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part. L'ensemble E; — (p,, %y, t4,,...) est engore un G condensé,
donc (d’aprés ce que nous avons démontré plus haut) il est en ho-
méomorphie généralisée de 17 classe avec H,. On voit sans peine
que l'ensemble Z sera encore en homéomorphie généralisée de 17
classe aveec H.

Pareillement on traite le eas o B, est dénombrable et H, est
fini ou vide, et le cas, ou K, et H, sont finis.

Notre théoréme est ainsi démontré complétement.
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Hassler Whitney? (Cambridge, U. 8. A)).

Introduction. Kuratowskis) has shown that a topologieal
graph is planar, i. e. it can be mapped in a 1-—1 continuous
manner on the surface of a sphere, if and only if it contains
neither of two certain graphs within it. The author has shown )
(A, Theorem 29) that a graph is planar if and only if it has a dual
as defined in I It is the main purpose of the present paper to
give a proof of the purely combinatorial theorem (Theorem 12)
that a graph has a dnal if and only if it contains neither of
Kuratowski’s graphs as a subgraph 5). This together with the ahove
mentioned theorem of the author gives a proof (for graphs) of
Kuratowski’s theorem which involves little of a point set nature,

1) Presented to the American Mathematical Society, Dec. 28, 1931.

%) National Research Fellow.

%) Fund. Math. vol 15 (1930), pp. 271—283. He cousiders a more general
point set than a graph.

4) We shall refer to the following papers by the author.

1. Non-separable and planar graphs. Trans. Amer. Math. Soc. Vol. 34 (1932),
pp. 339—3862.

ILI. Congruent graphs and the connectivity of graphs, Amer. Journ. of Math,
Vol. 54 (1932), pp. 160—168.

IIL. 2-isomorphic graphs, Amer, Journ. of Math, Vol, 55 (1933), pp. 246—254.

Note that we now use the term isomorphie instead of congruent.

5 Kyratowski’s theorem was proved independently by Orrin Frink and
P. A. Smith, Prof. Frink has been kind enough to show me their (unpublished)
proof; our proof (of Theorem 12) has many points in common with theirs,
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"In § 1 we show that, to determine whether two graphs are du-
als or not, it is not necessary to regard all their subgraphs, but
merely a part of them. This section will not be used in the sequel.
In § 2 cut sets of arcs are discussed. In §§ 3, 4 and 5 some
properties of planar graphs are described which correspond to com-
mon point set theorems in the plane. The rest of the paper is de-
voted to the proof of Theorem 12. In this proof we need only
Theorems 4, 9 and 11.

We recall the following defigitions and theorems from the paper I. A graph
G consists of a set of vertices a, b,..., f, and arcs ab, ac,..., df; the end ver-
tices @ and b of each arec 4b must be in the graph. A chain consists of distinet
vertices @, B, ¢,..., d, ¢, and arcs ab, be,..., de. A suspended chain is a chain
such that the first and last vertices and only those, are on at least three ares of
the graph. A cireuit is a set of distinct vertices a, b, ¢..., d, ¢ and arcs ab,
be,..., de, ea; a F-circuit is a circuit of & ares, A graph is separable if it is
the union of two graphs, each containing at least one are, and having at most
& single common vertex. A component of a graph is a maximal non-separable
subgraph,

If a graph G has E arcs and V vertices and is in P connected pieces, then
its rank B and nullity N are defined by the equations B = V— P, N=F—
—R=F— VP A forest is a graph coutaining no circnit, i. e. a graph of
nullity 0. A subgraph H of G contains some arcs of G'and those vertices which
are on these arcs, The complement of H in G is the subgraph of G containing
those arcs not in H; the complement of G in G is the null graph, Let R, R/,
r, r'y ote. be the ranks of G, G', H, H', etc. Suppose there is & 1—1 correg-
poundence between the ares of & and G“ so that if H is any subgraph of G and
H’ is the eomplement of the corresponding subgraph of G, then #' = R’ —n;
then G’ is a dual of G.

I, Theorem 2. If an arc ab is added to a graph, the rank (nullity) s
increased if and only if a and b were not (were) formerly connected.

