End-sets of continua irreducible between
' two points.
By
P. M. Swingle (Columbus, Ohio, U. 8. A.).

1. Introduction.

A continuum irreducible between two points is a continuum which
contains these two points but which contains no proper subcon-
tinvum which contains them !). Throughout this paper M will
represent a continuwm irreducible between two given points a and b,
If z and y are any two pownts of M then K, will represent any
subcontinuum of M containing x - y; and axy will represent any sub-
continuum of M trreducible between © and y. Letters such as M, N,...
will be used to represent point sets and letters such as m, n,... will
be used to represent points. ‘

Although much work has been done on irreducible continua %)
still because of the importance of this type of continua a much
more detailed study should be made. In this paper a study is made
from the standpoint of end-sets and related sets. Conditions neces-
sary and sufficient not only that an irreducible continuum be inde-
composable but also that various subcontinua of an irreducible con-
tinua be indecomposable are obtained. In the application of the
theory of irreducible continua to various problems among other
things it is often of importance to know between what points there

*) Such irreducible continna were first defined by L. Zoretti, Ann. de
I'Ecole Normale, XXVI. For a generalization see W. 4. Wilson, On the oscillation
of @ continuum 6t a point, Trans. Amer. Math, Soc., Vol. 27 (1925), p. 429--440;
gee also H. M. Gehman, Concerning irreducible connected sets and irreducible
continua, Proc. National Academy of Sciences, Vol. 12 (1996), p. bdd —H47.

%) For bibliography see C, Kuratowski, Tund, Math, IL, p. 230 and
Fund. Math. X, p. 274,
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exist one and only one irreducible continuum in given point set.
It is also of importance to have defined subsets of irreducible con-
tinua which will enable various types of irreducible continua to be
characterized and thus used to deseribe the properties of other point
sets. In this paper some consideration has been given to these problems.

C.Kuratowski defines and obtains properties of a set I(a, M)
of an irreducible continuum ). Let (a)=1(a, M) and (b)=I(b, M).
In section IT of this paper among other things it is shown that the

following conditions are each necessary and sufficient in order that M
be indecomposable:

1) (@) X (B)0

(2) @+0) =M

@ (@) X (@Y — @) 079

@ (@ — @)+ () X &)+ () — ) = M.

If cd = M then ¢+ d will be called a non-remainder set of M.
Yoneyama?) proved that if ¢~+d is a non-remainder set of M
then either @ +-¢ or a4 d is a non-remainder set of M. In sec-
tion ITI among other things it is proven that in order that M be
decomposable it is necessary and sufficient that (a) X (p+¢) and
(8) X (p+ g) each contain one and only one point for each non-
remainder set p ¢ of M.

C. Kuratowski4) has proven the important theorsm that if K
is any subcontinunm of M containing a then a necessary and
sufficient condition that K be contained in (a) is that (M —KY = M.
In section IV among other things it is proven that if (5) contains p
and M contains a decomposable pb then (b) contains pb.

In section V basic-wise connected subsets of M are defined.
It is proven that if A/ is bounded then a necessary and sufficient
condition that M is indecomposable is that (@) — (@) be a maximal
basic-wise connected subset of M everywhere dense in M. After
obtaining  other characterizations of indecomposable continua b
means of these sets it is proven that if M is a bounded decompo-

') Fand. Math, X., p. 230. See also section II of this paper,

) If W is a point set W’ will be used to denote the set composed of W
and the limit points of W,

3) Tohoku Math. Jour,, Sendai 191 7, p. 48, theorem 3.

) Fund. Math. X,, p. 283.
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sable continwum then in order that M be the sum of two proper
indecomposable continua it is necessary and sufficient that M con-
tain a basic-wise connected subset 7' such thav both 7" and M— T
are everywhere dense in M.

Let ¢cb=ab. In section VI a study is made of the relation
of (a), = (a), (b)s == (b), (¢), and (b).. It is shown that in order that M/

be decomposable it is necessary and  sufficient that (a), = (a), for

every point ¢ of (b). If M is bounded and g is a point of M it is
well known that M contains a bg which has a set (3), In this sec-
tion the relation of the possible (b,'s to (b), is studied..

In section VII a definition of end point of a continuum, due
to H M. Gehman?), is generalized thus defining what is called an
n-point end-set of M where n is any positive integer. In this sec-
tion irreducible continua are studied from the standpoint of two-
point end-sets. The following useful  theorem is obtained: if ¢ d
and m--n are two-point end-sets of 3/ then one of the sets ¢-}-m,
¢—n, d+4m, and d-}-n is atwo-point end-set of M; and further
if either every K, contains a poiut of m -+ n or every K,, con-
tains a point of ¢~ d then either ¢ 4-m and d 4 or ¢4 and
d+m are two-point end-sets of M. It is further proved that if
P+ ¢ is a two-point end-set of M then M contains at most one rq.
Also if p--g is a two-point end-set of M then in order that M be inde-
composable it is necessary and sufficient that for every point z of M
either z - p or z 4 ¢ is a two-point end-set of M; this is a gene-
ralization of the previous theorem .that in order that M be inde-
composable it is necessary and sufficient that M = (a) + (b). In the
remainder of this section, among other things, a study is made of
the sets ¢ +-m, ¢+, d+m, and d +n, where ¢c-+d and m—+4n
are two-point end-sets of M, with respect to the indecomposable
subsets of M.

In the next section properties of the connected subsets of the
set of two-point end-sets of M are obtained. Among other things
it is proven that if M is bounded, (p) and (¢) are maximal connec-
ted subsets of the set of two-point end-sets of M such that (p) con-
tains p -2 and (g) contains ¢ -+ w, and (p) and (g) are decoxnpo.‘
sable, then 24w is a two-point end-set of M.

In section IX it is shown that if N is an n-point end-set

t) Trans. Amer. Math. Soc. Vol, 30 (1928), p. 64,
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of M then N coutains a two-point end-set of A7 And in the final
section a slight study is made with respect to the points of M bet-
ween which there exist one and unly one irreducible subconti-
nuam of A7

It is known that if K is any subcontinuum of H/ that either
(M -~ K) == au—+vb, (M — Ky = aw, or (M —Ky =1bv!). When
there exists the possibility of all three of these in the proof of
a theorem of this paper if (i — K)' = au + vb is typical this case
only is given 2),

I1. & and & c¢o-end-sets.

Definition A ) co-end-point of M is a point p such that
ap = ab. The b co-end-set of M is the set of b co-end-points of M.
The b co-end-set will be represented by (b), or by (b). The a co-
end-set by (a), or (a).

C. Kuratowski in his paper, Théorie des continus irréductibles
enire deux points®), gives some of the properties of the set (6)as
which he calls the set I(a, #)=1 In this section some simple
additional properties of this set will be stated.

Theorem 1. If p isa point of (b), and there exist a K, such
that K,, X b=20, then B Xqg=q.

Proof: Let K,, be any subcontinuum of 3 containing a -+ ¢.
Then K,, - K, is a subcontinuum of A containing a + p. But as
ap =M, K,,+ K,, =M. But K, X b=20. Therefore K, = M
since K,, contains @+ b. Thus M =aq and so (b) X ¢ =yg.

Theorem 2. If M is bounded, then (b) is a proper connected
subset of M. ,

Proof: Since (b) X a=0, (b) is a proper subset of A/

Let p be apy point of (b). Let 7' be the maximal connected

) C. Kuratowski, Fund. Math, 1II., p. 202—205.

) By W=1U-V separate will be meant that W is the sum of two
non-vacuous mutually exclusive subsets U and ¥ neither of which contains a li-
mit point of the other. The set W is connected W if does not contain two
subsets U and V such that W= U-|- V separate, And W is closed if it con-
tains ail its own limit points; and it is & continuum if it is closed and connected.
The continuum W is indecomposable if it is mot the sum of two proper subcon-
tinua. And if a continuum in not indecomposable it is decomposable.

%) Fund, Math., Tom X., p. 230. See also corollary to theorem I of 8. Ma-
zurkiewicz's paper, Un théoréme sur les continus indécomposables, Fund.
Math. 1, p. 39.
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subset of (b) which contains p. If T' does not contain b, then 7" 1)
does not contain b, since (b) contains b. Assume that 7' does not
contain 5. Then there exists a region R containing b such that
B X T"=0. Then ¥ —p— B’ contains a connected subset H
such that H' X p=p and H' X B X M = 0.*). Since .R.Xb:::b,
HXb=0. Since H is a bounded continuum every .pomt of H"
can be joined to p by an irreducible continpum ?) which does'not
contain b. Therefore by theorem 1 every point of H' is contained
in (3). Then 7T contains H'. But H' X B'=£0. Thus R’ X 7" =|= 0
which is a contradiction. Therefore 7'X b==>5. Thus every point
of (b) is contained in a connected subset of (b) which also contains b.
Therefore () is connected.

Theorem 3. If (b) is closed and T is the maximal connected
subsel of (b) which contains b, then (a) X T=0.

Proof: Assume that (a) X 7 contains p. Then the subcon-
tinuum 7' of (b) contains p+b and so T=bp==M. But T X a==0,
gince (b)) X a=0. Therefore T == M. Thus the assumption that
(@) X T=0 is incorreet.

Corollary 1. In order that (a) X (b)==0 it is sufficient that
either (a) or (b) be closed, if M is bounded.

Proof: This follows directly from theorem 2 and 3.

Theorem 4. In order that M be an indecomposable continuum *)
it is mecessary and sufficient that (a) X (b) = 0.

Proof: The condition is sufficient. For let » be a point of
(@) X (b). Then ap= M ==">p and so M is irreducible between any
two of the points a, b, and p. Thus M is indecomposable °).

1) If T'is a point set, then T” is composed of T and of the limit points of 7"

3) Anna M. Mulliken, Certain theorems relating to plane connected point
sets, Amer, Math. Soc. Trans., XXIV, (1923), p. 144—162, theorem I.

3) That every two points of a bounded continuum W ean be joined by an irredu-
cible continuum was proven by Janiszewski and Mazurkiewicz in 1910
(Comptes Rendus, Paris), See also Mazurkiewicz, Bull. Acad. Polonaise, 1919, p. 44..

%) A continnum is indecomposable when it is not the sum of two proper
subcontinua. The first examples of indecomposable continua were given by Brouwe r,
Zur Analysis Situs, Math, Ann. 68 (1910), p. 426, For other examples see Z, J o~
niszewski, Sur les continus srrdductibles entre dewx points, Jour, de I'Ecole
Polytechniqus, II series, 16-2me Cahier, 1912, p. 79—170. See aleo B, Knastex, Un
continu dont tout sous-continu est inddcomposable, Fund. Maih, III, p. 247--286,

%) See Z, Janiszewski and C. Kuratowski, Sur les continus inddcom-
posables, Fund. Math. 1., p. 215, theorem IV,

icm

End-sets of continua. 45

The condition is necessary. For tHers exist three points, p, (i==1,2, 8)
since M is indecomposable 1) such that p, p, =Py =P Py = M.
But M=K, 4 K,,. And as M is indecomposable either ap, = M.
or bp,==M and so each p, is contained in either (a) or (b). Thus
at least two of these points is contained in one of these sets. Say
for example that p,4-p, is contained in (a). But K,.,+ K, is
a subcontinuum of M containing p, p, =M. Therefore either K,
or K, equals the indecomposable continuum A and so either
Py or py is contained in (b). Thus one of these points is contained
in (a) X (5) =0,

Theorem 5. In order that M be indecomposable it is mecessary
and sufficient that (a)+- (b) = M.

