On a certain neighborhood property ).
By ‘
W. L. Ayres (Ann, Arbor, Mich.).

In a recent paper *) we proved that if M is a metric continuum
with end points p and ¢ and every separation of M between p
and g contains an ordinary point of M, then M is an arc with end
points p and ¢. Shortly afterward %) it was pointed out that N/ need
be supposed only a connected set and closure may be proved. In
this note we propose to examine sets which have the slightly stronger
property that the frontier of every proper neighborhood contains an
ordinary point ot the set. We shall derive the properties of such
sets and then apply them to obtain new characterizations of the arc
and of the simple closed curve. As the property is purely intrinsic
we may use the set itself as our space #/. An open subset D of
the space f such that M contains a point not helonging to D
will be called & proper neighborhood. An ordinary point of M is a point
of order 2 in the Menger-Urysohn sense. The set of all ordi-
nary points of M is denoted by M*. To avoid trivial cases we assume
that M contains at least two points.

Below we give two examples of sets having this property:

a) Let M consist of the curve y — sin (1/z) for 0 <21 to-
gether with the points (0,1) and (0, —1). This example shows
that condition (b) of the second theorem is necessary.

%) Presented to the American Mathematical Sociut'y November 28, 1931.

") W. L. Ayres, On the regular points of a continuum, Trans, Amer. Math.
Soe., 33 (1931), p. 257.

) K. Menger, Remarks concerning the paper of W. L. Ayres On the re-
gular points of o continuum, Trane, Amer. Math, Soc,, 88 (1981), p. 666,
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b) Let M consist of the curve y=rsin(1/2) for 0 <2 =<1
and — 1 < 2 < 0 together with the interval from (0, —1) to (0, 1)
and an are joining the points (1, sin 1) and (— 1, — sin 1) which
has no other points in common with the curve,

Theorem. If the frontier of every proper neighborhood of the
metric space M contains an ordinary point, then (1) M is - connected,
(2) M*= M, (8) M?® 4s connected, (4) M* is homeomorphic with
a circle or a straight line.

'(1). Suppose M = H+ K, where HK + HEK = 0. Then K is
an open subset of M for ' — K= H and HEK = 0. Also F(K)=
=K.(M— K)=KH=0. But this is impossible s F(K) must
contain an ordinary point.

(2). Let peM and U, be a proper neighborhood of M. Let
V,C U,. By hypothesis F( V,) contains a point of M2,

(8). Suppose M*=— H 4 K, where HK 4 HK =0. As KH =0,
if peK then d,=¢(p, H)>0. Let D= 35(p, 4d,) for every
pe K. From the definition of D it follows that if ge¢ D and re H
there exists a p ¢ K such that ¢(r, ¢) > }o(r, p). Now let z¢ F(D).
From the preceding inequality we have z ¢ K. As HK = 0, « non-¢ H
and znon-¢ X since D D) K. Then F(D). M* = 0, which is contrary
to hypothesis as  — D ) H == 0.

(4). Since the order of a point with respect to a subset of M
is never greater than its order in M, the order of every point in
M* (with respect to M?) is =< 2. From (2) and the assumption
that M is non-degenerate, we know that M contains at least two
points. As J/* is also connected we have from the result of Frankl?)
that M* is homeomorphic with a) a circle, b) a closed interval,
c) a half-closed interval or d) an open interval. The second case is
impossible for then M* is compact and by (2) M*= M- Then by
the theorem of Menger-Urysohn?®) M would be homeomorphic
with a circle.

In case ¢) suppose M* is homeomorphic with the half-open in-
terval 0 <z <1 and let p represent the homeomorphism which

1) F.Frankl, Usber dis zusammenhdngenden Mengen von hdchstens zwester
Ordnung, Fund, Math,, 11 (1928), pp.- 96—104.

) K, Menger, Math, Ann,, 95 (1925); and P. Urysohn, Amster. Verh.,
18 (1927). ’
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carries this interval into /3, Let p:tp(O). We shall _d:aﬁne a poipt y
of M as preceding a point z of M2 if oM y)<< g™ (z) E‘ [p] is
a sequence of points of 171 such that p, precedes p,; and 1121 P p)=1,

we shall say that [p) is an increasing sequence. Since the .imag? o.f
a compact set is compact, by (2) every point of .]l( — [ 'is a llllnlt
point of an inereasing sequence. If p is not a limit pomti of an in-
creasing sequence, there exists a point:' g of M'* and a neighborhood
U, of p such that every point of /% in U, precedes ¢ Then th-ere
exists a neighborhood V, such that V,C U, and. F(V,)- M* consists
of just ome point. Since peM?, for V, sufficiently small, F(V))

contains at least one other point y of M. As yeM— M?% it is .

a limit point of an increasing sequence and U, ?ontains & point
following ¢. Hence p is a limit point of an increasing sequence.