1, Theorem 9. Let @ be a graph of nullity 1 containing no solated ver-
tices, such that removing any arc reduces the nullity to 0. Then G is a circuit.

I, Theorem 11. Every non-separable subgraph of G is contained wholly in
one of 'the components of @. '

1, Theorem 18. If G §s o non-separable graph of nullity N> 1, we can
remove an Gre or suspended chain, luaving a non-separable graph of nullity N— 1

A simple proof of this theorem is given in I, footnote on p. 247,

I, Theorems 20 and 21. If G’ is & dual of G, then G is a dual of G,
and R =N, N'=R,

I, Theorem 23. Let G,,..., Gy and G:,,_,, G, be the components of G and
&' respectively. and let G be a dual of Gy (i =1,...,m). Then & is & dual of G.
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I, Theorem 25. Let @& and G’ be dual graphs, and let H,,..., Hy, be the
components of G. Let H,..., H be the corresponding subgraphs of G'. Then
I-I;,.‘ . H, are the components of @', and Hj is a dual of .H,- i=1,...,m).

I, Theorem 28. Let ab and o’ b’ be corresponding arcs of the dual graphs
G and &'. Form G, from G by dropping out ab, and form G| from G’ by
dropping out a'b’ and letting o/ and b’ coalesce. Then G, and G are duals.

I, Theorem 30. If the non-separable graph G has a (non-separable) dual
@, then we can map G and G together on a sphere so that (1).corresponding
ares, and only such arcs, cross each other, and (2) inside each region of one
graph there s just one vértex of the other graph.

1. Theorem 1. Suppose there is a 1 —1 correspondence between
the arcs of the two graphs G and G’ so that a set of arcs in &
form a circuit if and only if the corresponding arcs of G form a cir-
cwit. Then any two corresponding subgraphs H and H' of G and G
are of the same rank and nullity. .

The conclusion holds if the word ,circuit® is veplaced by forest
or ,subgraph of nullity > 0% or ,subgraph of nullity 1%, or ,cut
set of arcs“ (see § 2) or ,subgraph containing mo cut set of arcs*
or ,subgraph containing at least one cut set of arcs® or oSubgraph
containing exactly one cut set of arcs“. )

Let H and H' be any corresponding subgraphs. We shall build
them up arc by arc: whenever we add an are of H, we add also
the corresponding are of H'. To begin with, the two graphs con-
tain no arcs, and are of rank O, nullity 0. When we add a given
are ab to H, the nullity increases if and only if a and b were al-
ready connected, i. e. if and only if ab together with some other
arcs already added form a circuit P; similarly for H'. l_3ut by hy-
pothesis, if the circuit P is present, then the corresponding ares of
H’ form a cireuit 7', and conversely, if P’ is present, so i P.
Hence the nullity of H' increases each time if and only if the
nullity of H increases. It follows that H and H' are of the same
nollity, and therefore also of the same rank. .

The next statement follows from the easily proved fact that if any
forest in one graph corresponds to a forest in the othe-r, .then also
circuits correspond to eireuits (use I, Theorem 9); similarly for
the next two statements. _

To prove the last statements, we form H and H by dropping
out the remaining arcs of G and G’ one by one, drf)ppmg out eor-
responding ares at the same time. The proof runs just as before,
cut sets of arcs ete. taking the place of eircuits ete.
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Theorem 1'. Under the same conditions as Theorem 1, G and
G’ are 2-isomorphic.
This follows from the theorem of IIIL

Theorem 2. Suppose there is a 1 — 1 correspondence between
the ares of the two graphs G and G’ so that a set of arcs in G’
form a cut set of arcs if and only if the corresponding arcs of G
form a circuit. Then G and G are duals.

The conclusion holds if the words ,cut set of arcs* and ,circuit
are replaced by ,subgraph containing no cut set of arcs* and ,forest,
or ,subgraph containing a cut set of arcs“ and ,subgraph of nullity
> 04, or ,subgraph containing exactly one cut set of arcs® and ,sub-
graph of nullity 1%

Suppose cut sets of arcs in G’ correspond to cireuits in G. Let
H; of nullity #, be any subgraph of &, and let H', of rank #,
be the complement of the corresponding subgraph of &'. We must
show that ¥’ = R’ — n.

