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On the imbedding of subsets of a metric space
in Jordan continua?).
By
R. L. Wilder (Ann. Arbor, Mich,, U. 8. A).

In the present paper I propose to consider the following problems:

Let R be a metric space, and let M be an arbitrary compact sub-
set of R. Do there exist mecessary and sufficient conditions under
which M is a subset of a Jordan continuum?) of R?

In case M is a subset of a Jordan continuum J of R, what is
the minimum dimension (Menger-Urysohn) for which such cur-
ves J exist? ' '

These and related problems have already received some atten-
tion by various authors. Moore and Kline?) gave conditions under
which a bounded closed set in the euclidean plane is a subset of
a simple arc, and E. W, Miller¢) extended the same conditions

‘to any euclidean space F,. Gehman found ) that in the euclidean

plane every bounded continuum K is imbedded in a Jordamn con-
tinuum.-obtained by adding to K a denumerable infinity of arcs.

Whyburn and Ayres showed ¢) recently that if X is a bounded

" 1) Presented to the American Mathematical Society, Mar. 29, 1929,
%) By a Jordan continuum is meant a compact, connsected im kleinen con-
tinuum; i.’e., a one-way contintious ‘mapping  of the straight line interval 0=x=<1.
3 R. L. Moore" and JR. Klin'e; 'On the most genéral plane closed poini-
set through which it i8 possible to pass a simple continuous are, Annals of Math,,
(@), v. 20, pp. 218223, : # e pied A
" ¢) Cf. Bull. Amer.. Math. Beo,, v. 35, p. ‘162, ‘abstract n® 6, s
% H. M. Gehman, Concerning the subssts of a plane contintiotis curve,
Annals of. Math,, v. 27, ‘pp, 2946, Ph L e e bt :
8) @. T. Whyburn'and W. L. Ayres, O continuous curves in n dimén-
sions. Bull, Amer. Math. Soc., v. 84, pp. 349—360, Th. 1. ‘
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subeontinnum of a continuous ecurve M in E,, then K is contained
in & Jordan continuum obtained by adding to K a denumerable
infinity of arcs of M, and the present author found 7) that if K is
a closed and bounded subset of a component, @, of an open subset
of a continuous eurve in E,, then K is a subset of a Jordan con-
tinnum J such that J is itself a subset of . Then Stepanoff
and Tumarkin have obtained the following result®): If A is a
closed and compact subset of positive dimension of a streckenweise
connected metric space B, then I is a subset of a Jordan continunm
in B, of the same dimension as M, and obtained from M by the
addition of a denumerable infinity of arcs®). It is noteworthy that
in all of these results, except that of the present authors quoted
above, the extension of the given set to a Jordan continuum has
been accomplished by the addition of a denumerable infinity of ares.

In connection with the general result of Stepanoff and Tu-
markin, it is to be noted that ,streckenweise connected“ implies
considerably more than ,arewise connected“. A space E is arcwise
connected if every two points of it are joined by an arc; i. e., by
a set which is homeomorphic with a straight line interval. A space
B is streckenweise connected if every two points of it are joined
by an arc that is isometric'%) with a straight line interval; in other
words, the condition imposes a uniformity which is not implied in
the former condition indeed, it imposes uniform arcwise connecte-
dness im kleinen on the space R.

This uniformity is unnecessary, and the condition may be re-
placed, as shown below, by the condition ,connected and arewise
connected im kleinen“. However, even this condition is too strong
to be necessary, as the following example shows: In the ecartesian
plane, let the space R consist of the z-axis, which we shall denote

) R. L. Wilder, On connected and regular point sats, Bull. Amer. Math,
8qc., v, 34, pp. 6496565, Th, b.

*) W. 8tepanoff and L, Tumarkin, Uber eine Erweiterung abgeschlos-
senen- Mengen su Jordanschen Kontinuen derselben Dimension, Fund, Math,,
v. 12, pp. 48—46, Th. I, o ’

%) It should be remarked here that in quoting these results I have not tried
to include all of the properties stated by the authors, as, for instance, the fact
that the arca added have diameters converging to sero, ete,

1) Two metric spaces are called isometric if there exiats a (1—1) continuons

correspondence between them which preserves distances, Cf. ¥. Hausdorff
Mengenlehre, 2 Aufl,, 1927, p. 94 o
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by X, together with the set of all points both of whose coordinates
are rational. Then every compact subset of R of dimension 1 which
lies on X is a subset of a Jordan continuum of dimension 1, although
R itself is neither connected, nor arcwise connected im kleinen at
any point.

It is to be noted in this example, however, that any compact
get F" which lies on X is arcwise connected through X as well as
arcwise connected im kleinen through X. For the sake of clarity
in this connection and in what follows, the following definitions
are introduced:

Definition. If M is a subset of a metric space R, then I is arcwise
connected through B if every two points of M are joined by an arc
of B.

Definition. If M is a subset of a metric space R, then M is
arcwise connected im Kleinen through R provided that if P is a point
of M and & is any positive number, there exists a positive number
8, such that if @ is a point of M whose distance from P is less than d,,
then P and @ are joined by an arc of R every point of which is
at a distance less than & from P.

We may now proceed to develop the results of the paper..