Now let 2=k p be any point of M* and let % be any positive
number < g(p,2). There exists a neighborhood U;CE S{p, n).such
that F(U,) = », + x,. Since znon-e U,, F(U,) contalgs a point of
M? preceding 2z And as pis & limit point of an increasing sequence
of M2, the other point of F(U}), say w,, is a point of M'* follo-
wing 2. Now as the points of M* following a; form a connected
set containing points of U, (since p id a limit point of an inerea-
sing sequence) but no point of .F(U,), it follows that U, contains
every point of M* following z,.

As M* is not homeomorphic with a circle, 7 — M*==0 and
let ¢ 4 — M*. Then ¢ is a limit point of an increasing sequence
of M3 But this is impossible since for each % >> 0 there exists
a point @, of M? such that S(p, ) contains all points of H* follo-
wing a,. This contradiction shows that case ¢) is impossible.

Theorem. In order that a metric space M be an arc it is neces-
sary and sufficient that (a) the frontier of every proper neighborhood
of M contain an ordinary point, (b) M be locally connected at two
non-ordinary points.

- The conditions are necessary. If D is a proper neighborhood of
au are, then F(D) contains at least one interior point of the are,
an ordinary point. The two end points of the arc are non-ordinary
points at which the arc is locally connected.

The conditions are sufficient. From the preceding theorem we
know that M* is homeomorphic with a straight-line or a ecirele.
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The second case is impossible since M — M*==0 by (b). Now let «

and y be the two points whose existence is given by (b). Let us
define increasing and decreasing sequences of J/* as in the proof
of the preceding theorem. Then either there is an increasing or
a decreasing sequence of }/? which has 2 as a limit point. Let us
suppose an increasing sequence (2], and suppose there exists an
increasing sequence [g] of M* which does not have z as a limit
point. There exists a neighborhood I, and subsequences of [p,] and
[¢] (which we denote by the same symbols) such that p,e U,
g:non-e U,, p; precedes g, and g, precedes p,., in M2 As M is
locally connected at =, there is a V,(CU, such that if ¢ V, there
is a connected subset K of A such that u+xC KCV,. There is
an integer # such that p, ¢V, and let X denote the connected
subset of I/ such that p, 2 CK(CV,. As ¢.non-¢U,, K does
not consist entirely of points of M2 following ¢, ,. Let H be the
set of points of K which are points of /3 between ¢ 80d g, and
let =K — H. We have H.I=0 since the set of points of 7%
between ¢, , and g, is the imsge of an arc and thus compact.
Further since these puints belong to M* it follows that no point
of M* between ¢, , and ¢, is a limit point of points of M lying
elsewhere, i. . A . [ = 0. As

K=H+1I and H-I+4+ H.T=0,

the set K is not connected contrary to hypothesis. Thus the agsump-
tion that an increasing sequence of M* not having z as a limit
point exists leads to a contradietion.

In the same way we may show that every decreasing sequence
has y as a limit point. Now consider any sequence of points of M2
Either there is a subsequence having a point of M? as a limit
point or an inereasing subsequence or a decreasing subsequence.
Thus every sequence of M contains a subsequence having a limit
point. From property (2) of the preceding theorem we have

M=Mtrty

and M is compact. Thus we may extend the homeomorphism bet-
ween M* and an open interval to 7 and the closed interval, which
proves our result,
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Corollary. If the frontier of every proper neighborhood of M

contains an ordinary point, then M i3 not locally connected at more
than two nom-ordinary points.

Theorem. In order that a metric space M be a simple closed
curve it is necessary and sufficient that the frontier of every proper
neighborhood of M contain at least two ordinary points.

The condition is obviously necessary. We may show it to be
sufficient as follows: From (4) it follows that M* is homeomorphic
with a circle or a line. In the first case we have M = M*® and our
theorem is proved. We shall prove the second case impossible. Let p
be any point of M2 As pointed out in the preceding proof no point
of M* is a limit point of an increasing or decreasing sequence
of M Then, if 2 is any point of M* preceding p, d, = ¢(z, H) > 0,
where H consists of p together with all points of % following p. Let

D=J3'8(x 44)

for all points # preceding p. The set D is a proper neighborhood
of M and no point # of M* preceding p belongs to F(D) since
each such point belongs to S(x, § d,). Suppose some point y of M*
following p belongs to #(D). Let [2] be a sequence of points of D
with ¥ as a limit point. Let z, be a point so that 2z e S(x,, $d.)-
We have

0@, y) = o(w, z) 4+ oz, 9) < Yo(xn y) + o(z, ¥)

or

el ) < oz, 9)

Hence

lim (2, y) =0,

which is possible only when y==p. Hence D is a proper neighborhood
of M whose frontier contains at most one ordinary point.