We form H and H’ together: We begin with no ares of @ and
all the ares of @'. Each time we add an arc of H, we drop out
the corresponding arc of G'; H and H' are then formed at the
same time. The nullity of the subgraph of G increases if and only
if the last arc added together with arcs already present form a cir-
cuit. The rank of the subgraph of G' decreases if and only if the
last are dropped out together with ares already dropped out form
& cut set of ares. As circuits in G correspond to cut sets of arcs
in &, the nullity of the first subgraph increases if and only if the
rank of the other decreases, and the first statement follows,

The proof of the other statements follows the lines of the proof
of Theorem 1.

Theorem 3. If G' is a dual of G, then G is a dual of G
if and only if G' and G are 2-isomorphic.

This follows from Theorem 2 and the Theorem of IIL

2. Cut sets of arcs. Suppose that dropping out a certain set of
arcs from a graph G increases the number of connected pieces in
the graph, while dropping out no proper subset of these arcs does;
we then say these arcs form a cut set of arcs. If a single are forms
a cut set of arcs, we call it a’ cut arc. Note that no cut set of
arcs contains a 1-eireuit,
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Theorem 4. If G and @' are-duals, then any circuit in one
graph corresponds to a cut set of arcs in the other, and conversely.

This follows from the definition of dual graphs and I, Theorem 9.

Theorem 5. If a cut set of arcs is dropped out of a graph G,
then the resulting graph”™ G’ contains two connected pieces H, and H
such that each arc of the cut set joined H, and H,.

Each arc of the cut set joined two distinet connected pieces of
@, as putting it back reduces the number of connected pieces in
the graph. Say an_are ab of the cut set joins the two pieces H,
and H,. Having put back ad, putting back any other arc cd of the
cut set leaves the number of connected pieces the same; hence ¢
and d are in the same connected piece in @ - ab, while they are
not connected in G’. This can only be if ¢d joins H, to H, also.

The next two theorems are immediate consequences of this
theorem.

Theorem 6. Any two arcs of a cut set are contained in a cir-
cuit in the graph.

Theorem 7. Any circuit has an even number of arcs in common
with any cut set of arcs.

Theorem 6, and I, Theorem 11 give.

Theorem 8. All the arcs of a cut set in a graph lie in a sin-
gle component of the graph.

3. The sides of a circuit. Suppose a topological planar graph G%
containing a simple closed curve P¥, is mapped on the surface of
a sphere, This surface is divided into two regions by P¥ the two
sides of P* and all of G* not in P* lies in one of these regions.

Let G be a non-separable planar graph containing a circuit 2,
and let G' be a dual of G; G is non-separable, by I, Theorem 26.
Then, with reference to G“, we can define the two sides of P in
G as follows. If P is the subgraph of G’ corresponding to P, then
P’ is a cut set of ares (Theorem 4). G' minus the arcs of P’ is
in two connected pieces, say H; and H; Let the corresponding
subgraphs of G be H, and H,; the arcs of these two graphs, fo-
gether with the vertices of these graphs whieh are not in 2, form
the two sides of P in the graph G, with reference to the dual G’
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To show that this definition is admissible, we must show that
there is no vertex not on P which lies in both A and Hy; i. e.
if an arc of Hy, and an arc of H, have a common vertex c, then ¢
lies in P. :

Let C be the arcs on ¢; the corresponding ares €' of G’ form
a circuit (Theorem 4), containing an arc of H; and an are of H,
Hence ¢ contains ares of the cut set P, and C contains ares of
P; therefore ¢ lies in P. We can now state,

Theorem 9. If the vertices a and b are on opposite sides of
a circuit P in a (non-separable) graph G, with reference fo a dual
G, then a and b are distinct, and every chain from a fo b in @
contains a vertex of P.

The converse of this theorem is not true: Two vertices may be
on the same side of a circuit, while there is no chain joining them
which does not contain vertices of the circuit.

The different duals a non-separable graph which is not triply
connected may have correspond to the different ways of mapping
this graph on a sphere (see I, Theorem 30, and II, Theorem 11).