Theorem 1. Let M be a compact and closed subset of a metric
space R. Then in order that M should be a subset of a Jordan con-
tinuum J in R, it is necessary and sufficient that M should be arc-
wise conmected through R and arcwise connected im Kleinen through
R. Mor eover, if these conditions are satisfied, J may by so chosen that
the complement of M (relative fo J) is a denumerable set of mutually
exclusive open arcs, by, ty, by,..., such that the diameter of t, con-
verges to zero as n increases, and such that if M is of positive di-
mension h, the dimension of J is likewise h, and if the dimension
of M is zero, then the dimension of J is one. ‘

Proof That the conditions stated are necessary is quite obvious,
since every Jordan continuum itself possesses these properties,

The conditions are sufficient. Cousider the number 1/n, where
n is a positive integer, If p is a point of M, there exists a number
3, such that if ¢ is a point of M such that

e < Bpy
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then p and ¢ are joined. by an arc of B every point of which lies
at a distance from p less than 1/n. Let

(1) €Epp = *dnpv

and let s,, denote the set of all points of B which are at a distance
less than ¢,, from p; i. e, the ,sphere“ of B of ,radius“ ,, and
center p.

Since M is compact and closed, there exists, by the Borel theorem, -

a finite set of spheres,
(2) Supyy Snpsr v+ s Suppy

of the set of all spheres {s,,} covering M, where for each i, p, is
the center of 4,,. Let ¢, denote the minimum radius of the apheres
(2), and let p and ¢ now denote two points of M such that

e(p, 9) < €

There exists a sphere s,, of (2) which contains p. It is clear, from
the triangular law of distance, and from (1), that

0(q, Pn) < By,

Accordingly there exist ares from p to p, and from ¢ to p,, and
consequently an arc pq from p to g, such that every point of these
arcs is at a distance from p, less than 1/m,

To summarize, we have shown that for every 1/n, where n is
a positive integer, there exists a positive number ¢, such that if P
and ¢ are two points of M whose distance from one another is less
than ¢,, then there exists in R an arc from p to ¢ whose diame-
ter is less than 1/n. :

By a theorem of Alexandroff) the set M can be regarded
as a continuous mapping of the Cantor terniary set, C, on the
interval (0, 1) of the linear continuum, by means of a continuous
function f(z), (z in C). Denote the complementary intervals of C
on the linear continwum by (a,b), (i=1,2,3,...). We shall pro-
ceed to define a new function F(x), defined over the interval o, 1),
which is continuous, and such that for every z, F(z) is a point of
R, and for & in C, F(z) = f(x). '

1) P, Alexandroff, Uber stetige Abbildungen kompakter Raums, Math.
Ann,, v. 96, pp, 566—B71. See pp. 563 and 567, Also seo F. Haun sdorff, los,
cit., p. 197, Th. V.

icm

Imbedding of sets... 49

To every pair of points a,, b, there corresponds in I the pair of
points @;=f(a;) and ;= f(b), which may or may not be identi-
cal. If o, and B, are identical, we may let F(z), for o, <x<b,
denote the point ;= g,. In the case where e, 8, we shall pro-
ceed as follows: Since f(x) is continuous on a compact closed set,
it is uniformly continuous, and there exist at most a finite number
of point pairs (a,, b)) such that

9(“1» ﬂl) % €1.

Since M is arcwise connected through R, there exists, for every
such pair of points @, 8, an are s, of R whose end-points are a,
and §,. Since s, is homeomorphic with (a,, b), there exists 2 conti-
nuous function @,(x) such that

®i(a) =f (a) = a,
i) =1 (b) = B,
q’i(‘”) == g: (al <z bi) § Cs)

Then over the interval (a, b,) we shall define F(x)= g,(x).
For any positive integer x, there exist at most a finite number
of point pairs, (@, 8, such that

€n > Q(C‘la ﬂl) % En~l--1‘

For. every such point pair there exists, as shown above,. an arc s,
whose end-points are «, and 8, and whose diameter is less than
1/n. The function F(z) may be defined over the intervals (a,, b))
in & manner similar to that indicated above, so that F(x) maps
(a;, b) into the are 5. ' ‘

For any xz in C, the function #'(z) is defined so that F(z) = f(z).

That the function F(z) is continuous over the interval (0, 1) is
easily shown, and the set of points of B defined by F(x) is a Jor-
dan continuum J. . ' ‘

That the diameters of the ares {s,} converge to zero is obvious,
However, these arcs may have points other than their end-points
in common with M. To obviate this feature, we may proceed, as
follows : ,

If 3, contains points which are not also points of M, then the
set of all sach points is the sum of a denumerable set of mutually
exclusive open arcs,

' i, 'wlzg Whyenny

Fundamenta Mathematicas, t. XIX. 4
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which have no point in common with #, and such that the dia-
meter of w} econverges to zero as n increases.
In general, if s, contains points which are not also points of

-1

Foy= M+23h
i=1

then 'the set of all such points is the sum of a denumerable set of
open arcs
Wiy Wiy Wayeoo,

which are mutually exclusive, have no point in common with #,_,,

and such that the diameter of w} converges to zero as 4 increases.
By the ordinary diagonal procedure, the ares {w}} (i =1, 2, 8,...,

n=1,2,3,...) may be arranged in a sequence of open arcs

tl? t27 tB""v

which satisfy the conditions stated in the theorem.

That J has the same dimension as M, in case J/ is of positive
dimension, and dimension one, in case the dimension of M is zero,
- is an immediate consequence of a theorem of Urysohn and Men-
ger12),

Corollary 1. Let M be a compact and. closed subset of a con-
nected and arcwise connected im kleinen metric space R, Then M is
a subset of a Jordan continuum, J, of R, satisfying the conditions
stated in the latter part of Theorem 1.

