s 0<Cs<s,,
where s, has bem defined by the equation

14 rF=3.
We require the following lemma.
Let g,r and j be positive integers satisfying 9222, 0<i<<g—2,
and g=r>j-+ 2. Then the funclion

r—1 ' 5
= g—i 7=
Fo(ay, Qas e Opg) = [h?Z‘ +2F+ 041 Ya2s 27 ]
Femjt1

r—=1

— [2"" +2‘a,2"“‘ +2”"’J

il

defined in the region 0 < o, <1, i#(i-{—l),...,(r-—-l), is positive
for all values of s, 0 <s <1, and for every positive inieger q>2.
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It is easily seen that
%%q < 2L Ry 2T — 1)
<0, 0<s<l, di=(j41),...,(r—1).

and hence
Fo(tas %Gy - Cr)

takes its least value for @, = 1.
Denoting this value of F7 by F?, we have
\

Fy =2 29T )y (g gy
Now Fi, < F9,, for j, > j, and
Fi,<<Fi, for ri>r,.
Hence if j+2<<r<Cg, 0<Cj<<g—2, we have
Fr 2 Fi,.

Again sinee £, > Fi, for ¢, > gy, and F3,> 0, 0 <s<1,
it follows that 77,0 for every integer ¢ == 2.

This proves the lemma.

In the applications we are only concerned with the particular
cases in which @, =0 or 1.

§ 12. Theorem II.

The lower limit of the upper denstly of s-sets is exactly 2—5—-2-—~—

(1+-hy

for 0 <<s<s,.
The previous theorem states that for 0 <s<(s, the lower li-
- mit of the upper density of s-sets is greater than or equal to

T3 Ty We show that this lower limit is attained and that there
exist s-sets for which the upper density at almost all points is
2
m, 0<8 <8°,.
Let P, be a segment of unit length. From each of the ends of

P, we cut off a segment of length 1 =25 and denote these two
segments by P,. From the ends of each segment of P, we cut off

1
sogments of length J; = 2751, and denote the set of the 21 weg-

icm
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ments so obtained by P,. In general from the ends of each seg-

ment of P,; we cut off segments of length , =273 . and de-
note the set of 2% segments so obtained by P,, and any member of P,
by p,. Then the set

E=Po ><P1 XPEX"'
is an s-set which has the property that, for 0 < §<$, the upper
. C . 2 .
density at almost all points is AL and for 1>s> s, is gre-
,._.._.__.2_
2(14-h)y"
It is easy to see that-the set E is closed.

Again since the set P, of all segments p, contains E, for every
n and J15=1 it follows that

©@2) mE<L1.

ater than

Now let U(p, E) be a set of segments, each of length less than
¢ and such that E is completely interior to the set. To each point
¢ of I there corresponds a sequence of segments {p.} to which e
belongs and which is interior to U(p, E) i. e. interior to at least
one member of U(p, E). Let p(¢) be the first segment of the se-
quence. Then we can select a finite number of segments {p(e)}
such that 7 is contained in their sum and the sum of the segments
is interior to U(g, B). If n be the greatest suffix occurring in {p(e)}
then the set P, possesses the same properties, and the segments
of P, form a non-overlapping set.

Let U(E) be any segment of U{p, E), of length 6 < g, and K,
the set of segments p, which are interior to U(E).

If K, consists of more than one segment p,, then there exists
an integer k< n such that the segments p, of K, belong to diffe-
rent segmients p, but to the same segment p, ,. Let ¢ be the num-
ber of segments p, belonging to K, so that 0 < #<C27H, where we
have written g=n-—#%. There are three cases to consider. Firstly
t is a power of 2, secondly ¢ is the sum of two consecutive powers
of 2 and finally ¢ is neither a power of 2 nor the sum of two
consecutive powers.

Case (1)

t=2, i=0,1,..., ¢+ 1
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We have
d .> ln«t
and
F =2
(23) =,
K"

the summation being taken over all the segments P, which are
completely interior to U(E).