4. Boundaries. We consider in this section a pair of dual graphs
G, &, neither of which contains a 1-circuit. (Hence also neither
contains a cut arc). Consider a vertex o’ of one of the graphs, say
G’, and let A’ be the arcs on a’. The corresponding ares 4 of G
we shall say form the boundary of o’ in G. If G and G are non-
separable, and the corresponding topological graphs are mapped on
& sphere as in I, Theorem 30, then 4 is a simple closed curve, and
forms the boundary of the region of @ which contains o’. If G
and G are separable, the theorem referred to does not hold in ge-
neral, and this interpretation falls down.

Theorem 10. The boundary of a vertex a' as above described
consists of a set of circuits, each of which lies in a different com-
ponent of G1).

Let a'd’ be one of the ares on a'. If we drop out all the ares
A’ ' and b’ are disconnected. If we put back as many as we can
without connecting these vertices, the remaining ares 4; of A’ form

') Recall that neither graph contains a 1-cirenit or cut arc.
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a cut set of arcs. (If the graphs are non-separable. 4= A‘). The
corresponding arcs 4, of G form a circuit; thus we see that each
arc of A is contained in a circuit in 4.

Consider now an arc a'¢’ of 4’ not in A;, if there is one; it
lies in a different component of G’ from a’ I'. For otherwise, there
would be a chain joining b’ and ¢’ and not passing through o/, by
I, Theorem 6, which together with a’d’ and a’¢’ forms a circuit P'.
But this circuit contains only the arc a’ b of the cut set 4;, con-
trary to Theorem 7. Hence the arc of A corresponding to a’ ¢’
lies in a different component of G from that coniaining the circuit
A,, by I, Theorem 25, and is contained in a circuit 4, of 4 lying
in this component, Continuing in this manner, we see that 4 con-

- gists of eircuits 4,,..., 4,, as required.

5. Construction of dual graphs. We prove here some theorsms
gimilar to I, Theorem 28, and II, Theorem 8. The present theorems
correspond to theorems in the plane on how cross cuts may be
drawn in a region, dividing it into two regions, ete.

Theorem 11. Let G and @ be duals. Let a be a vertex of G,
and let A be the arcs on a. Let A’, the corresponding arcs of &,
consist of two chains B’ and C', each joining the wvertices b and c'.
Let B and C be the corresponding arcs of G. Then:

(1) If Gy is formed from G’ by letting b’ and ¢ coalesce into the
vertex o', and Gy is formed from G by replacing the vertex a by
the two vertices b and ¢, and letting the arcs of B and C end on
b and ¢ respectively, then Gy and Gy are duals, preserving the
correspondence between their arcs.

(2) If G is formed from G’ by adding the are b’ ¢, and G, is for-
med from G, by adding a corresponding arc b, then G, and (e
are duals, preserving the correspondence between their arcs.

(1) is a slight generalization of II, Theorem 8; no change in
the proof of that theorem is pecessary.

To prove (2), let H, be a subgraph of G,, and H; the com-
plement of the corresponding subgraph of G Suppose first H,
contains be; then Hj; does not contain b'¢. Form H from Hy by
dropping out the arc bc and letting the vertices b and ¢ coalesce;
@ is formed similarly from G, Thus r=r,—1, R=R, —1.
As H, is also the complement of the subgraph of @& corresponding
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to the subgraph H of G, and G and @ are duals, v =R’ — n,;
therefore r, = Ry — my, as required. If H; does not contain b¢
while H; contains b’ ¢, we employ the graphs G, and @ instead
of G and G

The last theorem can be generalized in the following one; we
make use of the notation of combinatorial analysis situs.

Theorem 11’. Theorem 11 holds if we assume of the arcs A’
merely that they contain no l-circuit, provided we choose the sets of
arcs B’ and C' and the vertices b’ and ¢’ so that B’ and C' together
make up A, and they are each bounded by o’ b’ (mod 2).

