On the Theory of Trigonometric Series V 3).
By
S. Verblunsky (Manchester)

1. Introduction.

1. Let ia,‘ be a series. The upper and lower sums (R, 3) of
1

this series are the upper and lower limits as § — 0 of

. Q' [sinnf)\3
@ Z % (W) -
We éuppose that for relevant 6. the series (i) is convergent. This
will always happen in the cases with which we are concerned in
this paper.

We write

A, (%) == a, cos nx |- b, sin nx, B,{z)=>, cos nx — a, sin nz,

and consider a trigonometric series

(i) ' ZA,, ®). a,=o(n) b,=on)

We seek to determine what knowledge of its sums (R,3) will ena-
ble us to infer that it is a Fourier series. If we write

oo

Fo= 322

1

1) The first four papers of this series have appeared in Proc. Lond. Math,
Soc. 34, 35. This paper can be read independently. We shall have occasion to

quote one or two results of the second paper, Proc. Lond. Math. Soc. 3& (457—491).
Tt will be referred to as Il ’
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then the upper and lower sums (R,3) of (ii) are the upper and
lower limits as 6 — 0 of

Flz+ 36) — 3F(+ 0) 4 3F(x — 6) — Flz — 36)
(20)

They are denoted by D3F(z), D3F(x) respectively. We are thus
led to consider what knowledge of these limits will enable us to
infer that F(z) is of the form

f “dy f "t [ 9@ | (iif)

All that is already known on this subject, is contained in the
following theorem of Saks?®): If F(z) is continuous and F'(z) is
finite in an interval, and D3F(z) >0 in that interval, then F'(z)
is continuous and convex in the interval. .

In Theorem I we replace ,D3F(z)>0¢ by ,D*F(z)>0,
D3F(5) > — oo¥, and we replace , F(z) is finite* by ,F'(z) is uni-
que, finite or infinite“, the latter generalisation being required for
application to trigonometric series. From Theorem I we deduce Theo-
rem II, which gives a condition enabling us to assert that F(z) has
the form (iii). We are then able to prove in Theorem III that when
R(z), R(z), the upper and lower sums (B, 3) of (i) satisfy Rix) >
> f(x), where f(z) is integrable in the sense of Denjoy-Perron:
and R(z) is finite, then (i) is & Fourier-Denjoy series.

The method of proving these theorems presents a distinet ana-
logy to some investigations given in II (458—472). In that paper,
an essential, if inconspicuous. part was played by funetions posses-
sing the property of being upper semi-continuous (u.s. c.) on some
portion of any perfect set on which they are defined. We did not
then - draw explicit attention to this class of fametions. This was
first done by Saks (loc. cit). In the present paper we say that
such functions possess the property B*. This property is a natural
extension of the property R. A function possesses the property R
if it is continuous on some portion of any perfect set on which
it 'is defined.

We next consider the problem of replacing the condition a, =

1y Saks: Journal Lond. Math. Soc. 7 (1932) 247—261.
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= o(n), b, =o(n) by a more general one. We are able to replace
this by a condition which is much more general than might be
anticipated, namely, by the condition

H 1 ” ; imx .
lim 72 (@, — iby)e™* =0 (iv)

for all 2. To prove this requires a delicate piece of analysis. In the
first place, we must prove generalisations of Theorems I and IL
In Theorem I for example, the condition ,F(z) is continuous, is
to be replaced by ,F(x) is approximately continuous and has the
property R*¢ while the condition ,F”(z) is unique“ is to be replaced
by ,the approximate derivative F,(z) of F(z) satisfies F,(z)<Coo,
and possesses the property B*“. It is a fact that under the condi-
tions of Theorem I we must have ,F'(z) < oo and possesses the
property E*“, so that we are indeed concerned with an effective
generalisation of that theorem. If D3F(z), D*F(x) satisfy the same
conditions as in Theorem I, we can infer the same consequences
as in that theorem. This generalisation constitutes Theorem V, and
Theorem VI is a corresponding generalisation of Theorem II. As for
the new uniqueness theorem it is easy to show that when (iv) holds,

F(z) = 2‘———31:(‘”)

converges for all x. We can therefore talk of the sums (R,3) of

SvA,,( x).
1

A somewhat elaborate analysis shows that if the sums (£, 3) of (v)
subject to (iv), satisfy the conditions of Theorem III, then F(z)
satisfies all the conditions which enable us to assert, by Theorem VI,
that it is of the form (iii).

We further consider summability (R,4). The upper and lower

sums (R, 4) of E,'au are the upper and lower limits as 6 — 0 of
1
ja (sinﬂB ‘

1
Results for trigonometric series, similar to the two previously men-
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tioned hold when the upper and lower sums (R,4) satisfy the con-
ditions previously satisfied by the sums (R,3). To prove this, requi-
res an examination of the fourth symmetric derivatives of eontinuous
functions, with varying hypotheses concerning its derivatives. Our
in vestigation, is. in part, somewhat more general than is requi-
red for the application to trigonometric series; and is by no me-
ans an immediate analogy of the investigation of the third symme-
tric derivative. We have arranged the proofs so as to employ two
interesting mean value theorems (Theorems IV, IX).

II. The third symmetric derivative.
2. We write
AF (2, h) = Fix 4 h) — F(z — h),

APz, )= A- K Fle,h) = 4 Flz + b k) — A Flz — b B),
(r=2.3,4)

so that, in particular?®),

APz, k) = F(z + 2h) + Flz — 2h) — 2 Flz);

further,
D F(z) = Tim & F(z,h) | (2hY, D F(z)=lim A F (z,h) | (2hY,
h—0 - ey
and

D F(z) = lim & F (z,h) | (2R
when the limit exists. )
In this section we give a number of known results which are
required in the proof of the first theorem.

Lemma 1. (de la Vallée Poussin). Let F(z) be comtinuous
for a<{zx<bh. and DrF(z) =0 for a <<z <<b Then for a<Sz <

) When we are only considering the second symmetric derivative, it i con-
venient to write v
M F(z, k)= F(z+4h) + Fla— k) — 2 F(z),

28 was done in II. When, us in the present paper, we :r.e wmdomg ’the sym-
metric derivatives of varions orders, the definition given in the text is the more

convenient.
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<Ly <az< b, we have

F(“’)'“I"(.'/)<F(?/)-F(z)
t—y - y—z

ON

Lemma 2. (Steinhaus). If F(x) satisfies the conditions of

lemma 1, then F(x) has increasing derivatives, D?F(z) exists p. p.
(presque partout) in (a,b), and is integrable L in (a +¢ b —¢) for
0<e<<(b—a)2

By lemma 1, we have for aLr<y<z<<w<),

Fl@)—F(y) _ F(2) — F(w)
z—y S =% -

Letting y —> =, w—>2 in a suitable manner, we see that D¥ F(z) is
non-diminishing. Hence

H)—1lim D+F(z+h) -2—hD+F(x —h)
A=r0

exists p. p. and is integrable L in (a- ¢ b —e). Further, at
a point  at which H(z) exists,
MF@h2) 1 [
Z, Nz
Eren _ f (D* P& + ) — D¥F(z — t)dt

¢

— H(x)
as h— 0; so that D!F(z) = H(z).

Lemma 8. Let @(z) be a function which, for each z satisfy-
ing a<Sx<(b has a unique value which is finite or — oo. Let
@(x) be w. s. c. in (a,b) and Dp(x) =0 for a <<z <b If @ and §
be two points satisfying a<< a < f-<b, and such that @(a), ¢(f)
are finite, then

z—a

PR <9@)+ 55 0@~ 9@) (<2<

For a proof, see II lemma 14.

Definition. A finite function f(x), defined in the closed inter-
val {a,d) is convex in that interval if

2 (252) < fle) + fla

e <h, a <y <Ch
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A finite function f{x), defined in an open interval, is convex in
that interval, if it is convex in every closed interval interior to the
open interval.