Case (IT)
=242, 1=12..9
We have
d />f h ln—q + ln»t + (h + 1) ln——1+1
g+l 1
FZ2h2 s 21y
24) =
Kll
since
2 1
(2*—1F >3, 0<<s<l
Case (IIT)

where

=2+ 2 .. 2 .. .t q,
‘ g=00r1 :=0,1,2...,¢q
Let o, be the first @, @, the last @, of the sequence

Qoy Gy, Qy,..., e,

which does not vanish for the particular ¢ under consideration.
We have

-1

6= hln—q +1 oy 1 (Bt 1) 2 & bngyr Zn—rl+r
Jomey -1
r—1

— [h2%-{- 2740+ Y 2T+ 2"—?] I,

el
From the lemma of § 11 it follows that, since r > Jj+2

: r—1
F> {gq—z + 9o-r +2‘ a 24—.1] I

=/

icm
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(26) =3
K
From (23), (24) and (25) it follows that for all values of #

& ;2‘ I
K

and hence
(26) 26‘22 =1
Ug.E) P,
Combining (22) and (26) we have
‘ mE=1.

In a similar way it may be shown that
m[E X p,]=1.

§ 13. We now prove that, at almost all points of the set E the
upper density is greater than or equal to 2—3(—1——1—]‘)—;, 0<<ss,
where s, has been defined by the equation

AHhyr =4

Consider any set P, of segments. In each p,; of P, 4 there are
two segments p, which are symmetrical with respect to the centre
of p, ;. From those ends of each p, which are nearest to the centre
of the segment p,_,, in which they lie, cut off segments of length
l,,, denoting the set of segments cut off by E,. Then

m[E—(EXE)]= 1 _--21—)

Again, from each of the segments Py, C P, — E,, cut off seg-
ments of length J,,, the strips cut off being taken from those ends
of py, which are nearest to the centre of the corresponding Pgn—i-
This new set of segments which have been cut off we denote by
R,,. We have

m(E—EX (Bt Bul)=(1— 53]

In general we define the set of segments K, as follows. From
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those ends of the segments p,, C P,,— B, — Ry, —...— By_1),, which
are nearest to the centre of the corresponding p,,; we cut off seg-
ments of length 7yy,),. The set of these segments we denote by R,

Clearly the sets of segments E,, E;, are non-overlapping for
ig=j. We write

Ey=EX Ry, 1=1,2,3,..,

E,{:ZJVIE,,.

{wal,

We have
1 1)1
mlE) =z (1~ )
i WL 1)
niEl= 35 (1-5)
and hence
1 J
m[E——E,{]_—_(I—é—n).

Let % be an arbitrary positive number, then we can find j,
=4 (n, 1) such that

m[E— Ejr] <7
Now suppose that the operation defined above has been ecarried

out for n=1,2, 3,... Then writing 7= % and

‘B,= E—En
we have

m(B,+ By + By+..]<mB,+mB, - mB, +...
: <a.

and if we put

E,=FE—B —B,— B, —
then ' : ? o

mEl > 1— a,
Thus corresponding to each point ¢ of Z,, there exists a sequence
ql <gﬁ <g8 <--- << g[<..-

tending to oo with 4, with th
b ) e property that e belongs to
where ¢ is a positive integer. e ; Far
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Let p,, be the segment of P, to which ¢ belongs and let = be
the. distance from ¢ to the end, remote from e, of the other member
of P,, which belongs to the same p,_, as p,. Then

g=(h—+41) b+ 0l 0SSOI
and '

m{E X (e—u, e—{-x)]z 2
(2a) 2 {h414 0273y

Since ¢ —> oo it follows that, at almost all points e of B

2
#*
§ 14. We now show that for 0<Cs<(s, the upper density, at
2

points of £ cannot exceed SAFH

Consider any segment p, ; and denote the two segments p, which
belong to it by pj, p; and let A be the end point of p;, which is
nearer to p,. Further we take X (fig. 2) to denote the position of
a point ¢* of B p;, and write ¢(e¥, 7) for a segment whose centre
is the point ¢* and whose length is 27.