We note first that 4’ is a eyele (we always understand mod 2),
being a sum of circuits (see Theorem 10); hence such a division
of its arcs into two groups B’ and (' is.always possible for some
two vertices b’ and ¢

The theorem follows as before as soon as we have proved that
b’ and ¢’ are connected in H' if and only if 4 and ¢ are not con-
nected in H, (see the proof of II, Theorem 8). The only difficulty
is in showing that if 5 and ¢ are connected in H,, then 4 and ¢
are not connected in H’. We shall now prove this fact.

As B’ is bounded by &’ - ¢’, there is a chain E’ joining %’ and ¢
in B'; similarly there is & echain F' joining ¥ and ¢'in C'. B' 4 F”
has no boundary, is thus a eycle, and consists of one or more cir-
cuits Py,..., P, ?). Similarly B’ — & and C' — F' consist of circuits
Q1.+, @, and By,..., B, respectively. As the cireuits of A’ are in
different components of @’ (Theorem 10), A’ ean be expressed
as the union of eircuits in but a single manner; these circuits are
therefore those above named. ‘

Let D, be a chain joining b and ¢ in H,; the corresponding
arcs in G form a circuit D, containing an arc of B and an are
of C. The corresponding subgraph D’ of G’ is a cut set of arcs,
containing an are of B’ and an are of (', and lying in a single
component of G’ (Theorem 8). Hence the cut set contains arcs of
some circuit P;, and thus contains an arc of Z' and an arc of .
The required fact now follows exactly as in II, Theorem 8, Case 2.

!) For these facts, see for instance Whitney, A churacterization of the
closed 2-cell, Trans. Amer. Math. Soc., vol. 36 (1933), Lemmas G and H.
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6. We turn now to the main theorem of the paper.

Theorem 12. A necessary and sufficieni condition that a graph
have a dual is that it coniain neither of the two following types of
graphs as a subgraph:

K,. This graph is formed by taking five vertices, and joining
each two by an arc or suspended chain.

K,. This graph is formed by taking two sets of three vertices
each, and joining each vertex in one set to each vertex in the other
set by an arc or suspended chain.

The necessity of the condition was proved in I, Theorem 32 1).

We must prove the sufficiency of the condition. We shall as-
sume the theorem holds for all graphs containing fewer than E
arcs, and shall prove it for any graph containing E arcs. As a graph
of a single arc has a dual, the theorem will be proved in general.

Let G be a graph of Z ares therefore containing neither a graph
K, nor a graph K, as subgraph. Suppose first G is separable. Then
none ot its components contain K, or K;, hence each component
has a dual, and hence. @ has a dual, by I, Theorem 23.

Suppose next G is non-separable, and suppose it contains a ver-
tex b on but two ares ab and be. Dropping out the vertex b and
replacing ab and b ¢ by the single arc ac gives a graph @, con-
taining neither K, nor K,; it has therefore a dual Gy If o'V’ is
the arc of G} corresponding to the are ac¢ of Gy, then adding
another arc a’ b’ to G gives a graph G’ which is a dual of G,
as is easily seen (compare the proof of Theorem 11).

7. Suppose finally G is non-separable, and each vertex is on
at least three arcs. By I, Theorem 18, we can drop out an arc ab,
leaving a non-separable graph G. As G, contains neither K nor K,
and has fewer than E arcs, it has a non-separable dual G, (I, The-
orem 26). Let 4 and B be the ares of G, on a and b respectively.

. The corresponding subgraphs A’ and B’ of &, are cireuits (Theorem 4).

Suppose A’ and B’ have a common vertex-¢’; then if ¢’ is the

1) We proved it by proving that neither of two certain graphs G, and G,
had a dusl. Note that we proved there a more general result: There is no graph
G (or G;) which, for any two numbers § and j, has the same number of sub-
graphs of rank i, nullity j, that ¢ dual of G, (or G,) should have.

Fundamenia Mathematicae, t. XXI. 6
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ares of G5 on ¢/, C is a circuit in @, containing arcs of both 4
and B, and containing therefore & and b. A dual of G is now con-
structed as in Theorem 11.

The rest of the proof is concerned with the case that 4’ and B’
have no common vertex. If we drop out just enough ares P’ from
& to disconnect A’ and B, then P’ is a cut set of ares; hence
the corresponding ares P of G form a circuit.