Proof: The condition is necessary. For let p be a point of M.
Since K,,+ K,,=M either K, or K,, equals the indecomposable
continuum M and so p must be contained in either (a) or (b).

The condition is sufficient. For assume that M is decomposable.
Let then M= W+ U where W and U are proper subcontinua of
M. Thus neither W nor U can contain a-+b but each must con-

_tain one of these points. Consider for example the case where W

contains ¢ and U contains b. As M is connected and W and U are
closed, W X U==0. Let p be a point of W X U. Since (a)- () =M
either (a) or (b) contains p. Say for example that (5) contains p.
Therefore pa =M is contained in W= M which is a contradiction.
Therefore M is indecomposable.

Corollary 2. In order that M be indecomposable each one of the
following conditions is necessary and sufficient:

(1) (a) contains (b) — () F= 0.

(®) (@) X (6 — &) %= 0.

Proof: By theorem 5 (a)- (b)=M. Therefore (a) contains
(b) —(b) since M is closed. Thus condition (1) is necessary since
(3) X a==0 but (b)Y X a==a?) and so () — (5)5=0. It then follows
that condition (2) is necessary.

The conditions are sufficient. For let p be a point of (a)X
X (") —(b)). Assume that M iz decomposable. Then M=K K,
where K= M= K,. As K, contains 4, K, X (b) =0. Therefore K
contains (b) and so K X (a)=0. Thus K X p=0. But as K con-

1) Z. Janiszewski and C. Kuratowski, loc. cit.
%) C. Kuratowski, Loc, cit,, Fund, Math. X, theorem 1, p. 235,
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tains () K contains (b) and so contains p. Thus a contradiction
is obtained. Therefore condition (2) and so condition (1) is sufficient,
Theorem 6. In order that M bhe indecomposable it is necessary
that neither (a) nor (b) be closed.
Proof: Assume that (a)==(a)’. Thus since M is indecomposable
(aY == M and so (a) contains b which is impossible. ‘

Theorem 7. In order that M be indecomposable it is necessary

and sufficient that M = ((a) — (a)) 4 (a) X (0) 4 ((b) - ().

Proof: The condition is necessary. For as M == (a) == (b)" every
point of M which is not contained in (a) is contained in (@)’ - (a)
And by corollary 2 (b) contains (a)’ — (a). Therefore (b) =(a)' — (a)~}-
~}-(a) X (b) and similarly (a) = (b)) — (b) + () X (b). Therefore as
M =(a)+ (b) by theorem 5, M = ((@)— (a) + (a) X (&) +
) |

The condition is sufficient. For as M==({a)' —(a)) 4 (a) X () +
=+ ((b)'— (b)) and as the closed set (a)’ contains ((a)’ — (a)) 4~ (a) X (b),
which must contain (), ()’ must also contain () and so (a) == M.
Thus M is indecomposable ?).

T1I. Remainder sets of M.

Definition. The set p 4 g is a remainder set of a point set W
if W contains a subcontinuum K, such that K, = W.

Yoneyama proved?) that if both a4-5 and ¢4-d are non-re-
mainder sets of a point set C then either a 4-¢ or a4d is a non-
-remainder set of C. In this section further properties of irreducible
continua from the stand point of these sets are obtained.

Theorem 8. If M is decomposable, p X (b)=p, and ¢ X (a)=yq,
then p+-q is a non-remainder set of M.

Proof: Assume that p—i—'q is a remainder set of M. Then
K,, == I and so K, does not contain a for if it did it would con-
" tain pa=M; (M—K,) contains a subcontinuum A4 %) containing
a such that 4 X K, = 0. Therefore 4+ K,, contains a—p and
50 contains pa = M. As K, X b=0, otherwise K, contains by = M,
4 Xb=> and so 4= M. Thus (M — K,,) =M and so K, is con-

) €. Kuratowski, loc, cit.

*) Yoneyama, Theory of continuous sets of points, Tohoku Math, Journ.,
Bendai 1917, p. 48, theorem 3. See also Kuratowski, Fund, Math, ILI,, p. 208.

) Kuratowski, Fund, Math, III, p, 212,
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tained ‘in (p), X (¢);*). Thus ¢ is contained in (p)a and so ga =
=pa=M=gb. M is then indecomposable *) which is a contra-
diction. Thus p—¢ must be a non-remainder set of M.

Theorem 9. /n order that p+q be a non-remainder set of M
it is necessary that (a) contain one point of p+q and that (b) con-
tain the other. ‘

Proof: Both (a) and (b) contain points of p—{-’q %). Consider
for example the case ‘where (a) contains p. If also (a) contains ¢
then the theorem is true since (5) X (p+¢)=F=0. Consider then the
case where ¢ X (a)==0. It is then required to prove that g X (8) =gq.
As ¢ X (2)=0, K, M. Thus K,, X p=0. But K, +K,=M.
Therefore K,,=M and so g X (b)=g.

Theorem 10. If p—+gq is a remainder set of M, (a) contains p,
(b) contains q, then (a) X (b) contains p—-q.

Proof: By hypothesis bg=M=aq==K,,. Thus K,, X (a+8)=0
for if K,, contains either a or b K, — M. As K., + K,, contains
ag=2M, K,, contains b and so equals M. Therefore p is contained
in (a) X (b). Similarly K, ,+K,,= M and so K,,= M and thus ¢
is contained in (a) X (b).

Theorem 11. If M is decomposable then in order that p+q
be a non-remainder set of M it is mecessary and sufficient that (a) X
X (@49 and (b) X (p+q) each contain one and only one point.

Proof: The condition is necessary. By theorem 9 both (a) and
(b) contains a point of p-|-g. If either contain two points then either
p or g would be contained in (a)X () and so M would be inde-
composable which is contrary to hypothesis.

The condition is sufficient. Neither p nor g is contained in
(@) X (b) for M is decomposable. Consider for example the case
where (a) contains p and (b) contains g. Thus by theorem 8 p+y¢
is a non-remainder set of M.

Corollary 3. In order that M be decomposable it is necessary
and sufficient that (a) X (p -+ q) and (b) X (p -+ q) each contain one
and only one point for each non-remainder set p 4 q of M.

Proof: The condition is necessary for since M is decomposable,
it p+g is a non-remainder set of A, then by theorem 11 (a) X
X (p-+g) and (3) X (p-+¢q) each contain one and only one point.

1) Kuratowski, Fand. Math. X., p. 233,

?) Janiszewski et Kuratowski, Fund. Math. I., p. 215.
1) Yoneyama, loc, cit,
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The condition is sufficient. For assume that I/ %B indef}omposgble.
Then by theorem 4 (a) X (b) contains a point p. Since p is c?ntalned
in (b)) a-+p is a non-remainder set of M. Th}ls ‘by hypothesls‘ (@) X
% (a-+p) contains but ome point. However it is seen that it con-
tains two points. Therefore M is decomposable.

IV. Frontier sets.

Definition. The set K is a frontiex set of the point set C if
(C—K)Y=2C, If C is a continuum and K is a subcontinuum of C
then, if K is a frontier set of C, K is a continuum of condensation.

C. Kuratowski proved that if K is a subcontinuum of M
containing « then a necessary and sufficient condition that K’ be
contained in (a) is that (M — K) = M*); also if M is bounded
then (M—(a)f = M. A few additional properties of frontier sets
are given in this section, :

Théorem 12. If p X (b) == p, and there exist in M a decompo-
sable pb, then (M —pb) = M. .

Proof: 1t is seen that (M — pb) == 0 for if it did pb=M=ap
and so pb is indecomposable 3) which is a contradiction. Assume
that (M — pb) == M. Then (M — pb) is a continuum ) containing a.
Since (M —pbY = M, (M — pb) X (p~+8)=10. Let y be a point
of (M — pb) X pb. Then (M — (M-— pb)) = py = by == pb 4) and so
bp is indecomposable which is a contradiction. Hence (M — pb)’ = M.

Corollaxy 4. If p X (b)=yp, and there ewist in M a decompo-
sable pb, then pb X (b) == pb.

Proof: This follows directly from theorem 12 and from the
theorem by Kuratowski.

Theorem 13. If M 1s bounded then in orher that (b) — (b) be
closed it is necessary and sufficient that (b)Y — (b)==0.

Proof: That the condition is sufficient is evident,

The condition is necessary. Since (M —(b))'==M every point
of (b) is a limit point of M — (b). Consider any point ¢ of (b). For

1) Loc. cit., Fund. Math, X, p. 283--236, theorem III, and corollary and
lemma 2.

) C. Kuratowski and Z Janiszewski, Fund. Math, [,, theorem IV.
p. 215,

3) C. Kuratowski, Fund, Math, I, p. 208, theorem III,

4) Ibid,, p. 205, th, VI
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any region K containing ¢ there exists a region B containing ¢
such that X contains R’ and R’ X (Y — (8)) = 0. Since g is a limit
point of (M —(})) R contains points of M—(b) and so of M— (b)—
— (b)Y — (b)) =M —(b)'. The set (b) is connected by theorem 2 and
so (b)) is a subcontinuum of M. Thus (b is contained in (b)) The-
refore (b) — (b) = 0.

Corollary 5. In order that M be decomposable it is sufficient
that (bY — (b) be closed, if M is bounded,

Proof: Since (b)Y —(b) is closed by theorem 13 () — (3)= 0.
Thus (b) is closed. Therefore by corollary 1 (a) X ()=0. A

nd so
by theorem 4 M is decomposable.

V. Basic-wise eonnected subsets of M.

Definition. Two points z and y of a point set W are basic-
-wise connected in W if W contains an irreducible continuum sy W.
A basic-wise connected subset of W is a subset every two points of
which are basic-wise connected in W. A point set W is strongly
connected if every two points of W are contained in a subcontinuum
of W. A maximal strongly connected proper subset of W is a strongly
connected subset which does not contain W -and which is eontained
in no strongly connected subset of W which it itself does not con-
tain. A maximal strongly connected proper subset of W is a ma-
ximal basic-wise connected subset of W if W is bounded, since
there exists an irreducible continunm between every two points of
& bounded continuum. The set P (a, C), for a continuum C contai-
ning a, ot Janiszewski and Kuratowski's paper Sur les continus in-
décomposables ?), is a maximal strongly connected proper subset of C
if it is a proper subset of C.

If C is an arc xy and a is any point of C except x and y,
then %8 (a, C) = C while both C— z and C—y are maximal strongly
connected proper subsets of C. ' ‘

Theorem 14. If (a) — (a) contains p, T is a mazimal strongly
connected proper subset of (a)’ containing p, then (a) — (a) contains T.

Proot: Since (a) contains 7, if (a) —(a) does not contain 1,
then 7' (a)5= 0. Let a, be a point of 7'X (a). The set K, of T

) C.Kuratowski, loc. cit., Fund. Math. X., lemma 2,
%) Fund, Math, L., p. 215.