Lemma 4. (Sierpinski)?). If the finite function f(z) is con-
vexr in a<z<b, and measurable L, then it is. contimmous in
a<<x<b

If the function f(z) is continmous in A <z < B and convex
in that interval, then f(B — k) tends as k>0 tends to 0, to a li-
mit which is finite or - oo. For the conditions of lemma 1 are
satisfied in every interval (a,b) interior to (4, B). By lemma 2, Dtf
is non-diminishing in 4 <2 <C B. It therefore tends, as & — B, to
a limit which is finite or J~oo. In the first case. lim /(B —£&) is
finite; and in the second ease, for 0 <<h <%, f(B—h) increases
as h diminishes, so that lim f{B — k) is finite or - co. Further,
f(A+4h) tends as k>0 tends to 0, to a limit which is finite or
+ co. For D¥f tends, as & — 4, to a limit which is finite or — oo.
In the first case, lim /(A 4 k) is finite; and in the second ecase,
for 0<<h<Chy, f(A-}h) increases as h diminishes, and as lim f(4--h)
is either finite or -} oo.

Lemma 5. Let {f,(x)} be a family of continuous [functions
defined on a perfect set I for §2>'a > a,. Suppose that for every
e satisfying 0 <<e << — ay, f,(x) is continuous as a function of
(@,2) for B> > a6,z C IL Let lim f,(z) >—oo for z C 1L

«-roy
Then there is a portion & of Il and a constant K= K(®), such
that for z(C @, fx)>K for f == a> @

For the method of proof, see II lemma &.

3. Definition. A function f(z) which has a single value, finite
or infinite, at each point of an interval (a,d), will be said to pos-
sess the property R* in that interval, if given any perfect set I
in (a,b), there is a portion of I on which f(z) is u. 5. e

Theorem I. If in an open interval 1, F(z) is conbinsous, F(x)
has a unique value, D' F(z)> 0, D*F(z)>— oo, then F'(x) is con-
tinwous and DAF*(z) > 0.

We require five lemmas.

1) Bierpifiski Fund. Math. 1 (1920) 125—129.
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Lemma 6. Under the conditions of the theorem, DAF'(z) > D'F(x).

It is to be understood that in forming the upper limit of

F'(z -+ 2h) + F'(x — 2h) — 2 F'(=)
(2h)

the values of & for which (2) has no meaning, are to be neglected.

@)

At an assigned point £ we have for some K= K(§), D*F(§)> K.

Hence, if G(x)= F(x) — Kx%/6, then D3G(£) > 0. For all suffi-
ciently small » we therefore have

G4 3h) —3Gx+h)+ 3G(x— h) — Gz — 3h) > 0,
and so

AG{E 3h)/Bh > AG(E h)/2h.

, Thus AG(E h/3")/(2h/3") forms a diminishing sequence which tends
to G'(£). Hence G'(§) <Coo, and so F'(§) <oo. Thus F'(z) is ei-
ther finite or — oo, The set of points at which F"(z) = — oo forms

a set of measure zero, so that the quotient (2) has a meaning for
almost all A.

To prove the lemma, we may suppose that at the given point
2, D*F(x) >0, and it is then sufficient to show that D*F'(z)>0.
For. sufficiently small 4, we have by the preceding argument,

® Peth) - Fe—h o pw)

Write ¢(#) = F(z -+ t) — F(z — t). Since % F(z +1), g—t {—F(z—¥)

are finite or é—oo, ¢'(t) has a unique value, and we can apply the
mean value theorem. We have

F(z+ h) — F(z — h) = p(h) — ¢(0)
=ho'(0k)
=h[F'(z -+ k) + F'(z — 6B).

Hence (32 gives A2F(g, 64/2) > 0. Since % is arbitrarily small, this
implies D?F" (z) > 0.

0<o<y)

Lemma 7. Under the conditions of the theorem, F'(z) has the
property R*. '
It is sufficient to show that F(x) has the property E* in every inter-
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val (a,b) completely interior to [= (4,B). Let 3k, =min (B — b,

- a— A), and consider the family of funetions

ASF(z h
Fle) =g @C @) 0<h<he

By lemma 5, given a perfect set IT (C (a,b) there is a portion &
of IT, and a K = K(®) such that
A3F(x,h)/2R) > K. (C 8, 0 <<h<Chy)
Let G(x) = F(x) — Kx*%6. Then
4G (z,h) > 0. @Co, 0<<h<<h)

Hence 4G (x,hy/3")/(2hy/3") is & diminishing sequence of functions,
each of which is continuous on ®. Their limit, G'(z) is therefore
u. 8. ¢. on ®; 8o then is F'(z).

Lemma 8. If F'(z) is . s. c. in (a,b), and DF(x)> K in

. that interval, then DSF(z) exists p. p.

We may without loss of generality suppose that K ==0. Then
D3F'(z) >0 by lemma 6. Also, by an argument used in the proof
of that lemma, F"(x) <<oo. We first show that #'(x) is finite in
d = (a, b). If not, there are two possibilities.

(i) There exist two points ¢ and 8> a such that F'(a)= — oo,
F'(f) = — oo. We can then find y and ¢ such that y <a<Cg <4
and such that #”(y), F’(d) are finite while F'(y)<<— N, F'(d) <— N,
where N is arbitrarily assigned. For, as regards d, ‘

F@+h— F(B)

e AN 0<o<Y)

and the first member tends to — oo a% h—> 0; and similarly for y.
By lemma 3, F'(x) <— N in (@,f) and since N is arbitrary, we
have F’(x) = — co in an interval, which is impossible.

(i) There is only one point & such that #7(a)=—ooc. Then F’(z)
being finite and u. s. ¢ in the open interval (@,b), 1t is convex
in that interval by lemma 8, and continuous by lemma 4. Hence

F'(a 4 0) is finite or 4 co. But
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=lim F'(e + 6h) 0<<o<l)
— /(e + 0).

This contradicts #'(a) = — co. Thus F'(x) is finite in d. By lem-

ma 3 it is convex. and by lemma 4, continuous. By lemma 2,
DYE’(x) is increasing. Hence. p. p. in (a,b),

fla) = ,]l’_r::, DrF'{x + h’)" — Dt F'(z)

exists, Let & be a point at which f(x) exists. Then
A F(x,h) A2 F(z+ hh)— A Flz— h,h)
@Ry @Ay

A2 F(Eh
=—5§}L (6 —h<E< 5B

by the mean value theorem. Further,

pFER 1

@ =g OTFE+ - PP E—yar

By the definition of f(x) we have

DYF'(§+1) — DY F'(x) = (§+ t — 2)[ fl@) + e(, )],
DYF(§ — t) — D F'(x) = (§ — t — o)[f(z) + 9 (4,8)],

where
<< in {o<<h <A
Thus (4) becomes
24
, 1
A F(Eh)(2h) = (2h)? aﬁ?tf(z) + o(h)dt
- fl)

as h — 0. Hence D3F(z) = f(x).

Lemma 2 If F'(x) possesses the property E* in (a,b) and
F'(2) < oo, D*F'()> 0 p. p., DF'(x) > — oo, then F'(x) is con-
tinuous and comvez,

If E be the set of zero measure at which D? ¥’(z)<C 0, then we
can find a continuous increasing function g(z) such that g'(x) = -} oo
for x CE while 0 < g(x) << ¢ for an assigned ¢ > 0. Writing
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G(z) =fg(t)dt,

and H(r) = F’'(x) 4 G(x), we have D? H(x) > O for all z, while H(x)
possesses the other properties of F”(z). If then we show that H(x)
is continuous and convex, the lemma will follow since H(z)— F'(z)
uniformly as ¢ —> 0. We may therefore suppose that D*F’(z) >0
everywhere. :

By the definition of the property RE*, there is a non-dense clo-
sed set g, such that if d = (e,) be an interval contiguous to g,
then F’(r) is u. s.c. in the open interval. Asin the proof of lemma 8,
we can show that F”(zj is finite in this open interval. By lemma 3
it.-so convex, and hence continuous. Hence F'(8 — 0) is finite or
+ oco. But F'(f)=lim (8 — k), h > 0. Since F'(f)<oo, we
have F'(B)= F'(8 — 0}, both being finite. Similarly for a. Thus
F’(x) is continuous and convex in the closed contiguous intervals
of ¢,. Hence it is continuous and convex in the open contiguous in-
tervals of ¢/, the derived set of ¢,. By the above argument, it is
therefore continuous and convex in the closed contiguous intervals
of ¢/. Proceeding in this way, we see that F"(z) is continuous and
convex in the closed contiguous intervals of p,, the perfect kernel of g;.