8. We show in this section that there are two vertices ¢ and d
in P, dividing P into the two chains C and D, such that G, can be
expressed as the union of two graphs G¥ and G¥, the first containing
a and C, and the second containing b and Dj; moreover, G¥ and G¥
have only the vertices ¢ and d in common.

We note first that as the arcs P separate 4’ and 5, the ver-
tices ¢ and b are on opposite sides of P relative to @, and hence
every chain from a to b in @, passes through P (Theorem 9). Say
P consists of the arcs a, ay, a5 ay,...,a,, a, @, a;. If there is a
chain in G, from a to a vertex g, which does not contain any
other vertex of P, we shall say that a, is accessible from a. Let
@y @yy-..y @, be the vertices of P accessible from a, named in

cyclic order, and let a, a,,..., @, be those accessible from . There

are at least two vertices in each set, as @, is non-separable.

To prove the statement, we need merely show that for some two
vertices ¢ and d and corresponding chains C and D, all the vertices
Qyy- ey @y lie in C, and all the vertices ay,. .., a;, lie in D. For then
we can let G§¥ contain C, and all those ares of ,, some end ver-
tex of which can be joined to a by a chain containing neither ¢
nor d, and let G¥ be the complementary subgraph of G in G,
G¥ and G¥ evidently have the required properties.

To find the vertices ¢ and d, suppose first some vertex a;, does
not coincide with any vertex a,, but lies in P hetween two ver-

tices a, = ¢ and @, =d. Then these last two vertices are the
required vertices. For if not, then there is some vertex a, lying
in P on the other side of ¢ and d from a, From a, draw chains
to ¢ and d having only their end vertices in P; from these we
pick out a chain Z from ¢ to d. Using b, we find a similar chain
F joining a;, and a;. Of course E and F have no vertex in com-

mon. Using the arc ab, we find a chain in @ having no vertices
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in P, and joining a vertex ¢ of £ and a vertex f of F. In @
there are theretore two sets of vertices ¢, a;, a;, and f, ¢, d, there

are chains joining each vertex of the first set to each vertex of
the second, and no two of these chains have a common vertex,
except perhaps for their end vertices. Thus & contains a graph K,
contrary to hypothesis.

Suppose next every vertex g, coincides with some vertex a,. If

there are only two vertices in the set a,..., a,, we can call these

¢ and d (use the reasoning above). Otherwise let ¢, d and e be
three of these vertices. Draw chains from a to these three vertices,
each having only an end vertex on P. From these chains we can
pick out a vertex f and three chains fe¢, fd, fe, which have only
the vertex f in common, and have only their other end vertices
in P. Using b, we find similar chains gec, gd, ge. Using the are ab,
we find in G a chain joining a vertex z of the first set of chains
to a vertex y of the second set; this chain does not touch P. If
is f and « is g, the graph thus constructed (including P) is a graph
K, in G, contrary to hypothesis. Suppose this is not the case; say
z lies on the chain fc between f and c¢. From the graph we have
constructed, drop out the chain de of P, and the chain ge¢ if y is
not an inner vertex of this chain, otherwise that much of ge¢ bet-
ween y and c. The resulting graph is a graph K, in G (the two
sets of vertices are z,¢ d, and f, ¢, ¢ or y), again a contradiction;
thus the supposition that there were three vertices in the set

@gy:-+y @, WS impossible. The statement of § 8 is now proved.

9. Form the graph G; from the graph G¥ by renaming the
vertices ¢ and d ¢, and d; (and renaming the arcs on these vertices
accordingly), and adding a new vertex ¢, and arcs e a, & ¢, & dy;
form G, from G¥ by renammg ¢ and d ¢; and dy, and adding a
vertex ¢, and arcs e, b, ¢ ¢, ¢ d;. We shall show that G, and G,
have duals, and shall then reconstrust G from them, at the same
time forming a dual of G.