Fandamenta Mathematicae T. XVII.
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does not contain (a) since K, == (a) as T is a proper subset of (a).
Let a, be a point of (a)— K,,. Since (a)=(a2),,,;' by theore{n 1
K, is contained in (a,) and so in (a). Therefore p is not eonta}med
. in (af — (a) which is a contradiction. Thus (a)' — (4) mus.t contan.l T
Theovem 15. If M is indecomposable then (a) — (a) is a maximal
strongly connected proper subset of (a)'. o .
Proof: If (a) —(a) contains less than two points it is evi-
dently a strongly connectéd proper subset of (a). Let then p g
be any two points .of (a) —(a). There exists K, of' (c.t)':: M 1,
Either K,,= M of K,,== M. The case where K, =M is impossible
gince by theorem 9 p or ¢ i§ contained in (a) instead of in (a)’ -~ (a)
Thus K,, = M. And as p is contained in (a)’ — (a), _K w5 M Assume
that K, X (a) contains a;. Then K, 4K, contains o, -4 and so
contains ;b= M. This is impossible since K, =M ==X, Thus
K,, X (a)=0. Therefore K, is contained in (a) --(a) and so
(a)' —(a) is a strongly connected proper subset of (a)' = M.
Assume that W is a strongly connected proper subset of (o)
containing (a) — (a). If W=k(a')— (a) then WX (a)5=0. Let a, be
contained in W X (a) and let K,, be a subcontinuum of W. As

Pay
K.+ K,,= M, K,,,= M since M is indecomposable and K== M.
Thus W =277 and so W is not a proper subset of (a). Therefore
(a)’— (a) is a maximal strongly connected proper subset of (a).

Corollary 6. If M is bounded then in order that M be inde-
composuble it is necessary and sufficient that (a) — (a) be a maximal
basic-wise connected subset of M everywhere dense in M.

Proof: The condition is necessary. For since M is bounded it
follows from theorem 15 that (4)' —(a) is a maximal basic-wise
connected subset of M. And () — (a) is not closed since if it were
then by corollary 5 M would be decomposable, As (a) contains
(a) —(a), (a) must then contain a limit point, a, say, of (a) — (a).
Therefore (@)’ —(4))’ is a continuum containing a, and a point p
of (a) —(a) and so containing a K,,. But K, K,, is a subcon-
tinwum of Af containing a, 45 and so containing M. As K,,== M,
Ky =M. Therefore ((a) —(a)) =DM and so (a) - (a) is every-
where dense in M.

‘The condition is sufficient. For as ((a) —(a)) =M, (a)f =M
and so M is indecomposable.

) C. Kuratowski, Fund. Math, X. p, 235,
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Theovem 16. If A7 is bounded and (a)
the maximal basic-wise connected subset of (ay
where dense in (a).

Proof: Let R, (i=1, 2,...) be a set of regions having only

a in common, such that B; X p=0 and R, contains Ry Sinece (o)
is a bounded continuom, by theorem 2, there exists a connected
subset?) X, of («)’— R — p such that XX p=p and X;XR30.
Similarly there exists a connected subset X, of (af — B, —
— (X7 X +...4 X)) such that XiX(Xi4...4+ X )+0
and X; X B; 5= 0. Thus A] W a=0. Let T=p+X+X1....
The set 7" contains a for R,, R,,... have only this point in common.
The set 7' is a basic-wise connected subset of (a) since for every
two points # and y of 7 there exists an m such that (X{ 4.4+ X
contains z -} 4 and so contains an zy of (¢) which does not con-
tain a. As p is not contained in (a) pb == M. Thus pb X (a) = 0.
But pb-}- 7 is a subcontinuum containing a -5 and so contai-
ning J/. Therefore. 7’ contains (a) and so the maximal basie-wise
connected subset of (4) eontaining p, which also contains 7, is
everywhere dense in (a).

Corollary 7. If 3 is bounded then in order that (a) — (@) 40
it is necessary and sufficient that ((a) — (a)) = (a)".

Proof. The condition is necessary. For by theorem 14 there
exists in (a)’— (a) a maximal basic-wise connected subset of (a)
which, by theorem 16, is everywhere dense in (a). Thus ((a)’— (a))
contains (@)’ and as (a)’ contains :(a)'— (a)), {a) = ((ay — (a)).

It is evident that the condition is sufficient.

Theorem 17. If M is bounded and ((a) - (a)) X ((b) — (%))
contains p, then there exists a basic-wise connected subset T of (a) —
— (a) + (8)' —(B) which contains p and T'= M is decomposable.

Proof. By theorem 14 the maximal basic-wise connected sub-
set, W say, of (a)' containing p is contained in (a) — (a); and the
maximal basie-wise connected subset, U say, of (b) containing p is
contained in (b)’—(4). Thus W' U’ is a subcontinuum of M
which by theorem 16 contains a -5 and so contains M. _

As (@) --(a)) X (Y —(b)) contains p, ((@)+ (5) X p=0. The-
refore by theorem 5 17 is decomposable.

Assume that W - U is an irreducible continuum. Then W U=

—(a) contains p, then
containing p is every-

1) Anna M. Mulliken, loc, cit.
4*
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- W4 U'=M But as WX (a)=0, UX (a) ,::: (@), Thus (by
contains (a) and so contains a - b. T‘he'refore (bY == M and so M
is indecomposable 1) which is a contradiction. Therefore W U= T
is a basic-wise connected subset of (a) — (a) -+ (B) — (b). .
.In corollary 6 it was shown that if M is bounded then in or-
der that M be indecomposable it is necessary that (a)— (a) be
a maximal basic-wise connected subset of M everywhere d'euse in M.
And (a) — (a) contains b. It is known that for any pvint ¢ of an
indecomposable continuum M there exists a point d s'uch tha?t
" ¢d=M?). Thus for a bounded continuum every point ¢ is contai-
ned in a maximal basic-wise connected subset of M everywhere
dense in M. It has been shown in theorem 7 that any indecompo-
sable continuum is the sum of the three point sets (a)'— (@), (@) X
X (b), and (b)' — (b) and these three point sets are distinct. Thus
it is seen that if a maximal basic-wise connected subset contains
a point of one of these sets it is contained in that set.
The composant du point ¢ dans M%) of Janiszewski and
Kuratowski is a maximal basic-wise connected subset of M
if M is a bounded indecomposable continuum4). They point out5)
that there are an uncountable number of these distinet composants
“in an indecomposable continuum, We thus have that a bounded in-
decomposable continuum M is the sum of an uncountable number of
distinct maximal basic-wise connected subsets of M each of which is
everywhere dense in A One of these maximal basic-wise connected
subsets is the set (a)'— («); another is the set (5)' — (h); and (a) X (b)
~ contains the remaining uncountable number of such sets, If ¢ is
contained in one such maximal basic-wise connected subsets and d
is contained in another then c¢d = 7,
Theorem 189). If 31 is bounded then in order that M be inde-
composable it is necessary and sufficient that M contain a basic-wise

) C. Kuratowski, Fand. Math. X., theorem 1, p. 235.

%) Janiszewski and Kuratowski, loc. cit, theorem Iv,, p. 215,

%) Loc, cit., Fund. Math. I, p. 218,

4) A maximal basic-wise connected subset of an irreducible continnam is not
necessarily a composant of that continuum., But a composant of a bounded con-
tinuum is always a maximal hasic-wise connected subset of that continuum,

- 5 Loe. cit.,, p. 218—219,

*) 8ee P. Urysohun, Mémoire sur les multiplicitds Cuntoriennes, Fund,
Math, VIIL, p. 226
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connected subset T everywhere dense in M such that M — T is eve-
rywhere dense in M and T X (OEIE]

Proof: As shown above the condition is Decessary.

The condition is sufficient. Consider for example the case where
T X (a) contains ¢. Then ¢h = M. Sinee every point of 7 can be
joined to ¢ by an irreducible continuum of 7, every point of 7T is
contained in (c), Y), since (M — TY =M. Thus 7" = M is contained
in (c), and as then (), = cb =M the set M is indecomposable,

Corollary 8. If M is bounded then in order that M be inde-
composable it is necessary and sufficient that M contain tipo distinct
basic-wise connected subsets T, (i==1, 2) each of which'is dense in M
and Ty X ((a)+ () = .

Proof. That the condition is necessary -is shown above and
that it is sufficient, follows from theorem 18. '

Corollary 9. If M is bounded then in order that M be inde-
composable it is necessary and sufficient that M be the sum of more
than two distinct basic-wise commected subsets of M each of which is
everywhere dense in M. ;

Proof. That the condition is necessary is shown above. It is
sufficient by theorem 18 since one of these distinet basic-wise con-
nected subsets must contain a. .

Corollary 10. If M is bounded then in order that M be inde-
composabdle it is necessary and sufficient that M contain a basic-wise
connected subset T which is everywhere dense in M and T contains
a but does not contain (a). : ‘

Proof: As shown. above the condition is necessary. The con-
dition is sufficient. Let ¢ be contained in (a)—T since T X (a)==(a).
Then ¢b=M=ab and so (c), contains a. Let T contain p. The
set 7 contains a pa which does not contain ¢. Thus by theorem 1
(¢)s contains pa. Therefore (c), contains 7" and so (¢)s” contains "= M.
Thus M is indecomposable. -

Lemma 1. If K is not a continuum of condensation and K X
X (a+b)=0, then there exist an au + vb=(M — KY and auww= |
=(M-— (M — K)Y in K such that au+ w4 vb=M If K is
not a continuum of condensation and K X (a -+ b)=a, then there
exist an au=(M— (M —K)Y and a ub=(M— KY such that
M = au - ub. ' o

i} C. Kuratowski, Fund, Math, X,, lemma 2,
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Proof: Consider the case where K X (a-b) =0.‘ It is 'evi.
dent that K contains the continwum?) (M — (M — K )’)’.’ Since
(M — KY = (M —(M— (M — KY)Y?) ond since (M — K} == M,
(M —(M —(M—KYYY4M and so (M—(M— KYY is not'a /gon-
tinuwam of condensation. Let (M — K) =(M -~ (M — (M — K))) =
— A+ B where 4 contains a and B contains b Let 4 X ('M —
— (M — KYY contain u and B X (M — (M — KY) contain v
Thus A= au®) and B=bhy and so W =au -4 (H — (M — KYY -
+ b, As (M — KY = (M — (M — (M — K))), (M — (M — KYy=
=(M—(M—(M—(M—KY)YY. Therefore (M - (M- K))=uv1).
Thus M = an -+ uv v where K contains wy and (M — K)' con-
tains au - ob. :
~ The case where (a-}06) X K=a is treated in the same manner.
Theorem 19. If T is a basicawise counected subset of M such

that T and N — T are both everywhere dense in M and T X (@)

+ (b)) =0 then for any point p of M — (a)——(b) either there exist
e pa and an (M — pa) or o pb and an (M - pb) which are inde-
composable proper subcontinua of M.