By the definition of the property RE*, there is a closed set ¢, C p,
non-dense in p,, such that if d be a contiguous interval (open) of g,
then #"(xr) is u. 5. ¢. on p,d. Since F'(z) is continuous and eonvex
in a closed contiguous interval of p,, it attains its maximum in such
an interval at an end point, i. e. a point of p,. Hence F(x)
is u. s ¢ in d. We thus arrive at the same situation as before,
with ¢, replaced by g, C g, and non-dense in g,. By transfinite
induction we infer that F’(z) is u. s. ¢. in (a, b). By an argument
already used in the proof of this lemma, it follows that #'(z) is
continuous and convex.

Lemma 10. If F'(s) is continuous and convex in (a,b), then
D8F(z) =0 in thut interval.

For

ASF(z,h) = A2 F(z + hh) — A* F(z — h,h)
= 2hA*F"(§,h) @—h<E<ath)
=0

We can now prove the main theorem. By lemma 7, #'(z) possesses
Fundamenta Mathematicae, T. XXI 12
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the property E*. Hence, and by lemma b, there is a non-dense clo-
sed set F, with the following property. If d be a contiguous inter-
val of F,, and J be completely interior to d, there is a K = K(J)
guch that D8F(x) > K for = C 6, while F'(z) is u. s. ¢. in 4. By
lemma 8, D3F(z) exists p. p. in d. Hence D*F(z)>0 p. p. in 4,
and so by lemma 6, D?F()>0 p. p. in ¢ and D*F’(z) > — oo
everywhere in 6. By lemma 9, F'(z) is continuous and convex in 4.

Since ¢ is an arbitrary interval within 4, F'(2) is continuous
and convex in the.open interval d, and therefore, since #”(z) < oo,
it follows by an argument. we have already used, that F'(z) is con-
tinuous and convex in the closed interval d. By repeating the ar-
goment, we infer that F”(z) is continuous and convex in the closed
intervale contiguous to m, the perfect kernel of F1.

By }émma 7 and lemma 5, there is a closed set (C IT,, non-dense
in IT ,.with the following property. If d be a contiguous interval of
F, and 6 be completely interior to d, there is a K == K(0) such
that DsF(z) > K for z C II, 6, while F’(z) is u. s. ¢. on II, 6. Since
F'(z) as continuous and convex in the closed contiguous intervals
of II4, F'(z) is. u. s. ¢ in & Further, D'F(z) > Min (K,0) for
o C II, 6, while by lemma 10, this holds also for # (C d. CII;4. By
lemma 8, D*F(z) exists p. p. in 4, and so D3F(z) >0 p. p. in @.
By lemma 6, D*F’(z) >0 p. p. in 0 and D*F'(2)> — oo every-
where in 4. By the above argument it follows that #'(z) is conti-
nuous and convex in the closed contiguous intervals of II, the per-
fect kernel of IT,. By transfinite induction, we manifestly arrive at
the desired result.

4. Theorem II. If F(z) is continuous in (a,b), F'(z) has a uni-
que value, D’F(z) 2= f(x) where f(x) is integrable D, (i. e. in the
sense of Denjoy-Perron), and D*F(z) is finite, then DF(x) is
integrable D in (a-+¢e,b—e for 0<<e<<(b—a)/2, and for
a<<a<l B<b,

F@= [ty [DFOat+rpate (<z<p

Lemma 11, Let g(t) be defined in the neighbourhood of t=z.
Let g'(t) be continuous and Dtg'(t) be bounded in that neighbourhood.
Then

D Dtg'(x) 2 Dg(x) = Dg(x) == D Dtg'(w).
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It can be verified that

Mgk 3. [, o o

so that the result follows by the mean value theorem.
Turning to the proof of the theorem, we may suppose that f(z)
i finite. Let m(x) be a minor function of f(x) in (a.b). Write

X

y(x)=fm(t)dt, M(:t)-———-f,u(t)dt.

At every point,

ey h) —m(x — 4

By lemma 11,
DM (z) < f(x).
Write G(z) = F(x) — M(x). Then, »

DG () > D*F(x) — D*M(%) =0,
and .
DG (z) = QSF(x)'— D3 M(z) > — oo

Further M’(x) and therefore G’(z) has a unique value at every
point. By Theorem I, G’(x) is continuous and convex in the open
interval (a,b). Let m(z) tend (uniformly) to

j}wa

@mzpwmfmwt

Then

tends (uniformly) to

M@=wm—f@fmwa

which is accordingly continuous and convex. Consequently, D*H(z)
12*
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is non-diminshing in (a,6). Now DT H(z) must be continuous in the
open interval, For if not, there is a point § such that

lim DYH(E 4 k) — DYH(§ — ) > 0.
Then ‘
5) lim D*F"(§ + k) — DtF'(§ — h) > 0.
But

DHF'(z) = D*H(z) — f ft)di

is bounded in the neigh bourhood of & and so by an adaptation
ot the proof of lemma 11, we see that (5) implies D*F'(§) == --oo,
a contradiction. Thus H’(z) is continuous and non-diminishing. We
can therefore write

®) P = [f0dt+Aw) (a<z<b)

where A(x) is continuous and non-diminishing. This equation tells
us that F"/(z) exists p. p. in (a,b) and is integrable in (a --¢
b—¢). By lemma 11, D*F(z) = F'"(2) p. p. Hence D3F(x) is in-
tegrable D in (a - ,b — ).

Let a < @ <<f < b. Consider the interval (@, ). We can apply
to this interval the above reasoning which lead to (6), replacing
f(@) by DF(z), since the latter is now known to be integrable in

(@,8). We accordingly arrive at the equation

P = [DFOat+iE,  @<s<p

where A(z) is continuous and non-diminishing.
Let now K(x) denote a major function of D3F(x) for the inter-
val (@,8). We can write B

K@= [DFQit+ow,  @<s<p)

where o(z) is continuous and nou-diminishing. By lemma 11,
DF"(z) < D¥F(z), and by the definition of K(z), DK (z) = D'F (x).
Hence, since D*F(z) is finite, D[F"(2) — K(z)) < 0. Thisﬂimplies
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that the funection
Fi(2) — K@) = () — o(0),

which is continuous and of bounded variation, is non-increasing.
Let K(z) tend (uniformly) to

f DsF(p)dt.

Then o(x)—> 0, from which it follows that A(z) is non-increasin‘g.
But A(z) is non-diminishing. Hence A(z)==rp, a constant. Thus

F(@) = [ DE@di + (@<z<p)

which is the desired result.

5. Theorem III, Let

4@ a, = o(n), b,=o(n)
1
be a trigonometric series. Let R(x), R(z) denote its upper and lower
sums (R,3). Let R(z) be finite everywhere, and R(x) 2= f(x), where
f() is integrable D. Then the series is a Fourier series,
Write ‘

F(z) = 3 B,(x)/n®
Then D*F(z) > f(z) and D'F(z) is finite. We proceed to show
that F’(z) has a unique value. Let

A F(x,6
p(z,0) = (gg)s )'

Then

. : - sin n6\?
@ ?(s,0) = ]Z‘A,(x>( )
. Sinee ' ‘

! A.(w)(ii;;-g—?)'(<§

2
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where C is an absolute constant, we have the equation

f z0)6d0= Y 4,(2) f(s“””’) 846, (> 0)

Now
f(s“’”e 040_3 f (5’—“—@ 848
3
=;;;1P(”5)
where ‘
() =/(“iga)sada.
We have .
()| < 4/, > 1)
lp(@®) — B[ <%, 0<iY)
where

B r;f(ﬂjo.f)aado.
0

Since we are considering a fixed value of z, we write A,(x)/n*=a,,
and then a,==o(*/n). Then

-

® [ownoa0= Fapms.
£

By hypothesis,

lim @(z, 8) > —oo.

-0
Hence the first number of (8) tends, as £— 0, to a finite limit or to
+o0. Let N= N(£) denote the integer which satisfies N1 <C
< (N+41)£ Then

BZa-—-Z,qu)' hlea,.B y@nE) |+

+1im gj | (n )|

lim
£0

< eN§+4e2ﬁ,

N4
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" where M = M(e) is chosen so that |na,| <<e for n> M. Thus

Za,, = ZVA,,(av)/nB

tends to a finite limit or to —-oo as m—oco. Hence, since

Ay (x) = o(n),
%' A.(2) (sinnf
;'v n(z.c) (su;g )

tends as 8 —>0 {0 a finite limit or to 4 oo; i. e. DF(z) has a uni-
que value. Since a, = 0(n),b, = 0(n),

lim A*F(z, 6)/6 = 0.