Corollary 2, If M is a compact and closed subset of a compo-
nent, Q, of an open subset of a continuous curve™), then M is a sub-
set of a Jordan continuum J which is itself o subset of Q, and such
that J satisfies the conditions stated in the latter part of Theorem 1.

The proofs of these corollaries should be quite evident, The
second corollary is of eourse a strengthening, so far as the charac-
!:er of J is concerned, of the theorem of the authors referred to
1n the introductory paragraphs. ' '

K, ;)AR:U'rygzhn,: Sur les multiplicitds Cantoriennes, Fund. Math,, v, 8, p. 837;
- Menger, Uber die. Dimensionalitdt von Punkim M
i Monyon engen, Monatsh, f. Math,
A continnonf carve may be non-compact, We shall define it ag a locally
compact, connected im kleinen continuum that lies in a metric space,
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In order to state a theorem analogous to Theorem 1 for the
case of sets not necessarily closed, we make the following defi-
nition:

Definition: If M is a point set, then the set of all limit points
of M that do not belong to M, together with the set of all limit
points of the latter set, will be called the outer shell of M. In sym-

bols, if H =M — M1¢), the outer shell of M is H.

Theorem 2. In order that a compact set M in a metric space
B should be a subset of a Jordan continuum J in R, it is necessary
and sufficient that M should be arcwise connected through R and arc-
wise connected im kletnen through R. Moreover, if these conditions
are satisfied, J may be so chosen that

J=M+M— M)+ I,

nmi
where M, (I — M) and Et,, are mutually exclusive, and every t, is
nel

an open arc such that no two arcs t; and t, (i 3= k) have a point in
common, and . the diameter of t, convergesio zero as n increases. Mo-
reover, if the dimension of S is s (where S is the outer shell of M),
and the dimension of M is m, then the dimension of J is the greater
(or common) value of the numbers s, m, where at least one of these
numbers is positive, or the dimension of J is ome if s=m =0.

Proof The proof is mainly the same as that of Theorem 1,
except of course that in the latter proof M is replaced by L.

That the last sentence of the theorem holds follows from the
following considerations: Since J is compact and metric, it is sepa~
rable. Also, S is closed, and hence both an F, and a G4. By & theo-
rem of Hurewicz), the set M - 8= has a dimension equal
to the greater (or common value) of the numbers s and m (as de-
fined in the theorem). The statementconcerning the dimension-of
J follows at once. » SR

In answer to the second of the questions proposed in the in-
troductory paragraphs, we can now state the following theorem:

14) By M is meant the set consisting of M together with its limit points.

18y W, Hurewicz, Normalbereiche und Dimensionstheorie, Math. Ann,, v.

96, pp. 736—764, Th. XXVIL
&
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Theorem 8. If a compact set M is a subset of a continuous
curve N in a metric space R, then there ewists in N a Jordan con-
tinuum J containing M such that the dimension of J is the greater
(or common) value of the numbers s and m (defined as in Theorem 2)
if either 8 or m is positive; and if s=m =0, then the dimensions
of J is one. ‘ «

Each of Theorems 1 and 2 impose, for the imbedding of the
sot M, the condition that all of the points of M should be arcwise
connected through B and arewise connected im kleinen through R,
I shall now show that this condition can be weakened in such a
way that we do not have to suppose the points of M even arcwise
connected through E.

Definition. If a set M is a subset of a metric space R, then
M is said to be uniformly arcwise connected im kleinen through R
it for every ¢>> 0 there exists a positive number J such that if
P and Q are points of M for which o(P, @) << d, then P and @
are joined by an are of B whose diameter is less than e.

Lemma 1, If M is any compact subset of a metric space R, and

M is uniformly arcwise conmected im kleinen through R, then I is
arcwise connected im kleinen through R. :

Proof. Let ¢ be a positive number, and P a point of 7. There
exists a positive number & such that if p and g are any two points
of M whose distance apart is less than d, then p and ¢ are joined
by an are of B of diameter less than ¢/2. Of the two numbers d,
€/2, let 7 be the smaller (or common) value.

Let S(P,¢) and S(P,1) be spheres with center P and radii ¢

and 7, respectively. Let Q be any point of M distinet from P in
S(P, 7). If P and Q are both points of M, they are joined in S(P, ¢)
by an are of R. Suppose P is not a point of M. Then it is a se-
quential limit point of a set of points P, Py, Py,..., of M, all of
which lie in S(P, 7).

.Let Sy, 8y 8., be a series of spheres with centers at P,
having only P in common, and such that 1) S, = S(P, ), 2) for
every m, any two points of M that lie in 8,41 are joined by an are
of ‘R In §,. It is easy to see that with this situation at hand, there
exists, in S(P,¢), an arc ot R from P, to P,

| In a similar fashion, it can be shown that there exists, in S(P, e),
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an arc of B from P, to Q, and consequently P and ¢ are joined
in S(P,€) by an arc of R, and the lemma is proved 1,

On the basis of this lemma we can first state a theorem which im-
poses & condition on the points of M, instead of M

Theorem 4. In order that a compact subset M of a metric space
R should be a subset of a Jordan continwum J in R, it is necessary
and sufficient that M should be arcwise comnected through R and
uniformly arcwise connected im kiecinen through R. Under these con-
ditions, J may be so chosen as to have the properties stated in the
latter part of Theorem 2. '

Proof It is evident that the condition stated in the theorem
is necessary.