Proof: Either there exist pa or pb%). Take for example the
case where. there exist pa. Since M — (a) —(b) contains p, pa ==
4= M = K,,. Thus (M — pa)’ &= M and so pa is not a continuum
of condensation. Therefore by lemma 1 there exists an au == (M —
- (M—KYY and a bu==(M -— K), where XK ==ap, such that

M = au -} ub. Assume that aw X T'==0. Then bu contains 7' and

5o contains 7’ = M. Thus (M — pa) = M which is a contradiction.
Therefore ay X T<=0 and similarly bu )X 75 0. Let g be any
point of au X 7' Then 7' contains a gu,, joining ¢ and b, since T
is basic-wise connected. Thus M = gu, 4 ub -+ K, , where au con-
tains K. But M — T is dense in M and so (M — I} = M con-
tains 7' in which case A, ub contains gu;. Thus K, - ub =21
and so (M — ub) = (M — (M — ap)) = K,, = au. Thus (u), eon-
tains ¢ and so contains 7 X au. Then (u), contains (7' X au) =
=T"Xau=au as T is dense in M. Therefore au, and similarly
bu, is indecomposable. And both aw and lu are proper subcontinua

1) C. Kuratpoweski, Fund, Math. [IL, theorem V., p. 203.
2 Ibid. theorem 6., p. 188.

3) Ibid, theorem 1V., p. 204,

4 Ibid. theorem VL., p, 205,

5) ibid, p. 219.
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of M. If au X p=p, then o =ap and bu=(M —apy. If bu X
X p=p, then ap X (M — ap)’ contains p and so bu=(M — ap) =
= bp') and aw = (M — bp).

Theorem 20. In order that the bounded decomposable continuum
M be the sum of two proper indecomposable subcontinua 4 is neces-
sary and sufficient that M contain a basic-wise connected subset T,
such that T and (M — T) are both everywhere dense in M.

Proof: The condition is sufficient. For T X A(a) (&) =0
for if not then by theorem 18 M is indecomposable. Therefore by
theorem 19 M is the sum of two indecomposable proper subcon-
tinua of M.

The condition is necessary. Let ap and bg be two indecompo-
sable proper subcontinua of ap 4 gb =M. Then by lemma 1 there
exists a point u such that au - ub = M where ap contains au and
(M — ap)’ = bu. But every point of an indecomposable eontinuum
is contained in a maximal basic-wise connected subset which is
everywhere dense in that continuum. Thus say W of ap contains u
and that ¥V of bg contains w.

Let 7= W V. Then T is everywhere dense in M, since W
is in ap and ¥V is in bg and so W+ V=T is in ap + bg =M.
As bg==M by X a=0 and so VX a=0. There exists a re-
gion R containing a sueh that R’ X bg = 0. Let B X (ap— W) con-
tain y. Thus W)X a=0 for if not W contains au but au-tbg==M
does not then contain y. Therefore 7= W - ¥ does not then con-
tain @ and so 7 is a basic-wise connected subset of M. v

Let K be the basic-wise connected subset of ap which contains o
and let N be that of b9 which contains 6. Let R X W of ap con-
tain 2. Then KX 2=0, as K X W=0 and bg X 2=0 as R'X
X bg=0. Thus K X bg==0 for if not K-bg=M does not con-
tain z. Similarly N X ap=10. Thus as K is dense in ap and N
in bg, ap +bq — T is everywhere dense in AL

VI. Co-end-sets of A/

If ¢ is contained in (b) then (¢),= (b), for if d is contained in
(¢). then da=ca==ba and so (}), contains d. Thus it only remains
to determine the relation between (a), and (a),. In the case of an

1) C. Kuratowski, Fund. Math, III, theorem IV., p. 204,
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indecomposable continuum, if 7, _is the maxirma} strongly connected
proper subset of M/ which contains b and 7, is the corres;spondmg
set containing ¢, then, if T,= T}, (a)y=M— Ty=M— T;==(a);
if 7,4 T, then, if N=M—1T,— 1T, (=N~ T, and (a).=
=N+T,. N

Theorem 21. In order that M be decomposable it is necessury
and sufficient that (a),= (a), for every point ¢ of (b). '

Proof: The condition is necessary. Let (a), contain g. Then
ac = ab = gc. Thus by theorem 11 (a), X (9--¢) contains one point.
It does not contain ¢ for if it did (a) X (b) contains ¢- and so M
would be indecomposable. Therefore (a), contains g and so contains
(a),. Since, if (b) contains ¢ then (c), contains b, it also follows from
the above reasoning that (a), contains (a),. Therefore (a), == (a),.

The condition is sufficient. Assume that M is indecomposable.
Then (a) X (b) contains a point ¢. Thus ac=ab. The set (a), does
not contain ¢ although (a), does. Therefore (a).=F(a), and so M
must be decomposable. '

Corollary 11. If (b) contains e then in order that (a), does not
contain ¢ it is necessary and sufficient that (a), = (a),.

Proof: The condition is necessary. If M is decomposable then
by theorem 21 (a),=(a),. Consider now the case where J is in-
"decomposable. As shown above if 7), contains e then (a),==(a),. If
T, does not contain ¢ then M — 7),= (a), contains ¢ which is a con-
tradiction. Thus this case does not exist. Therefore the theorem is
true for all possible cases.

The condition is sufficient. Assume that (a), contains e. Thus
(@), =(a). contains ¢ which is impossible. Therefore (a), does wvot
contain . . '

Corollary 12. If (b) contains e then in order that (a), contain e
it is necessary and sufficient that (a), contain b.

Proof: The condition is necessary. As (b) containg ¢ ea = ba
and as (a) contains ¢ eb = ab. Thus ea = ¢b and so (a), contains b.
In a similar manner it is shown that the condition is sufficient.

Relations between co-end-sets of various subcontinua of M are
also of interest. In the following theorems properties of (b) and the
co-end-sets of certain subcontinua of M are cobtained.

Theorem 22. If F=(b) — (b) contains a point g then bg=(b)
and (b), of by contains (b) and (9)s contains K,
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Proof: As (6) X g=0, K., X (b)=0. As (b) contains b 4 ¢
it contains a K,, and K, - K,, = /. Thus K X (b)=(b) and
so K, contains (b). Therefore K, = (b) =bg. Since g is any point
of F, (g), contains F. Consider now any point b, of (b). Then ()
contains a K, and K,, -+ K,, = M. Hence Kyg= by =bg=1g.
Therefore (b), contains (b).

If g is contained in F there exist but one bg. If M — (b)Y con-
tains g the following corollary is also true.

Corollary 18. If M is bounded and (b) does mot contuin the
point g of M then the sum of the (b)'s contain (),

Proof: Let h be any point of (4). For every hg and ga, hg
~+ 9a =M = ha. Since ga= M, ga X (b)=0. Thus every hg con-
tains (b). Then every hg contains a bg. But for every by, bg -}
—+ ga= M, and so by contains (b)' and so contains k. Hence every
bg contains an hg and 8o a bg = hg. Therefore a (b); contains k.
Thus the sum of the (b),'s contains (b). v

That (b) does not always contain the sum of the (b)s is seen
from the following example. Let N he an indecomposable conti-
nuum containing the three distinet maximal basic-wise connected
subsets, 7} (i =1, 2, 3), where 7, contains 4. Let az be an irredu-
cible continuum such that (x), X N=z, ~+ 2, where 7, contains z;,
but ax contains no other point of N. Then ab== N-za. Hence
(b)==N— T, — Ty. Let T} contain g. Then bg= N and (5),==N— T
Hence 7; is contained in (), but not in (5).

Theorem 23. If M is bounded and (b) does not contain a point g
of M then either the sum of the (b))s=(b} or an indecomposable
subcontinuum of M contains (b).

Proof: Assume that () does not contasin some point e of
a (b)- Then eg=>bg but ea =M. Assume that eg contains a. Then
eg =bg=M. Hence (¢—g) X (5)3=0 by theorem 9. As this is a
contradiction eg X a=0. There exists then by lemma 1 an ax 4
+gb=M=oaz+zb. And every ag contains ax, so azx X (b)=0
a8 ag=F M,

Consider the case where bz of b9 contains g. Then br contains
bg=ey and so contains e. Thus if bz X g==0, br X e=E=0. Consider
now the case where br X e==0 but bx X g =0. Let gy ) of g join g
and bz. Then if ze of bz joins gy and ¢, ez gy=>~g and so

1) Anna M. Mulliken, loc. cit.
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ze X b=1 as ax contains gy. Hence ze containg b -+ and so con-
tains bz. Thus ez = bz = bz. Then if az - 2z¢ = a¢, ae = M which
is a contradiction. Thus ae contains an ¢w joining az and e such
that ew == bz, Then ew X 2=0. Assume eb=bz. Then eb X 2=0.
- Therefore be - ew contains bz but does not contain 2 which is
a contradiction. Hence ez = ¢b = bz — bx and so bz is indecompo-
sable and contains (b). The following two cases remain to be con-
sidered.

(1) Consider the case where b X (¢ | g) = 0. Let ey, join e
and bz in bg and gy, join g and br. But ey, X gy, =0 for if
. not ey, 4 y,9 =¢g = by and so ax contains b. Then ey, -y, y; -
+ y,g==eg=n>bg and so y,y, contains b. Hence br==by,==y,y, =
=y,b and so bz is indecomposable and contains (b).

(2) Consider the case where bx contains e--g. Let ex, of ba

join ¢ and az and let gz, join g and az. Then ex; X goy =0 for
if not ga, 4 x,6 =ge=gb and so gz, or ex, contains b and so
ag or ae contains b. Hence ez, -+ » u, -+2,9=¢g==0>bg and so
x,, contains b, Thus bz, = 2,2y =,b is indecomposable. -And
as shown above bz contains (b).

Corollary 14. If M is bounded, (b) does mot coniain g, and
there exists but one hg where h is any point of (b),, then (b) = (b),.

Proof: As ga=k M, ga X (6)=0. But ah}-ag contains hg==bg.
Thus ah contains b and so ak= M and (b) containg h. Thus (b)
contains (), and so by corollary 13 (b) = (b),.

Theorem 24. If M is bounded and (h-g) X (b) =0 but h X
X(b), = h, where (b), is any (b),, then any hb of by is indecomposable.

Proof: By hypothesis hg = bg. Either hb=bg in which case
hb is indecomposable or hb==bg, where hb is contained in byg.
Consider the latter case. Then hd X g=0. Let hbo -+ wg=bg
where wg= (bg — hb)". Either (1) wg = bg or (2) wg == bg.

(1) wg="bg. Let bh+ 2a= M, where ha contains za. Then
za containe M —bh and so contains (bg — bhY = wg.= bg, Thus
2a contains b and so za= M, which is a contradiction as za is
contained in ha == I

(2) wg == by. Thus wg X (b + k)= 0. Let wb + wh = bh. Then

wg + wb =bg=hg. Thus wd X h=h. Also wg-wh =:gh ==bg.
Thus wh X b =>5. Hence wb=>bh =wh is indecomposable.
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Theorem 25. In order that M be indecomposable it is necessary
and sufficient that there exists a point g such that a (b, contains a.

Proof: The condition is necessary. By theorem 4 (a) X (b) con-
tains a point g. Then ga=gb =M and so (}), X a=a.

The condition is sufficient. For ag=—bg. Thus ag contains b
and so ag = M = bg. Thus ¥ is indecomposable.

Definition. If N is any subcontinuum, containing a point p, of
a continuum W and if p is not a limit point of any connected
subset of W — N, then p will he said to be an end-point of WY,

Theorem 26. If b is a nom-end-point of M and p is a point
such that p and b are arc-wise connected in M, then (b) contains .