Corollary. The:’re exists no metric space M in which the JSrontier
of every proper neighborhood containg at least three ordinary points.
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Theorem. In order that a Peano continuum M in Euclidean
space E, should be a simple Peano continuum ') it is necessary and
sufficient that M contain one local cut point?) and each loeal cut
point be an ordinary point of M. '

The condition is quite obviously necessary. We shall see that
it is sufficient. If 3/ contains no simple closed curve, every point
of M is a cut point or an end point?). As every cut point is a local
cut point, M consists entirely of points of orders 1 and 2. Then M
is an are, a ray or an open curve. If J/ contains a simple closed
curve J*, let K denote the maximal eyclic set of M containing J*.
If M= K, each component @ of M — K has one limit point ¢ in
K and each such point ¢ is a cut point of 2. There are three
distinet ares of M having ¢ as their common end point, one in
Q -4 ¢ and two on a simple closed curve of K containing g. Then g
cannot exist, as it would be a local cut point of order = 3. Hence
M=K, and M is cyclicly connected.

By hypothesis M contains one local cut point p As M is cy-
clicly connected, there is a simple closed curve J of M containing p.
Let ¢ be chosen so that diam (/) > e>>0. By hypothesis there is
& neighborhood U, such that diam (U,) <e, F(U,)- M=y, + p,.
Since e < diam (J), it follows that p, + p,(C J and that one A; of
the two arcs of J from p, to p, belongs to Z—T;, the other 4, to
E,— U,. As p, is an isolated point of F(U,)- M, it is a local cut
point of M 4). Then p, is a point of order 2 of M and thus a point
of order 1 in both .7, and M-(E,— U,). As the condition of
our theorem is a local property and we have seen that p, and p,

(being - points of order 1) are mot local cut points of M- T,, we
see that every local cut point of M. U, is an ordinary point of

1) A set which is either an are, a ray, a simple closed curve or an open
curve is called - simple Peano continuum, A simple Peano contipuum is chara-
cterized by being a closed set which is homeomorphic with a subcontinuum of
a circle or a line.

1) A point p of a continuam M is said to be a Jocal cut point of M if there
exists a neighborhood U, such that p is.a cat point of the component of MU,
which contains p.

3 G. T. Whyburn, Trans. Amer. Math. Soc., vol. 29 (1927), p. 392; and
W. L. Ayres, Annals of Math., vol, 28 (1927), p. 899.

4 G. T. Whyburn, Math, Ann,, vol, 102 (1929), Th, 81, p. 331.
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M- T,. Then by the preceding paragraph, M. U, is a simple Peano
continuum or is cyclicly connected. As it cont;ains two end points,
it cannot be cyclicly connected. Then M .U, = 4,. Similarly
M.(E,—U,)=4,. Thus M is the simple closed curve J==4,-- 4,
and our proof is complete.

Corollary. If every local cut point of a Peano continuum M
in E, is an ordinary point of M, then every point of M is of order ¢
or every point is of order < 2.

The following simple example shows that neither the theorem
nor the corollary is true unless we assume that the continuum M
is a Peano continuum. In E; let M consist of the points of the
curve y=sin(1/z) for 0 <21 together with the points (2, y)
for —1=S2<50, — 1=y 1.

The University of Michigan,
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On joining finite subsets of a Peano space by arcs
and simple closed curves ?).

By
W. L. Ayres (Ann. Arbor, Mich.).

1. Introduetion. Two of the most fundamental results in the
theory of Peano spaces ?) relate to the joining of two points by
an arc or a simple closed curve. One of these is that every two
points of a Peano space can be joined by an are lying in the space.
The other is that if two points are not separated by the omission
of any single point, then they ean be joined by a simple closed
curve. It is the purpose of this paper to give generalizations of
these results to sets of n points.

Our conditions are only sufficient. If the Peano space is itself
a simple closed curve, then none of our conditions are true but all
of the results hold. The determination of necessary and sufficient
conditions for n-points seems to be a very difficult problem. Also
it seems likely that if the problem were solved, the conditions would
be 8o complex as to be of little interest.

2. Historical Note. The theorem that every two points may be
joined by an arc was proved by Mazurkiewicz Kaluzsay,
Moore, Tietze and Vietoris?). The theorem for the joining

1) Presented to Akademie der Wisseuschaften in Wien July 4, 1929, and
American Mathematical Society August 30, 1929.

) Following Rosenthal, Math, Zeit., vol. 10 (1921), pp.-102—4, and K-
ratowski, Fund. Math, vol. 13 (1929), pp. 307—18, we shall cell a metric
tpace, which is the continuous image of a closed interval, a Peano space. Other
terms commonly used are continuous curve, im kleinen zusammenhdngendes Kon-
Unuum, and tinu de Jordan. '

%) 8. Mazurkiewicz, O aryimetyzacii kontinudw, C, R, de la Bociété de
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