Hence
Pa)=—_Y 4@

bas a unique value. Theorem II now gives
F'(x)=fdyfgaﬁ(t)dt+4x+3
0

for all x>0. Hence the given series is the Fourier series of
D3 F(2).

~ 6. In Theorem III, the condition a,= o(n),b, =o0(n), may be
replaced by the more general condition

2|a,,,| + |bm| = o(n?).

This, in its turn, may replaced by a still more general condition.

Writing ¢, = g(a,, —ib,), the condition in question is

N R T
Jim g5 ) oad™ =0

for all z, where c_,, is the conjugate of c,. In order to prove this
we require some preliminary theorems.

Given a finite function F(z), if {F(x 4 h)— F(x)}/h tends to
a unique. limit, finite or infinite, as h—0 on ‘a set of unit metric
density at the origin, we denote the limit by F.().
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Theorem IV. If F(z) is defined in the open interval 1, and
(i) F(z) is approvimately continuous, (ii) F(x) has the property R*,
(iii) F(x) has a unique value, then given two points of I, & and
B> a, there is a § satisfying a < §-<f such that

F(f) — F(a) = (8 — &) F.(§).

~ The point of the theorem lies in the fact that F,(x) is not res-
tricted to be finite. When F,(x) is finite, the condition (ii) is su-
perfluous. This has been proved by Khintchine?)

To prove the theorem, we require three lemmas.

Lemma 12. (Denjoy?). If F(x) ts approximately continuous
a<x<b, then F(x) takcs every valuc between F(a) and F(b).

Lemma 13. If F(x) is finite in a<{x<b, and F(x) is uni-
que and positive, then F(x) is non-diminishing.

To each point z of a<Cx<Cb we make correspond a point
¥ >x, &’ < b such that F(x’) > F(x) and such that the mean
density of points { in (x,2’) such that F({) > F(x), exceeds Y/,.
‘We construct a Lebesgue chain starting from a. If we obtain
a sequence of points .(x,) of the chain tending to §<CJ, then since
F(z,y) > F(z,), limF(x,) has a unique value. We must have
F(§) =limF(z,). For if F(£) <limF(z,)— 2%, >0, then for
nz= N, F(§) < F(x,) — 7, and on a set of » whose metric density
on the right at the origin exceeds !/;, we would have

FE—h)—FE)
5 ”

00,

contrary to F,(£) > 0. If £< b, the construction of the chain can
.be continued. If the points z, have been defined for all ordinals
e<f, and z,—>§<Ch we see by a similar argument, that
F(§)->limlf’(wﬂ). Hence F(b) = F(a). Applying the argument to
any interval within (a,b), we obtain the desired result.

' ‘Lemma 1‘4. If lf"’(:c) is defined in (a,b), and (i) F(x) is appro-
wimately continuous, (ié) F(z) is w. s. e, (iii) F,(x) is unique, then
F(x) takes every value between any two values which it takes.

Y) Khintchine Fund, Math, 9 (1927) 212—279 (243)
3) Denjoy Bull. Soc. Math. de France 43 {1916) 161—248 (179).
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We may suppose that F,(z) takes a positive valye, and a negative
value and we must thén show that it takes the value zero. We can find
a, pair of points z,, z,, such thut z, > a;, F(xy) — F(z,) > 0; and a pair
of points ¥y, s, distinet from 2,, 5, such that gy > y,, F(y,) — F(y,) <0.
By lemma 12, we can find a pair of points 2 and 2z >>2, such
that F(z)— F(z,) = 0. In (2, 2), either #(x) is constant, in which
case the lemma is proved, or else, since F(z) is u. s. e, there is
a & 2z << &<z, at which F(z) attains its maximum in (24, 2,). Since

FE+h—FE_ FlE—h—F
h = —h

=0,

for 0 << b < h(E), and F,(§) is unique, we must have F,(5=F'(§)=0
This proves the lemma.

We can now prove Theorem IV. It is no loss of generality to
suppose that F(8) — F(a)=0. We must prove that there is a £
in (a,8) such that F,(&)==0. Suppose on the contrary that F,(x)30.
for ¢ <=z <B

Since F(x) bas the property R¥, there is a non-dense closed set
F, in (af) such that if d denote a contiguous interval of Fj, then
F(z) is u. 8. ¢. in d. By lemma 14. F,(x) is of one sign in 4, and
hence F(z) is monotone in & by lemmal3. In virtue of the appro-
ximate continuity of F(), F(x) is monotoue and continuous in d
taken closed. Let £ be an isolated point of F;. Then F(z) is mono-
tone in each of the intervals (£ —e<<z<§), E<a<<Ete)
where ¢ is chosen so that £ is the only point of #; in (§ — ¢, £ +e)
If now F(r) were not monotone in the same sense in each of these
intervals. we would necessarily have F,(§)= F'(§)=0, contrary to
hypothesis. We thus see that F(x) is monotone and continuous in
each of the contiguous intervals, taken closed, of P, the perfect
kernel of K.

There is a closed set F, (C P,, non-dense in Py, such that if 6
be a contiguous interval of Fjy, and d be a closed interval interior
to 6, then F'(x) is u. s. c. on dP,. Since F(z) is monotone and con-
tinuous on the closed contiguous intervals of dPi, it attains its ma-
ximum in each such contiguous interval at ao end point. i. e. a point of
dP,. Hence F(z) is u. 5. c. on d. Hence as before, F() is monotone
and continuous in d. We thus see that F(x) is monotone and conti-
nuous in each of the closed contiguous interval of Py, the perfect
kernel of F,. Proceeding in this manner, we infer that F(z) is mo-
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. notone in (a,8). Since F(f)==Fl(a), F(x) is constant in (a,f). This
contradiets ¥, (x) = 0, and proves the theorem. '

1. Theorem V. If F(z) is defined in an open interval I, and
(i) F(x) is approzimately continuous and has the property R¥,
(#3) F,(x) << oo i8 unigue and has the property R*,
(ii]) DAF(x) > 0, D*F(z) > — 00,
then F'(x) is continuous and DAF' "(x) = 0.

Lemma 15. Under the conditions of the theorem, D F,(x) == D3 F ().

It is necessary to make a preliminary remark concerning the
meaning of D*F,(z). If F,(x) is finite, then AYF,(x,h) has a uni-
que value for all sufficiently small b If Fy(x) is not finite, then
F(z)=—oco. There must be arbitrarily small values of h for,
which F(z k) Fy(x —h) is finite, aud it is for such A that
lim 42 F (2, 1/2)/R? is to calculated. We then obtain D F,(z)=} co.
To see that there are arbitrarily small 2 with the stated property,
we observe that #,(z - k) F,(x — k) is the unique approximate
derivative of @(h)=F(z -+ h) — F(z —h). If for every h satis-
fying 0 <<h<Chy, @ (k) were not finite,” we would have g,(h)=
==—o0 in 0 <<A<Ch,. By lemma 13, this would imply @) —
— @(hy) < K(hy —ky) for 0 < hy <<hy <<h, and all K, which is
impossible.

To prove the lemma, we may suppose that av the given point
%, D3F(x) >0, and it is then sufficient to show that B’F,(x)?O.
We have, for all sufficiently small &,

Fla+ h)— F(z — h) __ F(z -+ h/3) — F(z— h/3)
9) 57 > S (@ i

If F (x)==— o0, then in virtue of the above remark, IT‘F,(w):—[—oo

We may therefore suppose that F,(z) is finite. If now D F,(z)<<0,
there is an # > 0, such that for 0 <C A <CA(7), ‘

(10) Fi -+ B) + Fuz — by — 2Fya) <— nht,
By Theorem IV, there is a 6 = () satisfying 0 < 6 < 1, such that
F(z+h) — F(z —h) = h[F,(x + k) + F(x — 6h)].
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Hence by (10),

Flx 4 h) — Flz—h)

- <F@—gh,  O<h<h()

2

and so

Fiz 4 k) — F(x —h) 7 (h()\? h(n) ;
2t h— <rm— 107 (K <h<hin)

By (9), the preceding inequality holds also for 0 < h<Ch(n)/3.
Hence

du)

Fi@) < Fio) — 35

which is impossible since F,(x) is finite.