Proof: Assume that (5) does not contain p. Then K,, = M and
so K,, X (b)=0. Let pb be an arc of M. Let bq of pb join b and
K,,. Then K,,4bg=M and so K,, contains (M — bgj’. Thus
(M —bg) X b=0. Let N be any proper subcontinuum of M con-
taining 5. Then bg X NN or bg X N==N.

(1) Consider the case where bq )X N==N. Then there exists
a br=N and s0o K, -+ gzt ob=2HN and K, -} zq contains
(M — xb)’ which cannot contain b for then zg contains b, Thus
(M — xb) == (M — N) does not contain b. (2) Consider the case
where bg does not contain N. Then (M —bg) X N30 and so
(M —bg)+ N=M. Hence (M — bq) contains (M — N) which

. then cannot contain b. Therefore in every case b must be an end-

point of M which is a contradiction. Henee (b) X p = p.

Theorem 27. In order that b be an end-point of M it is suffi-
cient that M — N be arc-wise connected, if N is a subcontinuum of
M such that N X b==0,

Proof: Assume that b is a non-end-point of M. Then by theo-
rém 26 (b) contains M — N. Then M — N does not contain a and
80 N contains a. Since N is closed N X (M — N)' =5=0. Assume
that N contains a point p of (b). Then N contains pa= M which
contains b. As this is a contradiction N X (b)=0 and .so M — N == (b).
Thus (M — N is indecomposable?) and as / — N is basic-wise
connected (M — N)' — (M — N)) = (M ~ N). Therefore N con-
tains (M — N)’ and so contains M/ — N which is a contradietion.
Hence b must be an end-point of M.

1y H. M. Gehman, Concerning end points of continuous curves and other

continua, Trans. Amer, Math, Soc., Vol. 30 (1928), p. 64,
%) C. Kuratowski, Fund., Math, X. theorem Il. -
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VIL. Two-point end-sets of M.

Definition. An n-point end-set of a continuum ¥ is a,l set of
n points of W such that for every connected subset 7" of E/V —N,
where N is any subcontinuum of W coutaining these »n points, 7
does not contain any of these 7 points?). .

Definition. The point g is a p joined-point of order k in W
if there exist in W k& and only % irreducible continua pg no two
of which are equal. The p joined set of order k in W is the set
of p joined-points of order k in W. o

In this section the following problem is considered: if p, - g,
(i=1, 2) is & two-point end-set of M, then unde'r what conditions
are py + 7y, B+ 90, @ + P, 80d gy + go two-point end-sets of M,

Theorem 28. If p-+g is a two-point end-set of M, then q is
a p joined-point of order at most one in M.

Proof: Assume that ¢ is a p joined-point of order greater than
one. Then there exist pxg == pygq and so pxq == M==pyq. Consi-
der for example the case where (pzq-pyq) X (a+ b)‘.——_- 0. As
pxq -+ pygq is not a continuum of condensation there exist au -
+bo= (U — (pvg+pyg) ?) such that H=au—+(pzg-+2yq)+
+ vk, Hence (st -+ vb) X (p+ ¢) =0. Consider for example the
case where au X pyg==0. Thus au X pxq=0 while bv X prg=0
and -bv X pyg=F 0. The set pzq contains (M — (au -+ pyq+
+ vb)) = U. Assume that U= U; + U, separate. But M =au--
+ U, + U, 4 pyq -+ vb is connected. Therefore either U, or U,
has a limit point in both au and (pyg + vb). Say U, does. Then au -

U, 4 pyq+ovb =M which is impossible. Thus U is connected,

and U’ joins au and pyg + vb. Similarly pygq contains a connected
set ¥V such that V” joins au— pxq and vb. Hence (U’ V') X
X (p+¢)=0 and so (au—+ U’) X (bv+ V’')=0. Therefore pxq
contains a subcontinuum X and pyq contains a subcontinuum Y
each of which joins aw- U’ and bv + V’. Thus au— U’ -+ X+
+V4+vb=M=au+4+ U+ Y+ V' +4vb and s0o X =71, But
X X Y contains p+4¢ and so prg=X=Y¥Y=pyq which is

1) For other theorems concerning two-point end-sets see P. M, Swingle,
A certain type of continuous curve and related point sets, (Submiited for publi-
cation to the Trans. Amer. Math. Soc.).

%) C. Kuratowski, Fund., Math. JiI. theorem v, p. 204.
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a contradiction. Therefore g is a p joined-point of order at most
one in M. '

~ Corollary 15. If M is bounded and p+ q is a two-point end-
set of M, then q is a p joined-point of order one in M.

Proof: Since M is bounded there exist a pg in M and by
theorem 28 there exist only ome pg in M. Thus g is a p joined-
point of order one in M.

Theorem 29. If M is indecomposable then in order that p--q
be a two-point end-set of M it is necessary and sufficient that M=— 2q.

Proof: The condition is necessary. For assume that peF M.
Then since M is indecomposable, p 4 ¢ is not a two-point end-set
of M1). That the condition is sufficient is evident.

Theorem 30. If p + g is a two-point end-set of M then in order
that M be indecomposable it is necessary and sufficient that for every
point x of M cither x<-p or z+q is a two-point end-set of M.

Proof: The condition is necessary. For by theorem 29 pg=M
and so by theorem 5 (p), 4+ (¢), = M. Thus either (p), or (g), con-
tains . Therefore either z - p or z 4 ¢ is a two-point end-set of M.

The condition is sufficient. For there exist, under the assumption
that M is decomposable, two proper subcontinua, U and V say, of
M such that M= U+ V. Tt is seen then that M = (M — Uy -}
+H(M—(M—UYY?) and so (M—U)' X(M— (M —U}y contains a pointz.
But 2 is then a point of (M — (M —UYY X (M — (M — (M — TYY)?)
and so a limit point of a connected subset of both M — (M — Uy
and of M — (M — (M — Uy'Yy. By hypothesis either 24 p or z24¢
is a two-point end-set of M. Consider for example the case where
2 p is. As either (M — U)’ or (M — (M — U)Y must contain p,
one of these set must contain z - p. However as its complement
is a conunected subset of M having z as a limit point p 4 2z cannot
be a two-point end-set of J/ which is a contradiction. Therefore M
is indecomposable.

Theorem 31. In order that M be indecomposable it is necessary
that there exist a two-point end-set p-+ q of M such thata -+ p, a+t¢q,
b+ p, and b-{-q are each two-point end-sets of M.

Proof: Since M is indecomposable it is composed of an un-
countable number of maximal strongly connected proper subsets

1) Z. Janiszewski and C. Kuratowski, loc, cit., theorem II, p. 212,

3).C. Kuratowski, Fund, Math, IIL, theorem IIIL, p. 203.
3) C. Kuratowski, Fund. Math. IIL, theorem 6., p. 183.
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of M1); let p be a point of one of these s.sets Which' contains npither
a nor b and ¢ a point of one which contains no point of a--b-4p.
The truth of the theorem is then evident. '

Theorem 32. If M is bounded. p—{—g is a two-point end-set
of M, and p-+2z and g2 are non-remainder sets of M, then pq
) “;’d:i)"zzf’ 'O szb:e.gz=M ==pz if pg=2H then M is indecompo-
sable, Consider then the case where pg‘ziz M. Then there exists by
lemma 1 a zv such that zo-pg= M==2q. L'et pov -+ vg == pg.
Then 2v 4 vp=2p = 2q =204~ vg. As p.-‘r- gisa two-pomt. end-
set of M 20X (p + ¢)="0. Thus vp contains g and vg contains p.
Therefore vp=pg=1vg and 80 pq is indecomposable.

Corollary 16. If M is bounded, p + ¢ and 2 v are ‘two-pomt
end-sets of M, and p+2, -2, and p-v are non-remainder seis
of M then pg and 2v are indecomposable.

Proof: This follows directly from theorem 32.

Theorem 38. If b+ p and b+ g are two-point e'nd-sets of M =
= ab=pgq then in order that M be decomposable it is necessary and
sufficient that at least two of the sets a-+p a+g¢ b+p, and
b q be remainder sets of M.

Proof: The condition is necessary. For assume that there does
not exist at least two of the sets a-+p, a+¢, b+p, and b-4¢
which are remainder sets of J. Then at least three of these sets
are non-remainder sets of M. Consider for example the case where
a-+p and a+ q are. Then ap =ag=pq and s0o M i's 'indecom~
posable which is a contradiction. Therefore the assumption is incorrect.

The condition is sufficient. For assume that M is indecomposable.
Since pg = M, by corollary 3, (a) contains one point of p -4 ¢ and
(b) contains the other. Consider for example the case where ()
contains p and (b) contains g. Then pb =M = ga and by hypothe-
sis K,, & M & K,. Either K,, X K, 0or K,, X K,, = 0.

Consider the case where K,, X K,, == 0. Then X, + K, =M
and as M is indecomposable either K, == M or K, == M which is
a confradietion.

Consider now the case where K,, X K, =0. Then b ¢ is
not a .two-point end-set of A%). Thus M must be decomposable.

) Z. Janiszewski and €. Kuratowski, Fund. Math. L, p. 218219,
%) Z, Janiszewski and C. Kuratowski, Fund, Math, L, theoram IL. p, 212,
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Lemma 2. If M=au-+tuv + v where au X vb=0 and
(M — (awu—+9b)) =uv, and N is a subcontinuum of M such that
NXu=u and N X vb=0, then uv— N is connected and if x
is a point of (uv — NY' X N then (uv — NY =oz.

Proof: Assume that y» — N=X-7Y separate. Both (au+N)-
-+ X +-vb== X, | X, separate and (eu+N)4+ Y+ ob =¥, +
+ Y, separate for since each of these sets is closed if they were
connected they would equal M which is impossible. Coosider for
example the case where X, contains at 4 N which is also contai-
ned in Y;. Assume that X; also contains bv. Then A/ — (au -+
+ N+ vb+4 Y -+ X,) 4 X, separate which is a contradiction. Hence
both X, and Y, must contain vb6. Thus .]l[_—.(au—]-N—-l—Xl + )+
+ (X, + Y, + vb) separate which is a contradietion. Therefore

-uv — N is connected and contains » Let K|, be any subcontinuum

of (uv — N) containing » 4 z. Then an +N+K, -+ vb= M and
so K,, contains (wv — N)’ and so equals it.

Theorem 34. If c+d and m +n are two-point end-sets of M
and three of the sets c—+m, ¢ 4-n, d+m, and d-}n are not then
the fourth is and every subcontinuum of M containing these two points
contains ¢ - d + m - n.

Proof: Consider for example the case where ¢ ~+m, ¢+ n and
@ -+ m are not two-point end-sets of M. Then there exist subeon-
tinua K, K., and K,, of M whose complements in 3/ contain
limit points in ¢—4-m, ¢4, and d + m respectively. Let K,, be
any subcontinuum of A/ containing & 4 n The set K =— K.+
+ K., + K, is a subcontinuum of M containing c¢+4d -+ m 4 n
and s0o (M — K)Y X (¢c+d-+m-+n)=0. Let M=au 4 uv 4+
+vb where (M — K)' = au - vb. Consider for example that K,
contains u. As M — K, contains a connected subset baving a limit
point in ¢ +-m, so also does M — K,, — au — vb for uv— K_, is
connected or vacuous by lemma 2 and (au - 0b) X (¢ 4+ m)=0.
Thus #» — K,,, must be a non-vacuous connected set, Hence none
of the sets K,,, K,,, or K, contains a point of both au and wh.