The condition is sufficient. That 7 is arcwise connected im
kleinen through R follows from the above lemma. It remains to
show that M is arcwise connected through B. Let P and Q be points
of M. If P and Q are isolated points of M, they are accordingly
in M, and by hypothesis joined by an arc of B. If P is isolated
and @ a point of M — M, then P is a point of M and Q a limit
point of M. Hexce, as M is arcwise connected im kleinen through R,
there is an are of R joining some point of M, say z to Q. The re-
mainder of the proof, to show that the set M is arcwise connected
through R, should be obvious. The theorem follows as a consequence
of Theorem 2.

Theorem 5. In order that an arbitrary compact subset, M, of
a metric space B should be a subset of a Jordan continuum in R,
it i3 necessary and sufficient that there exist, in K, a sequence of
points, Py, Fy, Fy,..., dense') on M, such that the set of points P,
by, Fs.... is both arcwise connected through R and uniformly arc-
wise conmected im kleinen through R.

Proof. Let K denote the set P, + P, P; +.... We ean
assume, without loss of generality, that K is compact, since M is
compact. Then, by the above lemms, K is arewise connected im
kleinen through R, and, as shown in the proof of Theorem 4, ]_{
is arcwise connected throngh K. Then, since 7 is a subset of K, M

1¢) Compare this lemma with Theorefn 1 of R. L. Moore, Concerning con-
nectedness im kleinen and a related property, Fund, Math., v. 3. pp. 232—237,

1) L &, if Pis a point of M, then either P is & point of this sequence, or
a limit point of the set of all points in the sequence,
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has these pruperties, and the sufficiency of the condition stated in

the theorem follows from Theorem 2. '
It is clear that the condition stated in the theorem is necessary.

Applications.

We shall now consider some applications to general continuous
curve !3) theory. Thus far we have considered only the imbedd?ng
of compact sets, and we shall first obtain some theorems concerning
the imbedding of non-compact sets in continuous curve spaces. We
shall then be able to obtain some fundamental theorems concerning
such spaces.

Theorem 6. Let M be a continuous curve, and K a closed subset
(not necessarily compact) of an open conmnected subset Q of M. Also,
let the boundary, B, of Q) be compact. Then there exists in Q a con-
tinwous ewrve N containing K.

Proof. For every point P of B there is a neighborhood R(P)
such that R(P) is compact and contains no point of K. By the

Borel theorem there is a finite number of the neighborhoods R(P) »

covering B. Their sum is an open wset, D, whose boundary, 8, is
closed and compact, Let B:@=4pF; then B, Is also closed and
compact. i

By Corollary 2 there is a Jordan continunm C that lies in 9Q
and contains §,. Let the set of all points of ¢ that do not lie in D
be denoted by @,. Then @, + C is 2 continuous carve N satisfying
the theorem. o

To show this, we note first that N is certainly connected im kleinen
at any point of @), and also at any point of C that is not a limit
point of @,. Let x be a point of C that is a limit point of @, but
which is not iteelf a point of @, (that is, # is a point of B,). It is
easy to see that  is a point of Q. Let B, be any neighborhood
of 2. Then there is a neighborhood V.C R, such that if y is a point
of C'in V,, there is an arc from z to y that lies in C.R,. Also,
there is a neighborhood W.CV, such that if z is a puint of @
in W,, there is an are of Q from 2 to 2 in V,. Let 2 be a point
of Nin W,. If 2 is a point of C, there is clearly an arc of N
fromztoz in R, If 248 & point of @, not in C, there is an
are ¢ of Q from 2 to x in V.. Let w be the first point of C on ¢
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in the order from 2 to z, and denote that portion of ¢ from 2z to w
by ;. Clearly ¢, is an arc of N. Since w iz a point of C in V,,
there is an arc of C from w to & lying in RB,; denote this arc by u.
Olearly the set #, - is an are of N from 2 to z that lies in R,
Thus N is connected im kleinen.

That N is connected follows at once from the fact that every
component of @, has at least one limit point in 8, and hence in C. It
is clear that N is closed. Hence the theorem is proved.

The necessity for requiring, in the statement of Theorem 6,
vhat the set B be compact is made apparent by the following example:
In the cartesian plane, let ¥ denote the set of all points on the
y-axis; let C denote the set of all points on the curve y::%sinl
for which 0<z<{1, and for every positive integer n let L,,
denote the set of all points on the line y =p/2" for which 0 <
<#<1/2" and p takes on the 0dd values +1, + 3,.., 4 (2n—1). Lét

M=Y+0+4 Y (2‘ L,,,).
el r . :
It is clear that M is a continuous curve. :

Every line segment L,, is separated into a denumerable infinity
of open intervals by its intersections with the curve C; in each
one of these that has two endpoints in C, let one point not on C
be selected and assigned to a set B. Also, let B include the set Y.
Then M— B=¢Q is a connected open subset of M. Let K denote
the set of all points on C which are the positions of the relative
maxima of C. Then K is a closed subset of ¢ which is not .con-
tained in any continuous eurve of Q.