Lemma 16. Under the conditions of the theorem, if Fy(x) is
w. s c in (a,b), and D*F(z)> K in that interval, then D3F(x)
exists p. p.

We may suppose that K = 0. Then D*F,(z)> 0 by lemma 15.
‘We first show that F,(x) is finite in. d = (a,b). If not. there are
two possibilitiés.

(i) There exist two points @ and § > @, such that F(a) = — oo,
F,(f)=—oco. We can then find y and  such that y e < p <,
and such that F,(y), F,(d) are finite, while F,(y) < — N, F,(0)<<—N,
where N is arbitrarily assigned. For as regards 6, we can find an
arbitrarily small > 0 such that

FE+m—F _ _y
) :

and by Theorem IV there is a 6, 0 T8 <1, such that
— ="t

Similarly for y. By lemma 3, Fi(x) < — N in (a,8), _and‘so'by
lemma 13, F(B) — F(a)<<— N(8 — a) for all N, which is im-
possible.

(ii) There is only one point & such that F‘,(x)-—_———oo. _Then
F.(z) being finite and u. 5. c. in (,b), it is convex in. that inter-
val by lemma 3, and continuous by lemma 4. Manifestly, F(x)==
= F'(z) in @ <z <b, and F'(a - 0) is finite or -+ oco. For a set
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'of >0 of unit metric density on the right at the origin,
F(@)=lim w.

]
and by Theorem IV, to each such 4 there corresponds a6,0<<i<< l
such that

Flﬁiﬁ}z_::ﬂ‘i) = Fa+ 0k) = F'(a -+ 0h).

Hence F,(a)= F'(e 4 0), which contradicts F,(@)==— co. Thus

F,x) is finite in d. By lemmas 3 and 4, it is convex and conti-
nuous, so that F,(r)= F'(z). The remainder of the proof is the
same as for lemma 8,

Lemma 17, If under the conditions of the theorem, Fy(x) has
the property B* in (a,b), Fyx) << oo. D*F,(z) > 0 p.p., D? F () > ~— oo,
then F(x) s continuous and convez.

In virtue of the preceding argument, the proof is an obvious
adaptation of the proof of lemma 9.

- We can now prove Theorem V by adapting the proof of Theo-
rem I and using the preceding three lemmas instead of lemmas 6,
8, 9 respectively. We do not require an analogue of lemma 7 sinece
we have supposed explicitly that F,(x) has the property R*.

Theorem VI. If F(z) is defined in a << <b, and -
() F(z) is approximately continuous and has the property R*,
(ii) F(z) <oo is umique and has the property R*,
(ili) DrF(z) > f(x), whe:e f(@) is integrable D, and D3F(z) is
ﬁmte
then DPF(x) is integrable in (a4 ¢ b—¢€) for 0 <<e<<(b— a)/2,
and for a < a <<f<b,

Fa)=F@ = [dy [DFQdt+patq (a<z<h)

The proof is similar to that of Theorem II; we use Theorem V
instead of Theorem I.

8. Lemma 18. Let JA,(x) be a trigonometric series such that

1 :
lim 5 3 Bule)=0
1
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for all z. Then
F(2) .—_—2‘ B,(z)/n?

is convergent.
Let

o) = 2"' B,,,(a:),

so that for any assigned x, 0,(x) = o(n?). Then

2"' B,@)/n® 2 %) — Gt . i)
P 2 —_
ety S

n=p

1 ‘11 (1
Y
o(;) O( . n!) OKE)’
)
whence the result.

Thus, given a trigonometric series which satisfies the conditions
of lemma 18, we can form the expression

43F (z,h) sin nh)
. (Zh = 2 o (
We now have.

Theorem VII. Let ZA,(x) be a trigonometric Sories such that

1N e
(1.1) lim ;’;2 2‘6,”3’ =0
for all x. Let R(z), R(x) denote its wupper and lower sums (&, 3).
Let R(x) be finite everywhere, and R(x) = f(x), where f(z) is infe-
grable D. Then the series s a Fourier series.
The condition (11) implies that

1) 4 %@
(E-T—l_)’) g

1o,
(12) lim — ‘12' A (@) =0,
1
13) lim ZB,,, z) =0,
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By (13) and lemna 18, we can write
B,(x

(14) F(2) =2'-,;(r)

Lemma 19. If a,=o(1), 8, = o(1), then

O(z) ~ — y (8, cosnx — @, sin nx)/n

i3 approximately continuous at any point at uhich the series converges.

In this lemma, @ (z) is defined to be equal to the sum of the
series wherever the latter converges, i e. almost everywhere. We
may suppose that the point of convergence under consideration is
2="0. It is no loss of generality to suppose that

(15) yb_y,

and we must prove that @(x)— 0 approximately as 2 — 0, for
which it is sufficient to show that

cosnh
(k) = Y 6, ———.
sin nh
gl = 3 @ ==,
each tend to 0 approximately. Write
, ~ u&
=3

Let [x] denote the greatest integer which does not exceed .
‘Write

v ==w(h) = [A7Y].
Ther
. = 2‘+ 2
v+l )
=1, (h) + 7 (h).

Let ¢ satisfy
) 1>e>0, (log )<1
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There is an N= N(¢), such that for > N,|s,| < e. Then
ﬁ v
7, (R) =2,'—1 cos nh +2 (8¢ — $n—1) COB A

—Z& cos nh — sycos Nk +2 sp(cosnh — cos(n -+ 1) h) 4

Nt
-5, cos vh.
In (0,1), cosz diminishes. Hence
A {<\E = cos nh | + 3e.
< 4e

for 0 <<h<Ch(e). We can choose %(e) so that

[B.] <€ n = [h(e))
Write

u=[hel 2=[r(e)7),

and

G(h) = Gle,h) = 2‘% cos nh.
’l

Let E denote the set of points in eh(e) <Ch <Ch(e) at which
| 73(R)| > €. For h in this interval. we have

¥
n ) — 6| < 3l < 2er0g T,

and so
h(e) R (e)
eemk <f'tz(h)dh < 2f[t,(h) — G)Ppdh+ 2sz(h)dh
eh(e) _ eh(e)

1\* H

<8h(e)e‘(log;) +‘27r2§;

< 8h(e)e*+ 2mh(e) et

< 10h(e) €8

for relevant ¢. Hence the set of points in (— h(e),k(e)) at which
"1,(h)| > ¢ is of measure less than 2eh(e) | 20eh(c). Hence the
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set of points in (— h(e) h(e)) at which | @, ( (hy| > He is of measure
less than 22eh(e), so that ¢, (k) —> 0 approximately.

For @,(h) we write
Py (h) = 2 + 2

vl

— Ly + Zy(h)

The function L, (k) is treated in precisely the same fashion as 7,(h)

Further, N i
L=+ 3.

1 N+1

where N is chosen so that |a, |< ¢ for n = N. Then

+ heZI

N1

1Ly ()| <<

<25

for 0 << h<Ch(e), so that the conclusion follows as before.

Lemma 20. The function F(x) defined by (14) is approzimately
continuous, and has the property R, and, a forttori, the property R*.
Since the coefficients in (14) are o(1/n), and (14) is everywhere
convergent, it follows by lemma 19, that F(x) is approximately
continuous. To prove that F(z) has the property R, we observe
that there is a finite positive function M(x) such that for each =z,

n? M(x). (m=12,.)
The proof of lemma 18 gives
| x)
X2 <me
"o+
5
Fp(x) =2‘—;—3-.
1

Then #,(z) is continuous, #,(x) — F(x) as p— oo, and

|2 — Ff)| < @) (4 2.

Write
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Let E,. where m is a positive integer, denote the closed set
of points in (0,27) at which

4
|ﬂ(w)—ﬂ(x)|<—} (@=p+1Lp+2-.)

Since M(z) is finite, S E, = (0,27), and there is uniform conver-
gence in each E,. Given any perfect set P (C (0,27), there is an
m such that E, contains a portion & of P. On this portion there
is uniform convergence. Hence F(z). is continuous on &, and thus

"has the property E.

9. Lemma 21. The series —EA,,(x)/n” is either convergent, or
properly divergent to — oo i. e.

lim Z
8 ﬁm'fe or -} oo.
Since for a given z, 4,(x)= o(n?), the series
£(0) ~2‘.‘%@ sin 3160
1

is & Fourier series. It may be multiplied by 1/6® and integrated
term over (£ 00), where £>> 0. The same is true of

(p(G)NZSin nb,
1

39’(0 _2 A(m) din*nd.