As one of the sets must contain u consider for example the case
where K, does. Then as uv — K., is a connected set having a li-
wit point in ¢4 m, ¢ say. (uv — K,,) = vc by 'emma 2. Let uz +
+ve=uvp where uz=(uv —vc). As (M — (au - u2)) has ¢ as

‘a limit point ¢ must contain d as ¢ 4 d is.a two-point end-set of M.

Consider now the set K, since K, contaius s and we contains d,


Yakuza


64 P. M. Swingle:

However v¢ — K, does not contain a connected st having d
as & limit point since ve — K, i8 contained iI? 'M — (Ko I{r.,,,‘)
and K., -+ K, is a subcontinuum of M containing ?he- two'-pomt
end-set ¢ 4 d. And for ve— Ky, to have m as a limit point ve
must contain m and so, as K,, contains m, ve==vm. So by reaso-
ning similar to the above vc must contain # and the 'conneeted set
pe — K, does not have n as a limit point nor cou}d it then have ¢
as a limit point. And as ve contains ¢ +d4m-n uv—wvc does
not havé a limit point in ¢+ d 4m +n and so wez — K, does
not have a limit point in ¢+ n, Thus if ve contains m, uv -— K,
does not have a limit point in ¢+ n and so M — K,, does not
which & a contradiction. Therefore vc X m =0 and 80 vc — K,,
does not have a limit point in d -4 m. And ve contains ¢ + d while
(uv — vc) = uz contains m.

Tt is then necessary that uz— K, have a limit point inm—+d
since uv — K, does. But (uv — vc)’ =wuz does not contain d. Thus
m is a limit point of uz — Ky, and so (uz — K,,) = um. Hence
um containg # and so contains m - n but um X (¢ 4 d)==0; and
ve X (m 4 n) =0 while vc contains ¢ 4 d. The set uz — K,y does
not have z as a limit point since uz — Ky, is contained in wm and
80 in uz — (K, + Kj,,) which does not have a limit point in m —+n.
Then vb — K,, would have to have d as a limit point for some
K,, if d+n is not a two-poiut end-set of M. It would then be
necessary that there exist a vd but this must contain ¢ and so vd=
=vc=(uv — (K + K..))". As K,, and K, both have points of
w2 in common, K, + K,, is a subcontinuum of J containing n --m
and 8o uv —(K,, + K,,) does not have a limit point in ¢ --d -
+m 4 n which is a contradietion if d4-#» is not a two-point
end-set of M. Therefore d 4-n must be a two-point end-set of I
And as any K, joins vc and wm it must contain also ¢ 4-m for
(ve — K,,Y does mot contain d and so does not contain ¢; also
(um — K,;) does not contain 7 .and so does not contain m.

Theorem 35. If ¢+ d, m -+ n, and ¢ 4-m are two-point end-
sets of M and cither every subcontinuum K. confaing a point of
m-}n or every subcontinuum K., contains a point of ¢ - d, then

(1) either c—+mn or d4+n is a two-point end-set of M.

(2) either d+m or d4n is a two-point end-set of M.

Proof: Since the proof of (1) and (2) are similar only the
proof of (1) will be given. Assume that c» and d--» are each not
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two-point end-sets of M. Then there exist K., and K,, whose com-
plements in M have a limit point in ¢ 4+ » and d -+ n respectively.
Let K=K, + K,,. The set K is a subcontinuum of M containing
¢c+d and so (M—K) X (¢c+d)=0. Let M=au-+tuo-+ vb
where (M — K)' = au - vb. Either (au- vb) X n=1n or (au 4
~+vd) X n==0.

(i) Consider the case where (au -}-v5) X n=mn. Then either
K., or K,, contains a point of both au and vb and so coutains uv.
Consider for example the case where X, does. Then K, contains d
and 80 is a subcontinuum of M containing ¢+ d. Since au - vb
contains 7 consider for example the case where au X # =—#. Thus
au=an, an contains m and so au contains # 4 m. But au X uv
does not contain ¢ or d since ¢-d is a two-point end-set of M.
Also uv X (m 4 n)=0 since m-}n is a two-point end-set of M.
Thus as a contradiction with the hypothesis is obtained this case
can not exist under our assamption.

(i) Consider then the case where (au -}-vb) X n= 0. Neither
K., nor K,, contain a point of both au and vb, for say that X, did.
Then (M — K_,) which is contained in au - v5 must contain a point
of ¢4 n but this is impossible. Consider then for example the case
where K, X u=u and K,, X v-}v. As (uv— K_,)’ contains either ¢
or n it equals either ve or vn. Similarly (uv — K,,)’ equals either
ud or un. .

Consider the case where one of these sets equal vc and the
other ud. Then vc contains d and so ud 4 v¢ = uv and so one of
the set ud or vc contains n and ‘thus either ud ==wun or vc=1on.
Thus either au + K., contains ¢ -+ d + m - n, since au -+ ud does,
or bv 4 K,, does since bv 4-vc does. As this is impossible under
cur assumption this case does not exist.

Consider then the case where (uv — K,)=vc¢ and un=
== (uv — K,,) f=ud. Then vc contains ¢+ d and aw -+ un con-
tains w -+ n. However vc X n=20 for if not bv -+ v¢ and so bv+
-+ K, contains ¢+ d -+ m - n which is impossible. Thus v¢ con-
tains ¢ 4 & but does not contain » while au 4 un contaios m -+ n
but does not contain d. As (uv -— vc) contains % - n and so eon-
tains un and as (v — v¢)’ cannot contain a point of ¢~ d and so
au -+ un does not contain either ¢ or d. And as ay - un contains m,
(wv — un) contains ¢ d but does not contain a point of m -+ n.

Fondamenta Matbematicas, T. XVIL b
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As this is contrary to our hypothesis this case cannot exist under
our assumption.

Consider then the case where (wv — K,) = vn 3= ve and
(uv — K,,) = ud. Hence ud contains ¢ 4 d but does not contain n
for if it did au -4 K,, would contain ¢ d 4 m -+ n which is
impossible. And bv -4 vn contains m - n but does not contain ¢,
Assume that vn contains d. But (v — ud)’ contains v} #» and so
equals vn. Thus every point of ud X vn, and so d, is a limit point
of the connected set vn— ud which is impossible as ¢ d is
a two-point end-set of M. Hence vn X d =0, Assume now that ud
contains m. But (wd — vn)’ contains v 4 & and so equals ud. Thus
every point of ud X vn, and so m, is a limit point of the connec-
ted set ud — vn which is impossible, Hence ud contains ¢~ d hut
4d X (m+n)=0; and vn 4 vb contains n—m but (bv + va) X
X (¢-+d)==0. As this is contrary to hypothesis this case does not exist,

The case where (uv — K,,)’ = vn and (v — K,,)’ == un remains
to be considered. This case cannot exist for then Zw—}—vn, and 8o
bv+ K,,, contains m --# and so (uv — K,/ X n=10. Therefore
as every case is impossible under our assumption the assumption
must be incorrect. Thus either ¢ +n or d -+ n is a two-point end-
set of M.

Corollary 17. If ¢+ d and m -+ n are two-point end-sets of M
and either every subcontinuum K, contains a point of m -4 n or every
subcontinuum K,, contains a point of ¢+ d then either ¢+ m and
d+nor c+n and d-4m are two-point end-sets of M.

Proof: The proof follows directly from theorems 34 and 8.

Theorem 36. If a +p and b+p are both two-point end-sets
of M, then K,, X K,, 45 a continuum. '

Proof: Assume that K,, X K,,= K = K, 4 K, separate. As
K, +K,,= M, (M— K,,) =bv, where bvwp=0, and (M— K,,) =
=au, where ay X p=0. Thus au X by =0. The set bv contains
all the points of M which K,, does not contain and so contains all
the points of K,, which K,, does not contain. Hence K, =bv+
+ Kop X K,y Similarly K, = au -+ Ky,. Thus M=au -+ K,, X
X By 4 vb = au - K, + K, + vb. Consider for example the case
where au X K, 4= 0. Then since M is irreducible between @ and b
au X Ky =0, bo X K, = 0, and bv X K, 3=0. Therefore M =
=(eu 4 K,)+ (K, 4 vb) separate which is a contradiction. The-
refore since K is closed, K is a continuum,
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Corollary 18. If M is bounded and a+p and b+ p are both
tico-point end-sets of M, then ap X bp is an indecomposable con-
tinaum.

Proof: Let K=ap X bp. As K is a continaum by theorem 36
let au + K 4 vh= M= au + uv + vb where (M — KY ==au +
~+vb. As (au—+uv) X p=0, uv contains p. Thus uv contains a pu
and a pv. Hence it is necessary that au—up=ap and bvtop =
= bp. Then pu contains » and pv contains u and so pU=uv=pv
and so uv is indecomposable. And it is evident that every point
of K must be contained in either pu or in pv. Therefore K=y,

Theorem 37. If there exists a pg in M where p+q is a fwo-
point end-set of M then in order that pq be indecomposable it is ne-
cessary and sufficient that every point x of pg — (M — pq) be such
that either x —-p or x - q 45 a two-point end-set of M.

Proof: The condition-is necessary. For assume that there exists
an  such that x4 p and z g are each not two-point end-sets
of M. Thus there exist K,, and K,, whose complements in M have
a limit point in %4 p and z--g¢ respectively. Let au-+pg+
+vb=oau—uv 4 vb=M where (M — pg) = uu -+ vb. Then
(@u—~vb) X (p+q=0. Let K,,+K, =K As M — K, has
a limit point in & 4 p, pg — K, does also. Thus neither K, nor
K,, contain uv=pg. And pq does not contain K for then K= ?q
and so, since K is then indecomposable, either K, or K,, equals Pq
which is impossible. Assume that K X au=0. Then, as K X v=0,
by lemma 2 (uv — K} ==uz and uz X (p4¢)=0. As K+ uz
contains uv, (uv — u2)’==vy is contained in K and so does nct
contain uv. Therefore uv=wuz-yv where uz = uv == vy which
is a contradiction. Hence K X au==0= K X bv. Thus consider
for example the case where K, X u=wu and K, X v=1v. Let
(pg— K,,)=U and (pg— U)=7V. Then K, contains U and
K. contains V., Thus a contradiction is obtained since either U-=pq
or V=pgq as pg is indecomposable. Thus the condition is seen to
be necessary. ’

The condition is sufficient. For assume that p g is decomposable.
Let then pg=1U- V, where Us=pg=4V and UX p=p and
VX g=4q Let au4pqg+vb= M. It is seen that (pq— U) 4
+(pg— (pg— U)Y=pgq and (pg— U) X (pg — (pg— UY) con-
tains a point 2. As 2 is contained in (pg— (pg— U)) X (pg—

6*
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—(pg —(pg— UYY)'") neither p--2 nor g2 is a two-point
end-set of M. And z is not contained in aw - vb. Thus a contra-
diction is obtained and so pg must be indecomposable.