Although in this example we note that B is not connected, and

that there are points of K arbitrarily close to B, it is not difficult

to construct examples, in the plane, to show that the requirement
that these conditions shall not be present is not sufficient to ensure K
lying in a continuous curve of Q. s _

For the case where the continuous curve M lief in a euclidean
space, %, of n dimensions, we can obtain theorems more analogous
to- Theorem 1, as follows :

Theorem 6a. In E, lot K be any closed set (not necessarily
compact). Then there exists, in E,, a continuous curve M which con-
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tains K and which is obtained by adding fo K a dem.tmerablé:’ infinity
~ of mutually exclusive open arcs none of which contains a point of K.

Proof Since the case where K = E, is of no interest. and the
case where n=1 is obvious, we let P be a point. of E,‘.-—- K, where
n>1. Let 8, Sy Sy... be a system of spherfcal neighborhoods
of P such that 1) S, contains no point of X, 2) if r, represents tihe
radius ofv S,, then 7, <7y (k=1, 2,3,...) and 3) every point
of B, is in some S,. For every k> 1 let

Fk"‘:K. (S-;—‘ Sk-—l))
R,,==§;, - Sk—-—l'

Then F, is a closed subset of I,, and since R, is arcwise con-
pected and arcwise connected im kleinen, it follows from Theorem 1
that F, is a subset of a Jordan continuum J, in R, such that
J,— F, is the sum of a denumerable infinity of mutually exclusive
open arcs, Furthermore, it is evident from the proof of Theoreg 1
that the open ares of J, — ¥} may all be selected in the set S, — 5;_;.
Consequently, if i j,

(J,— F)-(J, — B) =0,

In order to complete the proof it is only necessary to join, for
each %, the continua J, and J,_, by an arc which lies in S, — Sis.
If F, and J, are vacuous, we join the first non-vacuous J, such that
i>%k—1 to J,, by an are in 5,— 8,_,. Overlappings are easily
eliminated as in the proof of Theorem 1,

Theorem 6b. If K is a closed subset (not mecessarily compact)
of a connected open subset Q of a continuous curve M in E,, such
that the boundary, B, of Q, is compact, then there ewists, in Q, a con-
tinuous curve J containing K such that 1) J— K is the sum of a coun-
table infinity of mutually exclusive open arcs, and 2)if K is compact,
then J is compuct. :

"Proof. If K is compact, then the theorem is a corollary of
Theorem 1. We shall therefore suppose that K is not compact, Also,
since if M= E, the proof may be handled (by virtue of the fact
that B is compaet) much as in the proof of the preceding theorem,
we shall suppose that there is a point P not in M.
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We begin by making an inversion about P, denoting the inverse
of any set of points 4 by ¢(4). Then @(M ) i8 a compact set, and
@(M)~+ P is a Jordan continuum of which P is a non-cut point;
we shall denote this Jordan continuum by M.

The distante from P to @(B) is a positive number d. Also,
@(¢) + P is an arcwise connected and arewise connected im klei-
nen point set, and by virtue of Theorem 1, @(K)-+ P is a subset
of a continuous curve Z, that lies in ¢(Q) - P, and which satisfes
the conditions of Theorem 1. If E, — P is connected, we let

(B, —P)=J.

Suppose B, — P is not connected; then for any positive number e,
it is eagy to show, by virtue of the fact that £, is & continuous curve,
that there is only a finite number of components in E, — P of
diameter > ¢, ~

Let the component of M- S(P, d/2) (i=1, 2, 3,...) determined
by P be denoted by M’(P, d/2). Then M'(P, d/2) —P contains only
a finite number of components. For let M, and’ M, be distinct
components of this set. There exist points P, and P, of M, and
M,, respectively, such that o(P, P) < dfd (i=1,2). As M — P is
connected, there is an arc P, P, joining P, and P, in M’ — P18,
It is clear that the are P, P, cannot lie wholly in S(P, d/2), since
if it did it would le in M’(P, d/2) — P. Let = be the first point
of P, P, in the order from P, to P, such that o(P, z) = d/4. The
point 2 lies in M. In the same way it follows that every compo-
nent of J/'(P, d/2) — P contains such a point z. Now if the set of
all such components were infinite, the set of points {z} (one from
each component) would have a limit point, L, in some component
of M'(P,d/2) — P. A contradiction follows at once by virtue of
the connectedness im kleinen of M’(P, d/2).

Denote those components of M'(P, d/2) —P that lie in (9
by G, Gy..., C,. Similarly, those components of M’(P, d/4) —P
that lie in G, (i=1, 2,..., k) denote by Cy, Cp,..., Cy, Similarly,
in M’(P, d/8) — P let the components that belong to C,; (i=1,2,.,k;
J==1,2,..., n) be denoted by C,,, C,p,..., Cim,;- And so on.

Let P, deuote & point of C, (=1, 2,..., k). Then the points
{P} are joined by a finite set of arcs in @({¢Q); denote the resulting

%) Of. R. L. Moore, Concerning continuous curves.in the plane, Math. Zeit.
v. 16, pp. 254—260, Th. !, '
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set by S. Let Py i=1,2,....k j=1,12,..., 'n,).denor,e a poi.ut
of C; then for a fixed i, all points P, are joined in C; by a finite
set of arcs £, to the point P;; let S, denote the set of all points
in ares of the sets £, Then, if Py, is a point of C,, all points P,,
for a fixed pair of values i and j can be joined in C, to Py by
a finite set of arcs, and a set S, is obtained; and so on. The set
S=8 +S;+ 8 +... is8 a pskeleton“ set upon which we can
now construct the continuous eurve desired.