“and therefore of

We have, however, by the definition of F(z),

ASF(I 6) _ wadz) .

----- ;__n?— sm’—n 6.
Hence -
48 F(x )] ’__ . A, (x) cmfsmi‘n()
~aay 040 = Yo [ ——ae

ZA,,(;z) (sln 0) 8do.

1 ng

F F1 Y Math " T. xxL 13
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By hypothesis,

. A3H(z,0)

i —ggs >~

Hence

- A (x) 7 (sin 0\3
352 [(5) vas
1 n&

tends as £~ 0 to a finite limit, or to - oo.
We now use the notation of the proof of Theorem III. Let
¢(t) and B and N= N(£) have the meanings there given. We have

oo N
s Zm) Zéi(i)w(ns)]@ﬁ[ %—%;@(B—-w(n&wr
+hm|2 Lyn)

N4

<%+,
where M < N is an assigned integer. Choose M = M(e,x) so that

n“‘ZA (71>M)
and write
8, = 8,(X) _—.:ZA,,,(:::).
Then '
N
T, = lTEf' 2(3, — s“~l)B_~—7:,l:_(n_§l’
MA41
— | B—y( —| 'y (B—v@nd)
{hmlsM ES Mzﬂvs,,{.—_——n_r__ —
__B— w(n - 1)E B —y(N§)
e BT o
< H, + H, -} H;.
Since |y(f) — B|<t, we have
|H1|<E(M+N1)§<e, |Hy| < eNE < ¢
— N B—wE B—ym+1)
H, lim ¢
| B, | < Tm g J . e g
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Now
B—y(nf) B—ym+ 135 _{B—ypn§)}—{B— w(n+1)§}+
n? (n—|-—1 ! ‘n?
1
+-{B— tpn+1)§}(n, (“_I_l),)‘
%w(n+1)§ P(ng)| +2lB~w(n+1)§J
Further,
W sin 6y3 |
(n 4 1)& — 1p(u§)|=\f —_) 0d6|
—‘i (qm C)aﬁi nE <L <(n L)
< 2né
Hence
| H, | <E€2 [27153 + .2~(_ﬂ_‘j:_1_)§]
M+
<E.‘1e2(2n§2 44§ < 6e.
Finally, o
Ty == lim ‘ 2'(3n — Sa) 1’3(%5} 1

N+1

st(n £ 1 +Tm

<Tm | ( (n§)_¢(ﬂ+1)§)!‘

nt (n4 1)

N+1 '

The first term is zero. Is evaluate the second, we observe that

|wnd ¢+ DE_ (wns— w(n+151+2lw(n+1)§l

| n? (1) | 2
a0 | 8
n'a +nT§
ng' .
1 8 9
<ﬁ4_§+ﬁ"“i_‘;‘<h7§’
so that
T < wing) Pn1)§ e < 9
thz-H s.( P, 1)2) e hmlé‘;{;é< 9e.

13*
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We have thus proved that

tmfn I 34D 5] o

1

and since we have shown that the sum of the infinite series tends
tc a finite limit or to 4-oco as §-—>» 0, it follows that

N
. A,(x)
131-?; 21' n?

is finite or 4-oco. This proves the lemma.
We can now write

(16) Glo)= .._Z‘fie@

n?
1

where G(z) is finite or — oo,

Lemma 22. The function G(x) defined by (16) possesses the
property E*,
We have from the preceding proof

G(z) =lim G(z,£)
£->0

where

G(x’§)=~ Agﬁ;;;e)—-—Z Ad2) (m B) 0de.

Now

‘j(sig 0)Bd0l<%.

Since a, = o(n?), b, = o(u?), it follows that G(z,6) is a continuous
fanction of x for each &> 0, We have

6@E)—6 wa-—J“ﬁﬁmwe O<E<d

We are given that

. A3 F(,)
Im ey >
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Hence, to each z ' there corresponds a 0(w)> 0 and a Kiz),
0 < K(z) << oo, such that

— és—g%@ < E(). (0 <0< 6(z)
Thus ' .
Gx&)— Gz <<EK(x), (O<§&<ESEW)
or

1 1 1
G(x,m)-—— G(m,—’;) >-’-1 K(z). mZ=nz,p=1,2,.)

We suppose that n(z) is the least positive integer for which
the preceding relation holds. Let H, be the set of points z in
(0, 27n) at whiah n(z)<m, K(z) <X m, where m is a positive inte-
ger. Then at every point of H, '

(a7 G(x,ﬁ;)— 6(ny)<m
and, since K(z) is finite, S H,, = (0,27x). Let E,=H,-} H,. Since
G(.'r, ) is a continuous function of z, (14) holds for z C E,. Now
E,, is closed and I E, = (0,27). Hence, given a perfect set II in
(0,27), there is a portion ® of IT such that for some m, E, con-
taing @ Then (14) holds for  C @. Letting p —> oo, we get

(nz=zm p=12,..)

60— 6(ny)<s  @>m
for 2 C @; or

— )= — G(:&,%) _n (n=m)

n

for  C @ By II lemma 11, — G(x) is lower semi-continuous on
@. This proves the lemma.

10. Lemma 23 (Rajehman and Zygmund)l). If lime,=

=0(C,1), then
sin2 nﬂ
?(0) ~ 2

tends to O approximately as 0—) 0.

1) Rajchman and Zygmund Bull. Polonaise (1925) 69—80.
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Lemma 24 (Rajehman and Zygmund)?). If Ja, convergest hen

sinn ¢
Da,
i nb

tends to Sa, approximately as 6 — 0.

Lemma 25. The function F(x) has a unique approxvimate deri-
vative F(z) = G(x).
We are given that

lim .1—32‘ Bo() =
for each z. For a partmular x, write o, *«-ZB ). Then
(%) _ 1
12' “m _ﬁizv (On 0"""1) m
n—1
1 1 g,
_12'0"‘ (m m+1)+;

=g (n)
Thus
tim 242 g, @1
Hence by lemma 23,
2 B, (z)sin*nf
nd 0

tends to O approximately as > 0; i, e.

Flx+ 6)+ Flx — 6) — 2F(x) 0
)

approximately. To prove the lemma, it is therefore sufficient to
show that
F(z+ 60) — F(z — 6)
26

> G(x)
approximately; i. e. that

Furemn- 34

) Rajchman and Zygmund, loc. o,
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approximately. Now if 3A,(z)/n? converges, the result follows from
lemma 24. We may therefore suppose that

M An(x)
N->o0 nt
Let
5, = s,(@ =2‘A,,(x),
S Sn(x)-_ “A (f)l
1
so that
S,— -+ oo
Write
(677
Then,
_ va,,(x) sinnd
Hf)= " n? ( n0 )
A o0
=3+ J=80+50
1 PR
Now
= 2‘ + 2—%(3)-1-%(0),
N1

where N is an assigned integer. We have

< sinn 0
n(0) = 3 (S, — S,

N +1

sin N6 sinnd sin(n{1)4 sind0
—Sxe +2 (926 T (n+1)6 )+S '

Chose N = N(e) so that S, > 1/¢ for n = N. Then

7}
B,0)>50) — 5 2204 ] 2 )
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Further, for 0 <6 <‘ O(e), %(6) > Sy — e, so that H,(6) > ;é for

0 << < 0(¢). It remains then to E;rove that H,(6) —> 0 approxima-
tely. We have

x sinnd
Hy(6) = 3 (62— 8at) 55
A

__sinif , v, (sinnf  sin(n1)8
=% “FF*’%”"( T )

(n—-1)%0

Since, s, = 0(4%), the first term tends to zero as 6 — 0. Further

sinnf  sin(n - 1)8 . 1 1
: pory —_— (u+l)=sln%6(;ﬁ“——m)+
~ sinnf(l — cos §) cos nOsin b
+ n13 (af1p
Hence

o [sinnd s 1)6 i
Jf e g )

At

1 —cosf sinz @ sin @ cosnf
+—7 Zs"(7¢+1)3+""é" S 1)
L .
= K0+ 120 B,0) + T3 K0)

We have

@)1= o6 Y )=o),
A+l
and it remains to prove that K,(6)—> 0 approximately, and that
K,(8) —> 0 approximately. Observing that s,/(n -+ 1)3 can be written
€xfn, where ¢,—> 0, we see that the treatment in lemma 19 .of
73(h), Ly(h), establishes the rrsult.
‘We have now proved that the function F(x) defined by (14)
possesses in every interval all the properties required by Theorem IV.
- By that theorem, we accordingly have for every z>> 0,

x y
Fila) = J dy [D*F(dt+ 242+ B.
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Thus

D B@)m

is the Fourier series of

(@) —_—/dyfdz DSF(#)di + Ax* + Bz -G,

which is equivalent io the desired result.