Lemma 3. If p - q is a two-point end-set of M such that M
contains a pg, and K is a subcontinuum of M containing p + g,
then K contains pq. _

Proof: Assume that K does not contain pg. Let (M — pg) =
=au -+ vb, and let M=au-pg-+4 vb=au-4uv -4 vb As pq
does mot contain K, (au 4vb) X K==0, but either K X au =0
or K X vb=0. Consider for example the case where K X au =0,
Thus (uo— K) =uz by lemma 2. And (a4 uz 4 vd) X (p+g)==0.
Therefore (uv — w2)’ = vy which must contain p - ¢ and 80 vy=
=pg=uv. But as K contains vy, K X au 5=0 and so K must
contain pq.

Theorem 38. If M contains a pg such that pg X (a4 b) =b
where p -+ q is a two-point end-set of M, then (1) either a 4 p or
a-q is a non-remainder set of M; (2) if a+p and a-q are
both non-remainder sets of M then pq is indecomposable; (8) if every
K, contains pq then p b is a two-point end-set of M; and (4) if
6+ g i8 a non-remainder set of M and if o K,, does not contain pyq,
then a +p is a non-remainder set of M and b+ ¢ is a two-point
end-set of M.

Proof: (1) K,,+ K,,, by lemma 3, contains pg and 8o con-

tains b. Therefore either K,, or K, contains b and so equals M.

Thus either ap or a -+ ¢ is a non-remainder set of M.

(2) Let au—pg=M where (M — pq) =au. Let pg contain
K,,. Then K, + au =M since a -4 p is a non-remainder set of M,
Hence a3 au X (p+¢q) =0, K, X g==gq and so K,,= pq=rpu.
Similarly K, = pg=qu and so pq is indecomposable.

(B) As (M— K,y X (b+p-+4¢ =0, p4+b is a two-point
end-set of M, '

(4) Tt is seen that K,, -+ K,, = M. But as K,, does not con-
tain pg, by lemma 3 K,, )X ¢=0. Thus K., contains ¢ and so
contains pg which contains b. Hence K, = M. Therefore b y (2) pgins
indecomposable. But K, 4 K,, contains pg and so K,, contains pq
as K, does not since pq is indecomposable. Thus (M — K,,) X
X@+q9+4b)=0and s0 b4g is a two-point end-set of M.

Y C. Kuratowski, Fund. Math. IIL. theorem 6, p. 183.
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Theorem 39. If M contains a pg such that pg X (a4-b) =5
where p - q 18 a two-point end-set of M and a+p is a two-point
end-set of M=aq= K, then pq is decomposable.

Proof: As K, 5 M, K, X (b+¢)=0. Let M=au-+tpg
where (M — pg) = aw. By lemma 2 (pg— K, = g2 and (pg —
—q#) =py. As a-p is a two-point end-set of M g2 containg
neither a nor p and as K,, contains py, py == pg =k gz although
py+29 =pg. Thus pqg is decomposable.

Theorem 40. If M contaips a pq such that pq X (a—-b)=2b
where p+ g, a +p, and a+q are two-point end-sets of M, then
in order that pq be indecomposable it is necessary and sufficient that
both a +p and a-\- g be non-remainder sets of M.

Proof: That the condition is sufficient follows from (2) of"
theorem 38.

The condition is necessary. For by (1) of theorem 38 either
ap=M or ag= M. Consider for example the case where aqg—= M
and assume that K, == M. Then by theorem 39 pq is decompo-
sable which is a contradiction. Thus ag= M =ap.

Theorem 41. If M contains a pq such that pg X (a 4+ b) =10
where p 4+ q is a two-point end-set of M then (1) if a -+ p is a non-
remainder subset of a K,, then a-}p is a two-point end-set of M;
(2) f there exist an aq of which a -} p is a non-remainder subset
then a 4 p and a - q are two-point end-sets of M and pgq is inde-
composable; and (3) if for every K,, a-+p is a remainder set of
K,, then a+q and b 4 p are two-point end-sets of M and if M
is bounded and a -+ p is a two-point end-set then ap X pq is in-
decomposable.

Proof: (1) As K, contains ap it contains p -} ¢ and so con-
tains pg. And as every (M — K,) is contained in (M — ap), ap
is a two-point end-set of M.

(2) By hypothesis ap = ga. Thus by (1) a-+p and a4 ¢ are
two-point end-sets of M. And since p-q¢ i a two-point end-set
of ag and pg+ (a4 9) =g, by (2) of theorem 38 pg is inde-
composable. ’

(8) As every K, contains p4g, (M— K, X (p-+¢=0.
Hence a -}- g is a two-point end-set of M. Assume that there exist
a K,, such that (M — K,,}' = ap. Then ap must contain ¢ and so
is a K, of which a -} p is not a remainder set. Therefore b 4 p
must be a two-point end-set of M. '
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If M is bounded then by corollary 15 there exists one and
only one ag in M. And if ap is a two-point end-set of M it
is also one of ag as is also p+-g. Then by corollary 18 ap X pgq
is indecomposable.

VIII. Connected subsets 'of the set of two-point end-sets of .

If (a), contains & point p then p -+ b is a two-point end-set
of M and so if M is bounded (a), is a connected subset of the set
of two-point end-sets of M. Thus in the preceding sections, for
the case where M is bounded, properties of these connected subsets
have been obtained. In this section further properties of these con-
nected subsets, which need not contain a or 5, are obtained.

Theorem 42. If M is bounded and N is a maximal connected
subset, containing a point z, of the set of two-point end-sets of M such
that @ +x and b+ are both two-point end-sets of M, them N’ is
indecomposabie.

Proof: By corollary 18 az X bz is indecomposable. Let 7'=—
=ax X bz and ¥ =au—+ T+ vb =au+ uv + vb where (M —
— TY =au--vb. As T vb contains b}, which is a two-point
end-set of M, au X z=0. Similarly by X #=0. Thus au X vb=0
Hence uo =17 as 7+ vb= bz and T+ au = ax. Therefore every
point of (au 4 vb) X 7' is a limit point of a connected subset of
T — (au - vb) and so no point y of (su - vd) X T' is such that
either a4y or b4y is a two-point end-set of M, Therefore no
point y of (au-4-vd) X T'is a point of the set of two-point end-
sets of M, for by corollary 17 if it was then either a-ty or b4y
would be a two-point end-set of M,

And as every point z of T —(au - vb) is such that either
a4z or b4z is a two-point end-set of M, T= N and so N’ is
i ndecomposable. :

Theorem 43. If M is bounded and N is @ mavimal connected
ubset, containing p+- g, of the set of two-point end-sets of M suchs
sthat a 4-p and b+ gq are both two-point end-sets of M, them N’
indecomposable.

Proof: Assume that N' is decomposable. If N contains a point x
then by corollary 17 either a 4 or b+ z is a two-point end-set
of M. And by theorem 42 there does mnot exist in N a point z
such that a 4 and b+ are both two-point end-sets of M. Thus
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N = Z -+ W where every point z of Z is such that a+z is atwo-
point end-set of M and every point w of W is such that b4 w
is 4 two-point end-set of M and Z X W= 0.

Let z be a point of Z Assume that az does not contain N,
Then az contains a limit point y of N—az. As M — az is eon-
nected, ¥ is a limit point of the connected set M — az and so Z
does not contain y. As a4~z is a two-point end-set of M, by X
X 2=0, where (M — az) =>by. Therefore by contains a limit
point # of N— by. Thus W does not contain @. And as az con-
tains x as does also (M — az) Z does not contain z. Therefore N
does not contain 2 which is a contradiction. Hence az must con-
tain N as must bw where w is any point of W.

By hypothesis there exists a point z of Z and a point w -of W.
Thus a 42 and b+ w are two-point end-sets of M. But az con-
tains N and so contains w. Hence by corollary 17 either z - w or
2-b is & two point end-set of M. But by theorem 42, since a + 2z
is a two-point end-set of M, b~z cannot be. Thus 2 - w must be
a two-point end set of M. Let au 2w +vb= M where (M — zw) =
== au -} vb. Then au X vb=0.

For every point ¢ of zw either the irreducible continuum joi-
ning ¢ and bo or that joining ¢ and awu contains points of N and

8o either ac or bc contains N and so contains 2w. If ac contains ziw,

then ac=au+-2w and a4 ¢ is a two-point endset of M if ¢ X
X bv=0. Similarly if bc contains zw b - ¢ is a two-point end-set
of M if ¢ X au=0. Thus 2w — (au-}vb) is contained in N and
as au cannot contain a point of N without containing N, 2w con-
tains N. Therefore 2w = N'. Since 2w = N’ is decomposable by
assumption, by theorem 37, every point of 2w — (au -} vb) is not
contained in N. As this is a contradiction N’ is indecomposable.

Theorem 44. If M is bounded, N is a maximal connected subset
of the set of two point end-sets of M, and every point p of N is
such that a ~-p is atwo-point end-set of M, then in order thai N be
closed it is necessary and sufficient that N contain b.

Proof: The condition is necessary. For assume that N b=0.
As a - a is not a two-point end-set, a X N=10. Let u be a point
of (M — NY X N. Hence (¥ — N)' contains an au. And (M —
—(au 4 N)y = bv. Thus au 4 N4 vb = M. For any point p of N
as N is closed au -} N is a subcontinnum of M containing a4 p
and so by X N = 0. Therefore au X vb3= 0 and so au must con-
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tain N, Hence u is any point of N and so (u), contains N. Also
every point of (u), — by must be contained in N. Therefore (u), —
— by = N which is elosed. And (), contains the closed set au X vh.
Thus (u), is the sum of two distinet closed sets which, since by
theorem 2 (u), is eonnected, gives a contradiction. Therefore N X
b="b

X The condition is sufficient. Let p be any point of N. As ap
ontains N, ap contains b and so ap =M. Hence N = (b). Assume
that N is not closed. Then N’ is indecomposable !). Let then (M —
— N'Y = au, where au is vacuous if M= N’ but letting then u=a.
Hence N/ — au is contained in N, But there must then exist a ba~
sic-wise connected subset of N’ containing w, a point p of which
is contained in N but a -+ p is not a two-point end-set of M. Thus
a contradiction is obtained and so N = N, . '

Theorem 45. If M is bounded, (p) and (q) are maximal con-
nected subsets of the two-point end-sets of M such that (p) contains
p+ 2 and (q) contains g+ w, and (p) and (q) are each decompo-
sable, then z -+ w is a two-point end-set of M.

Proof: By corollary 17 either p-a or p—b is a two-point
end-set of M but not both by theorem 42. Consider for example
the case where p 4 b is a two-point end-set of M. Then by theo-
rem 43 245 is a two-point. end-set of M. But 2b contains (p)
and so contains p. Therefore by corollary 17 either z4p or 2-}¢
is a two-point end-set of M. But if 24 p is then by corollary 17
either p +a or 24 a is. But neither is by theorem 42. Therefore
z-1-q must be a two-point end-set of M.

As (2) =(p), just as z-} ¢ was shown to be a two-point end-
set of M so. 2+ w can be shown te be.

Theorem 46. If M is bounded, p + g is a two-point end-set of M,
(p) and (q) are the maximal connected subsels of the set of two-point
end-sets of M such that (p) contains p and (q) contains ¢, and (p)
and (q) are decomposable, then (p) X (q) = 0.