" Only a finite number of components of E, — P fail to lie wholly
in M'(P,d/4). If 4 is such a component, then A4 has points in
some C, in which it can be joined by an are to P,. After all such
joinings have been made, denote the resulting set, obtained by adding
to S the set of all such components and arcs by J;.

Only a finite number of components of E, — P that lie in
M'(P, df4) fail to lie in M‘(P, d/8). If A is such a component,
then A has points in some Cy, and can be joined to P, by an are
of this C,;. Then the set consisting of all such components and
joining arcs we shall denote by .J;.

We proceed in this manner ad infinitum, and let (p(J):;g'o J;
-1

It is easy to show that J is a continuous curve which satisfies the
conditions of the Theorem.,

Theorem 7. In any locally compact metric space, in order that
a continuum M should be a continuous curve, it is necessary and suf-
ficient that if K is any closed subset of M that is compact, and e
any positive number, then there exists in M an open subset D contai-
ning K, such that every point of D is at a distance less than e from K,
and M — D contains only a finite number of components.

Proof. The condition is necessary. For each point P of K

there is a positive number dp, < ¢ such that S(P, dp) is compact.
By the Borel theorem, there is a finite number of the neighborhoods
S(P, dp) covering K, and the set of all points in this finite number
of neighborhoods let us denote by R. By virtue of the connectedness
im kleinen, there is only & finite namber of components of M — K
that have points not in R; denote these by G, G,,..., C,. For
each i (i=1,2,...,n), denote by E; the set of all points of C, that
are not in E. By Theorem 6 there exists in C, a continuous ourve
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N, that contains B, The set

D=M—-—2"‘N,

i=1

is an open subset of M containing K, every point of which is at
a distance less than ¢ from K. Since the set M — D is the sum

n .
2 N,, where each set N, is a continuous curve, the theorem is
i=1

proved.

The coudition is sutficient. For suppose M is not a continuous
curve. Then there exist!?) two positive numbers d, and d, and a denu-
merable infinity of continua M, such that 1) each of these continua is
a subset of M'and contains points whose distances from some point P
are d; and dy, respectively, and if z is any point of one of these eonti-
nua, then d, >(P; x) 2= dy, 2) no two of these continua have & point in
common and no one of them is a proper subset of any conneeted sub-
set of A which is such that all of its points z satisfy the distance

relation in 1), and 3) 8(P. d;) is compact. Let K denote the set
of all points y of M such that ¢(P,y)=d, or ¢(P,y)=d,, and
let e =1}(dy —d,). Then if D is an open subset of M as defined
in the statement of the theorem, no finite number of eontinua of

M — D can econtain all points of (M — D) EM,
I=1

It will be noted that the above proof also shows that if M is
any continuous curve, K is any closed subset of M that is compaci,
and e any positive numbér, then there exists in M an open subset D
containing K, such that every point of D is at a distance less than e
Srom K, and M — D consisis of a finite number of continuous curves.
In this connection it is of interest to note that it has been shown
by H. M. Gehman ) that if M is a plane continuous curve and P
is a non-cut’point of A7 then for any ¢ >0 there is an M-domain D
containing P whose diameter is less than ¢ and sueh that M—D

19) Cf. R, L. Moore, Report on continuous curves from the viewpoint of
analysis situs, Bull. Amer, Math, Soe., v. 29, pp. 289 —%02, § 3. Condition (4) as
stated at the top of p, 297 is incorrect; the correct statement may be found in
Fuod. Math, v, 7, p. 371. i

1) Concerning certain types of non-cut poinis, with an application to con-
tinuous curves, Proc. Nat. Acad, Sei, v, 14, pp. 431 -432; cf. Ths, 4 and 5, and
the concluding paragraph of tho paper.
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is a continuous curve 2); also, that if P is a cut-point of M, then
M — D is the sum of a finite number of continuous curves. Our
next theorem will generalize, and extend to general metric spaces
these results of Gehman. First it will be necessary to establish

a lemma,

Lemma 2, Let M,, M,,..., M, be mutually exclusive continuous
ourves (amy of which may reduce to single points) which are subsets

. k
of a continuous curve M, and let C be a component of M — 3 M,

lem]
Then M — C consists of a finite number, at most k. of continuous
curves %),
k
Proof, If @ is a component of the set M — 3 M, that is distinet

[
from C, then the boundary points of @ form a non-vacuous set that

lies in é M,, and if M, contains a boundary point of ¢ the com-
=1

ponent of M — C that contains M is & continnam  which containg ().
Consequently the number of components of M — C is at most k.
Let K be a component of M — C, and let' P be a point of K
It is clear that if P is not in any M, the set K is connected im
kleinen at P. Suppose P is in M. Let ¢ be any positive number,
which we may assume, without loss of generality, to be less than
all the distances between sets M,, M, (k== 1). Since 1/, is a con-
tinuous curve, there is a positive number d, such that any point
of M; whose distance from P is less than d, is joined to P by an
are of M, every point of which is at a distance from P less than e
Also, there is a positive number d, such that every point of M
whose distanee from P is less than d, is joined to P by an are
of M every point of which is at a distance from P less than d,.
Of course 4, <d, <e. ‘
Let = be a point of K whose distance from 2 is less than dy.
If z is in M), then certainly = is joined to by an are of M, and
hence of X, every point of which is at a distance from P less
than e SpppOS‘e % is'not a poiat of J,. Then, because of the ubove

*} By an M-domain is meant an open connected subset of M.
) A special case of this lemma was proved by Gehman, Soms relations

'I;;twgm a continuous curve and its subsets, Annals of Math,, v, 28, pp. 108--111.
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stipulations concerning ¢, « is a point of some component, @, of

k
M— 2 M, There is an arc of M joining x to P every point of

i=1
which is at a distance from P less than d,; let y be the first point
of this arc in 3], in the order from  to P, and denote the portion
of it from x to y by #. Then ¢ lies, except for y, wholly in @,
and must also be an are of K.