III. The fourth symmetrie derivative.

11. A measurable function F(z) defined in a << # < b has a uni-
que second derivative F/(x) in that interval if (i) F"(z) is unique
in that interval, i. e.

lim E_(x—l—];l)_Fx)

k—
is unique, and (i), if

(18) i L@ LR =@

h—>0 h’

= F'(@)

is unique. The second condition requires F'(z) to be finite, If for
example F'(x) = — oo, there are positive values of %, arbitrarily
small, such that F“(x-}-h) is finite. Hence there is a sequence of

“h> 0, which tends to zero such that the limit (18) is 4- oo There

are also positive values of A, arbitrarily small, such that F'(x+h)
is finite; and therefore a sequence of A>>0 which tends to zero,
such that '
mF(m-—— h)—-—F(m)=__

Ii —3

[==H

This proves our assertion. Consequently, F(z) is continuous in
a<ax<b

Theorem VIIL. If F(x)is continuous in the open interval 1,and F"(éc)
is finite in that interval and F''(x) unique; if further D4F () >0,
D*F (%) > — oo, then F''(x) is continuous and Dy F(x) = 0.

The proof is not altogether analogous to that of Theorem I. We
first prove the analogue of lemma 7.
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Lemma 7a. Under the conditions of the theorem, F"(x) has the
property R¥.

It is sufficient to show that F"/(2) has'the property R* in every
interval (a,b) completely interior to = (4, B). Let

4hg—Min(B —b, 4 — a),
and consider the family of functions .

_ MF(zh)

By lemma 5, given a perfect set II (C (a,0), there is a portion &
of IT and a K= K(&), such that

A F(, b )
—ﬁ%l>x. (0 Co, 0<h<ho)

Let G(z) = F(z) — Kx4/24. Then

A Gz By > 0. (Ca, 0<h<Chy)

Hence A*G(x,h)/(2h)? is a diminishing sequence of functions each
of which is continuous ou @. Their limit is therefore u. s. c. on @.

Sinece G'(z) is finite for all z, we have by a classical theorem of
Cauchy '

A G(m,h) _ Gz 26h) — 6 (& — 2064),
@h)? 406k i

0<o<l)

a'nd z}ince G"(zr) has a unique value, the limit of the last expres-
sion is G“(x). Thus G"'(z), and therefore #"(x) is u. 5. c. on .

We shall deduce the analogue of lemma 6 from the following
theorem.

/ ’I‘heorfn?l IX“.' Let F(z) be continuous in an interval I and let (i)
F'(x) be finite; (i) F''(x) < oo be unique and possess the property K*.
If @ and > @ be two points of I, then there is a & a << E<B
such that ,

F'(f) — F(a)= (8 — a) F"(§).

We may suppose that #'(8) = F'(e), and we must then show
that there is a £ such that F"’£ = 0. Suppose on the contrary that
lf‘"(x):}:O for @ << §<<B. We can easily prove, by the construc-
tion of a Lebesgue chain, the following lemma.
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Lemma 26. If f(z) is finite for a<C{x<Ch, and f(x) >0,
then f'(x) is non-diminishing.

We now proceed with the proof of Theorem IX. Since F'(x)
has the-property R*, there is a non-dense closed set F, in (a,f),
such that if 6 be a contiguous interval of F), and d be a clo-
sed interval interior to 6, then #/(z) is u. 5. ¢. in d. Henee F"'(z) (< o0),
has a finite upper bound in d. By lemma 26, #'(z) is of bounded
variation in d, and therefore, as the differential coefficient of a con-
tinuous function, must be continuous. Now F”(z) is in d, the dif-
ferential coefficient of a continuous function, and therefore takes
every value between any two values which it takes. Sinee F"'(x) F=0,
it follows that F’(z) is continuous and monotene in d. Hence it
possesses this property in the open interval d; and so, as the dif-
ferential coefficient of a continuous funetion, in the closed interval d.

If £ be un isolated point of 7, we see that unless F'(z) is
monotone in the same sense on the right and left of & then F'"(z)=0,
contrary to hypothesis. It follows that F”(x) is monotone and con-
tinuous in the closed contiguous intervals of P;, the perfect kernel
of F,.

There is a closed set (" P,, non-dense in P,, such that if é
be a contiguous interval of F§’, and d be a closed interval in d,
then F"'(x) is w. s ¢ ou Pyd, and therefore has a finite upper
bound on P, d. Let (e, B, denote a contiguous interval of P, d.
We have proved that F'(r) is continuous and monotone in
a, << #<<f, The set G of points of P d in the neighbourhood of
¥'(8,) — F'(a)

b, —a,
closed. We shall prove that it is non-dense on P, d. If not, there
is a portion P,dA of P,d, where 4 denotes a closed interval such
that if the contiguous intervals of P,dA be denoted by (a,,B,),
then to each point § of P,;dA there corresponds a sub-sequence
(@, 8,) of the (a,, B,) for which (a,, B,)—>E&, and

F(ﬁgzl: aFy,(av’) — 0o,

Sinee F'(x) is monotone in @, <z<p,, it is non diminishing
in any such interval if F'(8,) — F'(a,) > 0. Accordingly F"'(a,),
F*(B,) are both non negative, and hence by (ii), finite. Hence F(x)
is continuous at z==@,, 2==0x. We can select a sequence (@, B)

which the aggregate { } is not bounded above, is

F,(ﬂv') - Fl(av’)> 07
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of the contiguous intervals of P, d4 such that the end points are
everywhere dense in P, d 4, and such that
F'(B) — F'(a,)
ﬁr"" a,

In virtue of the continuity of F’(z) at @,, there is an ¢ >0,
€, —> 0, such that for ¢, — ¢ < 2 < 2,

>

F'(B) — F'(x)
b —=
If u, = (@ — €n a,), then

R—_—ﬁju,,ﬂ ad

rel per

>

is a residual of P;dA. Thus R is not null, and if £C R, these is
a sequence £, > £ £, -» £ such that

F(E) — F'(§)
T E—E %™

which contradiets F*/(x) <C oo. This proves that G+ is non-dense in
P, d. Hence there is a closed interval A and a constant K such that
Pyd4 exists, and such that, (a) F”(s) <K for x (CPdA4,
(b) M < K for e 1 1

= very contiguous interval (, 8) of P, d A.
Manifesty, by the construction of a Lebesgue chain, we can show
that if & and & > & be any two points of P, d 4, then F() —
— E'(§,) << K(& — &). Hence the function G (z) defined by,

(A) G@=F(@ 2CPdA
(B) G(x) is linear in each closed contiguous interval of P, d A

%s of bounded variation in dA. Since the (total) variation of F (x)
in (a, B) equals the (total). variation of G(z) in (e,8), namely
|F'(8) — F'(a)], it follows that F'(x) is of bounded variation in da.
Hence as before, it is continuous- and monotone in d. The portions
of P, such as P,dA form an everywhere dense set in P,, and their

f-,omlflement with respect to P, is-a closed set I3 D FP®, non-dense
- in P,.
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As at the beginning of the proof, we infer that F’(z) is con-
tinuous and monotone in each of the closed contiguous intervals of
Py, the perfect kernel of F,. Proceeding in this manner, we infer
eventually, that F'(x) is continumous and monotone in (e, §). Since
F"(x)5= 0 for @ <<x< B, we arrive at a contradiction with F'(8)=
= F'(a). This proves the theorem.

12. We can now continue the proof of Theorem VIIL

Lemma 6 a. Under the conditions of Theorem VIII, D? F" (z) >
> Dt F(z).

‘We may suppose that at the point under consideration, D‘F(x)>0,

and we must then. show that D?F”(z)>>0. For all sufficiently
small %, we have by the argument of lemma 7a,

Pl L Wt Fle =) = 21 gy

By a classical theorem of Cauchy, this is the same as

F'(z+h) — F'(z —h)
oh

> Fll (x)

for all sufficiently small &.