Proof: As p-f-¢ is a two-point end-set of M/, pq contaius
(p) + (g) Assume that (p)’ X (g) 5 0. Then (p)’ 4 (g) =pg. Si-
milarly by theorem 45 29 = ()’ + (g)', if (p) contains 2. Thus (p)
contains (p) and (g), contains (g).

Let (p) X (¢)' contain z and let zp be contained in (pY. Then

q9

1) C. Kuratowski, Fund, Math. X., theorem 2, p. 23b.
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(9) +xp =pg. Hence zp contains (p) and so zp={p)" for (g)’ X
X (p)=0 for otherwise (¢} =pg=(q), and so (g) is indeecom-
posable. Furthermore (p), contains (p) since xp == x2 = (p) where
z is any point of (p). Thus () = (p); and so (pY is indecompo-
sable. As this is a contradiction (p) X (g) = 0.

IX. #n-Point end-sets of M.

In the previous sections we have dealt with #-point end-sets
where 7= 2. Here a few theorems are given concerning n-point
end-sets where % is greater than two.

Lemma 4. If M is bounded, p -+ g is a two-point end-set of M,
and (z) is the point set composed of all points x such that pt+etg
i a three-point end-set of M where pq contains x and pq == M, then
P+ (@) + g is connected but not closed.

Proof: As pg==M there exists an au-pg—+ vb=M. As
there exist but one pg every continvum containing p -+ = -+ ¢ con-
tains pg which in turn contains #. Then if (p 4 z - q) X (M —
—p9) =0 (p+2+q) X (M — NY =0 where N is any subcon-
tinnum containing p -« -+ g. As p -} is a two-point end-set of M
(p+2+49) X (M—pg)y =0 if x X (au + v5) =0. Therefore p +
+ @)+ ¢=pg—au—wvb -Thus p+(z)4 q is connected but
not closed. ‘

Lemma 5. If M is bounded, p + q is a two-point end-set of M,
and () is the set composed of all points & such that p -z - q is
a three-point end-set of M-where pq = M, then p -+ (z) 4 q is neither
closed nor comnected.

Proof: As pg= M, there exist an au - pg - vb= M where
(M -~ pq)’ == au -+ vb. Consider for example the case where au is
non-vacuous. As every point of pg — (au -} vb) is contained in (),
() Xpg=0. And if K is any subcontinuum of M containing
a+4p-4 g then (M— KY X (a4 p -+ ¢q) =20 and so {(z) contains a.
Therefore (x) is not connected since it contains a point of pg and
a point not in pg. And as (p-(x)4 ¢) X pg is not closed by
lemma 4 p - () 4 ¢ is not closed.

Theorem 47. If M is bounded, p+ q is a two-point end-set
of M, and (x) is composed of all points x such that p -+ = + g is
a three-point end-set of M, then in order that p—+ (x)+ q be con-
nected it is mecessary and sufficient that pq contain (x).
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Proof: The condition is necessary. For assume that pq does
not contain (x). Then pg 4= M. Thus a contradiction is obtained
by lemma b.

The condition is sufficient. If pg G M then the theorem fullows
by means of lemma 4; and if pg= M then p -4 (x) + ¢ = M and
80 is conuected.

Lemma 6. If N=p, + p,-+...+ p, is an n-point end-set of M
then N contuins a two-point end-set of M.

Proof: Assume that N does not contain a two-point end-set
of M. Then for every 4 and j, where i==j (4,7==1, 2,...n) there
exists a K,, =T, whose complement in M has a limit point in
7.+ p,. The set 7,, then has the property that it does not con-
tain N and so does not equal M. Let 7= T, -+ 7, +... 4+ T,
Hence (M — T)' )X N=0 as T contains N. Let (M — T) == qu -+
+ vb and let M=au+uv+vb. As (M — T,,Y X N==0 it is
necessary that there exist a 7),,, C, say, such that C, X au=k0
and C; X vb=0 and there exist another, C, say, such that C; X
Xau=0 and C, X vb4=0. The set M=oau- C, + Gy + vd,
where uv contains C, 4 C,. Hence (uv — C,) X N=0. Say it con-
tains g;. Then (u» — () =vg,. As C, contains vgy, vq S vu. As
C, cabnot contain N, vg, — C, must contain at least one point of N,
Let (K,,) be the sum of a set of K,,’s which sum contains
a K,, for each p, contained in vg, — C; where K,,, is selected
80 as not to contain N X (vg; — C,) if such a K,,, exists. Let
(g — (K,,)) =vz. As C, + (K, contains N, N X vz==0 but
vz contains a point of a K,y Koy, say. Then C, + K, + 20=up
and so every K,  must contain (vgy — C)) X N. Therefore lot zo
be sueh that (uv — T} = ug, + zv. Hence (ugy — T,,) X N=k0.

Thus proceeding as above it is seen that there exists a Koy Ko,

say, where gy is contained in ug, — T, such that every K, con-
tains (ug, — 7,,) X N.

There exist a T,, = Q. But vg; + Q@ is a K, and so con-
tains N. Thus (ug, — Q)X N=0. Also ug; + @ is a K, and so
coutains N. Thus (vg; — @)’ X N= 0. Therefore (uv— @y X N=0
which is contrary to our assumption. Hence N inust contain a two-
point end-set of M.

Theorem 48. If N=p, o+ +p, is an n-point end-set

of M, then N contains a tiwo-point end.set of M such that every sub-
continuum of M containing these two potnts contains N.
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Proof: By lemma 6N contains a two-point end-set of M. Con-
sider for example the case where p, -+ p, is a two-point end-set of
M and assume that K, , — P does not contain N. Then (M— Py X
X (pr+p2) =0. Let (M— Py = qu + b and let au--uv-}-vb=M.
For each p, of au—up let T, be a subcontinuum ot M joining
p; and v and if possible let it be so taken that it does not con-
tain (au—wuv) X N. Let (T,,) be the sum of such sets. Similarly
there exists a (7),) where p, is contained in b» — up. Hence (T +
+ uv - (T,) =K is a subcontinuum of M eontaining N. Let
(M—K) =aw--2b and let aw—wz-}2b=M. Thus aw contains
a point of a 7, T, say, and every K, must then contain
(au—up) X N. Similarly bz contains a point of a T, 1oy 0y, and
every K,, must contain (vb—uv) X N. If neither (7,,) nor (T,) is
vacuous then it is evident that every K, contains N and so g, + ¢,
is a two-point end-set of M. Consider then for example the case
where (7,)=0. Then either every K,, or every K,, contains
P1+p, otherwise M would contain a subcontinuum not containing
one of these points but containing a--b. Consider for example the
case where every K, contains p,. If there exist a K, such that
au+ K,,, does not contain N then the theorem is true by the above
proof. And, if for every K,,, au-K,, contains N, then K,, + K,
contains N and so every K, ,, contains N. Hence also g, -+ p, is a two-
point end-set of M. Thus in every case the theorem is true.

X. Joined sets of M.

In corollary 15 it was proven that if M is bounded and p--¢
is a two-point end-set of M then ¢ is & p joined point of order
one in M. Kuratowski has shown ) that if p is any point of M
then either a or b is a p joined point of order one in M. It follows
that if N s the joined set of order ome in M then N=M. In this
section a few other properties of joined sets will be obtained.

Theorem 49. If p is not an a joined point of order one in M
then b-+p is a two-point end-set of M.

Proof: Since either a or 6 is a p joined point of order one
in M it follows that p is a b joined point of order onme in M. If
bp =M the theorem is true. If pb=3= M then au+{-bp=M wher.e
(M — bp) =au. If au X p=p then au=ap and so p is an a joi-

1) Fund, Math, IIL, p. 219—220.
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ned point of order one in M which is a contradiction. Thus au X
X (&-+p) =0 and as (M — K,,)’ is contained in au (M— K,)y X
X (b-+p) =0. Hence b-p is a two-point end-set of M.

Theorem 50. If M is bounded and neither p nor g is a limit
point of the mon-cut points of (M — pq)' then either ¢ is a p joined
point of order one in M or pq is indecomposable.

Proof: If pg = M the theorem is true. Consider then the case
where pgq = M. Then let au - pg -+ vb =M= au—+ uv - vb where
(M —pg)Y = au--vb. Consider for example the case where au is
non-vacuous, Let (u)==(u), of au. The set (u) contains au X pqg.
Either au X pg=u or au X pg = u. Consider the case where au X
X pg % u. No point of () is a cut point of au for if (4) contains 2
au == az. Assume that x of () is a cut point of M, Then M —a =
=W Z separale. Either W or Z contains ¢ and so contains
ay— 2 - pg+ vb = M — 2. Thus either W or Z must be vacuous,
- Hence no point of (4) can be a cut point of M. Let u and z be
two distinet points of (u) contained in au X pg=f . Then there
exists a region B containing x such that B’ X u==0. Then z is
contained jn a subcontinuum of R X au which does not contain »
and so by theorem 1 this subcontinuum is contained in (u). Hence
as each point of () is a non-cut point of M z is a limit point of
non-cut points of M which are countained in aw of (M- pg). There-
fore (u) X (p+ ¢)=0 and so au X (p+ ¢) = 0. Consider now the
case where au X pg=1u. If u X (p+¢)=0, au X (p 4 ¢)=0.
Thus in every case au X (p-4¢) =0 or else either u= p or u==gq.
Hence always pg— uv, ‘

If there exists but ome irreducible continuum of M joining p
and g the theorem is true. If pxg == pg then consider for example
the case where pu, 3 pg = qu, where Pu; = qug s contained in pag.
Let o c?ntain pvlband gv;. Then pu,+pv,=uv=pg. Thus pv, =pq
and similarly gv, = pq. Thus pg is indecomposable.

Ohio State University.
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Les ensembles analytiques comme criblés au
moyen des ensembles fermés.

Par

W. Sierpifiski (Varsovie).

1. H étant un ensemble de points donné quelconque, situé dans
le plan, nous désignerons par I'(H) et nous appellerons, d’aprés
M. N. Lusin, ensemble criblé au moyen du crible H?Y), Yensemble
de tous les nombres réels a, tels que la droite x=a rencontre
Pensemble H en un ensemble de pointa (non vide) qui #'est pas
bien ordonné b l'aide de cette convention que le rang des points
goit conforme & la direction positive de I'axe 0Y.

M. Lusin a démontré que les ensembles criblés au moyen des
cribles F, (méme des cribles F, d'une nature particulidre) coincident
avec les ensembles analytiques.

Or, nous prouverons dans ce § que les ensembles analytiques
coincident avec les ensembles criblés au moyen des ensembles fermés %),

Soit E un ensemble analytique linéaire donné. Il existe, comme
on sait, un systéme d'intervalles fermés {d,,,,.--5s ), tel qu'on
a pour tout systéme fini d'indices 7, #g,..., 7, Mgy :

(1) 6n;,llp,...,nbnk+1 C. dn;,n,,..,,up
et que
@) E=2338,0,.0mnm

) N, Lusin: Fund. Math, t. X, p. 10; aussi: ,Legons sur les ensembles
analytiques., ., Paris, Gauthier-Villars 1930, p. 178 s,
‘ 1) Fai signalé ce théordme (sans le démontrer) dans ma note des C. R.,
t. 185, p. 836 (séance du 24 octobre 1927),


Yakuza