Since the distance from y to P is less than d,, there is an are,
u, of M,, joining y to P, every point of which is at a distance
from P less than e. Then ¢} u is an are of K from z to P every
point of which is at a distance from P less than e. Consequently,
K is connected im kleinen at P.

As it is therefore connected im kleinen at all points, the con-
tinuum K is a continuous curve. This completes the proof of the
Lemma.

Theorem 8. Let K be a compact subcontinuum, (which may reduce
to a single point) of a continuous curve M. Then if e is any positive
number there is an M-domain D containing K such that every point
of D is at a distance léss than ¢ from K, and such that M — D is
the sum of a finite number of comtinuous curves; indeed, if M — K
is connected, then M — D is itself a continuous curve.

Proof. Case 1. The set M — K connected, Let E denote the
get of points of M — K whose distances from K are >e¢. Then E
is a closed subset of M — K, and by virtue of Theorem 6 there
is a continuous curve J lying in M/ — K and containing E. Let D
denote that component of M — J that contains K. Then D is an
M-domain, and every point of D-is at a distance from K less than e.
By lemma 2, M— D is a continuous curve.

Case 2. The set M — K not connected. Since M is locally com-
pact, and K is compact, there exists, as in the proof of Theorem 7,
an open set B which contains K, every point of which is at a di-
stance from K less than ¢, and such that B is compact. Let E de-
note the set of points M — R. Then E is contained in a finite
number of components, C, G,..., C,, of M — K. By Theorem 6,
each set £ C, is contained in a continuous eurve J; of C,. Let D

be that component of M — 3 J, that contains K, Then by Lemma 2
lm}

M — D consists of a finite number (at most n) of continuous curves.
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It is obvious that every point of D is at a distance from K less
than ¢, since D is a subset of E. '

It has been shown by W. L. Ayres®) that it P is a non-eut
point of a continuous curve M in E,, and ¢ is any posx.m%ve number,
there exists in M a continuous curve N, and a positive m{mber
8, such that N, is of diameter less than ¢, contains every point of
M whose distance frowm P is less than d, and such that M — N,
is connected. We shall first prove two preliminary theorems and
then generalize this result of Ayres.

Theorem 9a. Let M be a continuous curve, and P a non-cut point
of M. Then M contains a Jordan continuum N such that 1) N r:m?w
tains all points of M whose distances from P are less than a certain
positive wumber d, and 2) N — P is connected.

Proof Let » be a positive number such that the set of points
S(P,r) is compact. Then by a theorem of Hahn?4) there exists
a Jordan continuum M(P,r) which is a subset of M, contains every
point of M which is less than a certain distance d(<r) from P,
and is such that all of its points'lie in S(P, 7).

If M(P,#)— P is connected, our proof is complete, Suppose.
however, that- M(P,7)— P is not connected. Let M, and M, be
distinet components of M(P,r)— P. There exist points P, and P,
in M, and M,, respectively, such that (P, P) <<d(i==1,2). As
M-~ P is connected, there is an arc P, P, joining P, and P, in
M — P. Tt is obvious that the are P, P, cannot lie wholly in S(F, d).
Let @, be the first point of P, P, in the order from Py to £,
such that o(P, @,)=d. Then @, is a point of 3/,. Thus, every
_component of M(P,r)— P contains at least one point whose distance
from P is exactly d. The set, K, of all such points, is compact and
closed, and by Theorem 1 is a subset of & Jordan continuum, J,
which -lies in M — P. The sum, M (P, )+ J is a Jordan continuum
which s not disconnected by the omission of P. - '

Theorem 9b. Let M be a continuous curve, and K a compact
subcontinuum of M such that M — K is connected. Then M contains

B} On continua that ave discornected by the omission of any point and some
related problems, Mon, f, Math, u. Phys, v. 86, pp. 195—148, Th, 2.

%) H. Hahn, Mengentheoretische . Charakiterisierung der stetigen Kurve,
Wien, Akad. Sitz, v. 128, Part IIs, pp. 2488—2489; cf. Th. XXI, p, 2475,
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a Jordan continuum N such that 1) N contuins all points of M whose
distances; from K are less than a certain positive number d, and
2) N— K is connected.

Proof. Let P be a point of K. Then there exist r, S(P, 7), M(P,r)
and d as defined in the proof of Theorem 9a. The component, (P, ),
determined by Pin M. S(P,d), is a subset of /| (P,d), and constitutes
a region of M as defined in my paper The non-existence of a cer-
tain type of regular point set®. For every point P of K we obtain
in a like manner a region M’(P,d) (the number d is variable with
P, of course). By applying the Borel theorem to the regions M’ (P.r)
covering K, we obtain a finite set of regions covering K, aud the
sets M(P,r) associated with these constitute a Jordan continwum
MK, r') which contains K as well as every point of ¥ whose di-
stance from K is less than some positive number +. As in the
proof of Theorem 9b it may be shown that the set of all points
of M'(K,r') whose distance from K is equal to »* lies in a Jordan
continuum J of M— K, and the Jordan contimnum N=J- M’ (K,r)
satisfies the conditions of the Theorem.,

Theorem 10. Let K be a compact subcontinuum (which may. be
a single point) of a continuous curve M. Then for any positive number
€ there exist a Jordan continuum J and a positive number d, such
that J is a subset of M every point of which is at a distance less
than € from K, and which contains every point of M whose distance
Jrom K is less than O, and such that M — J contains only Jinite
number of components; and, indeed, if M — K is connected, then
M — J is connected.