Then corresponding to every point ¢* and fo every value ry of r

lying in the interval

(1) (o Tagn) <7 < (1) Gaga +1)

there exists a value r, of r lying in the same interval and possessing
the property that for 0<<s<1

m[E X e(4, r)]  m{E X e ()]
@ry °©  @ry

Let s be the value of s defined by the equation
h=(1—hy, (069<<s <07

We suppose that ¢* belongs to the same segment pe; (= AB)
to which 4 belongs — the other case in which ¢* belongs to CD
mey be treated in a similar way. For the purpose of the theorem
it is sufficient to prove the result for 0<Cs<(s” since 8, <8
The result is however true 1>>s>>s"; the proof is very tedious
and we do mot give it.
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We write
AX=w=zl, r=tl.
Case (I)
(1) (b)) <11 <
We have
Ex«wnn<1+a~ 2y
@ry) - @ »
= /() ' (say).
where we interpret the expression (f— /& —x)" as being 0 if ¢<Ch-j-2.
) Li-2
D Lk-1 hljeg—> < Lk—'l
<-—lk——> <——l,k—>- »q——[,k—-—;- _‘,._.,Lk___,,_
~lgy ~lgy
- 1;——-» upﬁig_._)l)
Fig. 2.
Since
2
h+1)ET+29<t<1
we have
2141 —¢
< S (r<1)
25(h41){1-}-2 }
and
2
QA 4rp{l4-275F
2
(hz=1).

SFAFRP
Now let s* be the value of s for which
1
14+ Q—r={14275), (064<s'< 0-65).

Then for 0<Cs<C s

mEX o)l 2
@r)y  STFAFA

Now for o' <s<s”, £() is an increasing function of t.

icm
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Hence
m[E'Xo( 11)] 14+ (1—hy
(2 7'1 . 9s < F( )
where
_ 2 3
F(")“‘max {2; (1 + h)” 2’(1 + h)ﬂs}'
We take
[ 0h o<
: hll+lk+la 8 <8<Js”
and it follows that
m[E X ¢(4, ry)] 2 3
== max, {25 AFm" 1 +hJ2;}7 0<s<s

(2ry)
Case (II)
I, < "<

We take #, ==, and we have the required inequality.

Case (III).

If hly s+ l—zl, <<(h+1) (L) we consider next

!

{( h=1) (% + lm)»}
hlpy 4 b — 2l

(A1) e+ L),

bl y+bh—2l<n << mm'{2(h+ 1) b +hly

We have

mIE X (et )]

5/2

@2r)

and we write

= T i
2:{h2:7 41 —275)

re = (h~1)1,.

Since for 0 <Cs<Cs” we have
(1) Qe+ le) <20+ 1) bya + 2 by,

our statement is proved.

§ 16. It remains to consider, for what value of r

(h+1) (lkH ‘+‘ lb+2) <r<h41) G -+ lk+1)

the expression

has its maximum value.

Fundamenta Mathematicae t. XVI,

m[E X ¢(4, 7))

@ry
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It is easily seen that for 0 <s<Cs, we must take r=(h-}-1)1,,
and for s,<{s<Qs", r=hl4ln.

We then have the following result.

At almost all points ¢ of £

2
FATH 0<e<s

Do By =1 "
FAFr® PSS

§ 16. We now give without proof, the values of the upper den-
sity, at almost all points, of the set Z, for values of s greater than s,

The following lemma is required:

Let >0, y>2>0, 6, > d; >0, be numbers depending on
a parameter s, 0 <5 <Cs<{ ¥ <1, and define

gt 8= a+(‘t“é,);)j_ (t——y)" 4, <t 4,

where @, 8, 9, 6,, 0, are to be such that g(t, s) is less than or
equal to unity for all values of s and £, and the expression (¢ — By
and (f—y)° are to be interpreted as meaning zero if #— <0,
or t—y<C0. We then have the following results:

a) 220, 6>y, gt s) is an increasing function of t in the
closed interval (d,, d,);

by 8>0, 6,28, 6,<<y, g(t 8) is an inereasing Sunction of t
in the closed interval (8, 8;), for all values of 8 in the open interval
(0, §) provided

6— <025 0<s<T;

) B=0, 0, <<y, ¢(t, 5) is a decreasing function of ¢ in (04, dy),
Jor all values of s in (0, 1); L

d) >0, 6, <P, g(t s) has the same properties as in (e).

Now let sy, 8, 4= 1,2, 83,..., be the values of s in the in-
terval (so, 1) which are defined by equations (28) and (29) respectively:

(28) 2% = (L4 k) (27 —1)

@) QT =g 1)

icm
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Then at almost all poinis e of E we have

g rp— |
y S8 S

D¥(e, B) = ey
9 (14 ) (25 — 1)

i=0,1, 2, 3,..., and
241 1
D¥(e, E) =—-21T—, 800 S 8y,

i=1,2 8 4,...

g%
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