G, can be constructed from G as follows. From chains in G¥
joining b to the vertices ¢ and d, together with the are ab, we
find in G a vertex e, and three chains ¢, a, ¢ ¢, ¢ d, which have
only the vertex ¢ in common and only their other ends in Gt.
We now drop out all other arcs of G¥ (note that we drop out at
least one are, namely an arc of P), replace each of the above

‘ 6*
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chains by a single arc. and rename c¢ and de¢, and d; Thus we
see that G, contains fewer arcs than G, and contains neither a
graph K, nor a graph K,, as @ -contains neither. Hence G, has
a dual Gq; gimilarly G, has a dual G}

Let c1dy, dyay, aj¢j, and ¢ d;, dib;, byc;, be the ares of Gy and
@; corresponding to the arcs e, a, &, ¢;, ¢ dy, and ¢ b, ¢y ¢y, ¢ dy,
of G; and G, respectively (these arcs must form circuits). Form
@y by letting the vertices ¢, and ¢, of G; and G, coalesce into
the vertex ¢; form G5 by letting the vertices a; and b, of @
and G, coalesce into the vertex a’. By I, Theorem 23, G, and &
are duals (preserving the correspondence between their ares — we
shall understand these words without mention in the future).

Evidently G, and G, are non-separable; hence the sets of arcs
P, and P, of G, and G, corresponding to the sets of ares of G
and G, on a; and b; respectively form circuits. P, is formed of
two chains E, and F, where B, =c, ¢ 4 ¢, dy, and P, = &, ~+ Fy,
where By =c,e; <} ¢, d,. Thus in Gy, the ares corresponding to
the arcs of G; on o’ consist of two chains, B, + E, and F, -} Fy;
each of these joins d; to d,. By Theorem 11, if we let d, and d:
coalesce into the vertex d, forming the graph @,, and Teplace a’
by the two vertices a; and aj, letting the ares corresponding to E,
and Z, end on a;, and those corresponding to F; and ¥}, on q
forming the graph @ G, and G, are duals. ,

By the same theorem, if we let ¢, and ¢, coalesce in @, into
the vertex e, forming the graph Gy, and replace the vertex a, in

G, by the vertices a; and a;, letting a; d; and a;d; end on af, and-

as¢; and ag¢;, on af, forming the graph Gi, G; and G; are duals.
By I, Theorem 28, if we drop out both arcs ec and both ares ed
and the vertex ¢, and replace the arcs ge and eb by the single
arc ab, the resulting graph has a dual. But this graph is just the
graph @, and the theorem is proved.
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Sur un probléme concernant les transformations
continues.
Par

. B. Knaster et S. Mazurkiewicz (Warszawa).

1. Appelons a-conneze 1) tout continu C qui contient pour ehaque
couple de ses points p, ¢ un arc simple 4 (image homéomorphe du
segment rectiligne) ayant ces points pour extrémités. On sait que
a-connexité est une propriété invariante par rapport aux transfor-
mations continues f de C, car les images continues du segment

étant a-connexes %), il existe déja dans limage f(4) de A4, dome

& plus forte raison dans f(C), un arc simple anx extrémités f(p)
et f(g) toutes les fois que f(p) = f(g)-

Les généralisations de la notion d'arc simple conduisent d'une
fagon naturelle anx généralisations parallles de celle de a-connexité.
Ainsi nous appellerons A-connexe tout continu C qui contient pour
tout couple de ses points p, ¢ un continu K irréductible du type 4°%)
entre p et g. Le probléme se pose: A-connexité esi-elle un invariant
des transformations continues? La réponse est mégative, ce que nous
allons montrer sur deux exemples différents et dont la discussion
nous conduira & préciser d’avtres problémes dans le méme ordre
d'idées.

2. Continn £,. Soient z,y,z les coordonnées cartésiennes dans
Yespace euclidien & 3 dimensions et C I'ensemble parfait ponctiforme
de Cantor sur le segment 0<{z<C1 de l'axe des 2. Considérons
le continu indécomposable #, déerit par B. Knaster et C. Kura-

1) ,arcwise cted“ des auteurs américains.
3) Cf. p. ex. 8. Masurkiswics Fundam. Math, I, p. 201, th, IX.
3) C. Kuratowski, Fundam Math. X, p. 295276, en partienlier p. 256 et 262.
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