Proof Case 1. The set M — K connected. By Theorem 9b
M contains a Jordan continuum N such that 1) N contains all points
of M whose distances from K are less than a certain positive num
ber d, and 2) N — K is connected. We may assume d < e.

By Theorem 8 there is an N-domain D containing K every
point of which is at a distance from K less than d/2 and such
that N— D is a Jordan continuum. Since N — D is a continuum
that does not disconnect N, there exists by Theorem 8 an N-domain

*) Bull. Amer. Math, Soc., v, 33, pp. 439—446. Although the terminology
employed in this paper is that of the plane, the extension to metric spaces in ge-
neral is obvious,
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D' containing N — D, such that the distance between D’ and K is:
positive, and N — D’ is a Jordan continuum J. The set N —J = D
is connected, and it is obvious that every point of J is at a di-
stance from K less than d/2. Also, since the distance between D’
and K is positive, J contains all points of N (and hence of M)
that lie within a distance less than some positive number d, <<d/2
from K.
Consider, now, the set

M—J=M—N)4((N—J).
We have already noted that N — J is connected. Furthermore, every
component of M — N has its boundary points in N — J. .Oonse-
quently M — J is connected, and the theorem is proved for this case.
Osase 2. The set M — K not convected. As in the proof of Theo-
rem 7, we obtain the open set R containing K, every point of E

being at a distance from K< ¢ and B being compact. Let P be any
point of K. By the theorem of Hahn quoted in the proof of Theo-
rem 9a, there is a Jordan continuum J, which is a subset of M.R
and contains every point of M less than a certain distance d from P.
Applying the Borel Theorem, there is a finite number of such sets
Jp covering K, and their sum let us denote by J,. It is easy to
see that J; contains all points of I/ that lie within a certain di-

stance d, from K. As R is compact, only a finite number of com-
ponents of M — .J; contain points of M — R; all other components
we add to J, and call the resulting set /. Then J is a Jordan
continuum ) satisfying the conditions of the theorem.

) Cf. H. M, Gehman, Some relations bstween a continuous curve and its
subsets, Annals of Math. v. 28. pp. 108—111, Th. 8. Although Gehman's proof
depends npon properties of continuous curves that hold only in the plane, an in-
dependent proof such as the following -establishes it for the general space we are
considering. Theorem: If M and N are continuous curves and N i3 a subset of
M, and if K is o set consisting of N' and any collection ‘of components of M — N,
then K iz a continuous -¢urve, That K is connscted im kleinen at apy point
of K -— N is obvious. Let P be a point of K in N, and let ¢ he any positive
number. There is a positive number d, such that if  is a point of N whose di-
stance from P is less than d,, then z and P are joined by an arc of N every
point of which is at a distance from P less than e¢; and there is a positive num-
ber d, such that if y is a point of M whese distance from P is less than d,, then
v and P are joined by an arc of M every point of which is at a distance from
P'less than d,. The remainder of the proof is similar to that of Lemma 2 above,

———————
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Sur un probléme concernant les types
" de dimensions.

Par
W. Sierpifiski (Varsovie).

M. Kuratowski et moi, nous avons démontré?) que, E étant
un ensemble linéaire de puissance du continu, il existe toujours un
ensemble Z de puissance du continu, tel que dZ < dE.

Or, le probléme se pose: & et H dtant deus ensembles lindaires
de puissance du continu, existe-t-il toujours un ensemble Z de puissance
du continu, tel que dZ <<dE et dZ < dH?

Le but de cette Note est de prouver (3 I'aide de I'axiome du
choix) que la réponse y est négative.

On voit sans peine qu'il s'agit ici des ensembles E ot H totalement impar-
faits. En effet, admettons que X contient un sous-ensemble parfait P. L’ensemble
H, dont la puissance est celle du continn, contient, comme on sait, un sous-ensemble
ponctiforme de puissance du continu, soit Q, ot, d'aprés le théordme mentionné,
il existe un ensembls Z de puissance du continu, tel que dZ << d¢Q. Or, on s,
comme on sait, dQ < dP (P étant parfait et ¢ ponctiforme), done dZ {d¢ <
< dP<dE (puisque P E) et, d'antre part, dZ < dQ <dH (puisque @ H),
On a done dZ<dE ot dZ < dH.

D'abord je démontrerai, en m'appuyant sur ie théoréme de
M. Zermelo, ce

Lemme?). Il existe un ensemble N de puissance du continu, tel
que deux sous-ensembles disjoints de N de puissance du. continu ne
sont jamais homéomorphes.

1) Fund. Math, t. VI (1926), p. 200.
% Notre lemme, dons nous donnons ici une démonstration directe, peut étre

déduit sans peine d’mnn théoréme plus général de M, Banach: ce volume p. 14.
(Théortme 2),
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