The condition D* F(x) > — oo implies that F’' < oo in L Thus
%{F' (x -+ h)— F'(x—h)}< oo, and by lemma 7a, possesses the
property RB*. Writing g(h)=F'(z -+ k) — F’(x —h), we can apply
Theorem IX. We have

F'(x4h) — F'(—h) = ¢(h) — 9(0)
=hp(6h) (0<<e<l)
— h[F" (& + O h)+ F' (z — O R)].

Hence (19) gives A*F"(z, 6h/2) > 0. Since h is arbitrary, this
implies D® F"' () > 0.

Lemma 8a. If F(z) is u. s. ¢ in (a,b), D*F(x) > K in that
interval, then D*F(x) exists p. p.

We may suppose that K = 0. Then D*F"(x) >0 by lemma 6a.
Further F”(x) < co. We can show that F/(x) is finite in d=(a, b)
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by an adaptation of the method of lemma 8; F"(x) takes the place
of F’'(x) in that method, and F’(x) takes the place of F'(z). It then
follows that F(z) is convex and continuous. Then D*F’(z) is
increasing, and p. p. in d,
+ 1t D+
f(x):limD F (az:--{-h;z DtF" (x) .

k>0

exists. Let z be a point at which f(z) exists. Then

MF(x k) A F(wth k) — BF(—h k)
(2hys (2h¢
ASF'(E b
_._._@%J @—h<E<zdh)

We now use a relation given in the proof of lemma 11. We

have
A Sy
LFER 3
o) 8 hfs )—_—(2 - f dy f (DHF"(E +2) — DVYF"(E —2)yda.

Further,

DYF" E+2)— D F (@) = (E+2—2) [f(z) + (5 2,
DHF"(§—2)— D* P (@) =(§— 2 —2) [f() + 1 (£ 2)],

where

e+ << 0 <A<AE)
Thus (20) becomes
prEn_ 3 o Fo
(2;(5:, = iy J 90 [ teas oy
- f(@)

as 2— 0. Hence D¢ F(z)= f(x).

Lemma 9a. If F"(x) posseses the property R* in (a, ) and

F'(x) < oo, D'F"(z) p. p, D' F"'(2) > — oo, then F"(x) is con-
tinuous and convex.

There is no difficulty in adapting the proof of lemma 9.

Lemma 10a. If F"(x) is continuous and convex in (a, b), then
D*Fx) =0 in that interval.
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For we can apply the meun value theorem twice, and obtain,

MF@ ) =2hBF'(E )  (s—h<E<zth)
=@h2A2F" (L h) E—h<E<E+R)
>0.

The proof of Theorem VIII can now be completed as the proof
of Theorem I was at the end of § 3, the analogous lemmas being
used.

Theorem X. If F(x) is continuous in (a,b), F'(x) is finite,
F(c) is unique, DAF(x)>>f(x), where f(x) is integrable D, and
D3 F(z) is finite, then D3F(z) is integrable D in (a+¢ b—e¢) for
6<e<(b—a)/2, and for a<<a<<f<b,

Fre)=fay RO+t (<a<p.

The proof is analogous to that of Theorem II. in virtue of the
following analogue of lemma 11.

Lemma 11a. If g(t) be defined in the neighbourhood of t=g,
and g'(t), 9"’ () are continuous and Dt g (t) is bounded in that neigh-
bourhood, then

D D*g"(x) = Dt g(w) = D* g() = D D*g" ().
It can be verified that

k ¢ 4y
Aol fat fay [ 0rgrata—Dg s
0 (] 2y
so that the result follows by the mean value theorem.

Theorem XI. ZLet
D A

be a trigonometric series. Let R(z), R(x) denote its upper and lower
sums (R, 4). Let E(z) be finite everywhere, and R(@) = f(x), where
f(z) is integrable D. Then the series is a Fourier series.

a,=o(n), b,= o(n)

-

The proof is analogous to that of Theorem III
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13. We consider finally the analyse of Theorem VIL
Theorem VIIa. Let 3 A,(x) be a irigonometric series such that

n
.1
lim — Cp €™ ==0

nroo N2
-t

for all @. Let R(x), R(x) denote its upper and lower sums (R, 4).
Let R(x) be fivite, R(x)>=f(x), where f(x) is integrable D. Then

the series is a Fourier series.
We can define F(z) as in (14). We write

A, (x)
nt

Then H{z)is continuous, and H'(x) = F(z). The proof of lemma 20
holds in the present case. That the result of lemma 21 is true un-
der the conditions of the present theorem, is seen by an casy adap-
tation of the proof of that lemma. We define G(x) by (16). That
"G (x) possesses the property R*  follows by easy adaptations of the
proof of lemma 22. Finally, lemma 25 remains true. Thus Theo-

rem VIIa will be proved, if we prove tbe following analogue of
Theorem VI.

Theorem VI a. If H(x) is continuous in a << x <b, and
(3} F(x)==H'(x) is approximately continuous and has the pro-
perty K¥,
(i) Fy(x) < oo is unique and has the property R¥,
(i) DAH(x) > f(a) where f(x) is integrable D, and DAH(z) is
finite, -
then D*H(x) is integrable D in (a 4 ¢, b—€) for 0 < e << (b—a)/2,
and for a<<a << B<<b,

x ¥y
T =H"@)= [dy [DEOd+pat @<z<p
This theorem, in its turn, will be a consequence of the following
analogue of Theorem V.

Theorem Va. If H(x) is defined and continuous in an open
interval I, and,
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() F(z)= H'(z) is approxzimately continuous and has the pro-
perty B¥,

(it) Fz) oo is unique and has the property B,

(i43) D*H(x)>0, D*H(z) > — oo,
then H''(x) is continuous, and D*H"(z)z==> 0.

On examining the proof of Theorem V, (and of Theorem I), we
see that lemma 15 is not altogether essential to the proof, but may
be replaced by the following specialised proposition: Under the eon-

ditions of the theorem, if #,(z) is u.s. c. at z, then D2F(z) = D3 F(z).
It is the analogue.of this propositions which will correspond to
lemma 15 in the proof of Theorem Va.

Lemma 15 a. Under the conditions of the theorem, if F(x) is
. 5. ¢ at § then D*F,(§)>> D*H(E). -

We may suppose that at the point £ D*H(§) > 0, and it is then
sufficient to show that DF,(§) = 0. We have for all sufficiently
small 7, ’

H(E 4+ 1)+ B(E— H)—2H(E) _ HE+h/4)+ BE—h/4)—288)
(21) hﬂ > ) (h/_L)Z ‘

As in the proof of lemma 15, we may suppose that F,(£) is

finite. If now D*F,(£) < 0, there is an 5 >0, such that

F+h) + Fu6—h) —2F, )< —nk

for 0<h<Ch(n). We now observe that by the theorem of Cauchy,
there is a 6, 0 << 6 <1, such that

HE+R+HE—W—2HE _FEL 00 —F(E—06h)
(22) X = S0k :

By Theorem IV, there is a ¢, 0<< 6 <1, such that

F(E+0h) — F(E—6h) _F,(E+00h)+F.(E—06h)
20h o 2 -

We thus infer by the argument of lemma 15, that

(o BETALHE=R—2AE _p 5 10V o<hepn)

Fundamenta Mathematicae, t. XXI. 14
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We now use the property that F,(x) is u. s. c. at & Then given
¢>0, there is a 6>>0 such that F,(z) < F &)+ e for E—d<
<z<<E+ O Since F,(§) is finite, F,(§)— (Fo(5)+€) <O in
(E— 6, £+ 9), and so by lemma 13, P(x)=F(2) —=z (Fa(§)+¢),
is monotone. Further, at £ &(x) has a finite approximate derivative,
@,(£) = —e. We now use the following lemma.

Lemma 27. (Khintchine?l)). 4t a point § at which the mo-
notone function f(x) has a finite approximate derivative fo(§), the

differential coefficient of f(x) exists, and f'(§) = [, ().
Hence @'(§)= @,(£). It follows that F,(§) = #’(£). The relation
(22) then shows that

lim H(g+h) + H;fz-—h) _ 2H(§)=F,(§)
Thus (23) gives
ro<re—1(*D)

3
.

This contradiction establishes the lemma.

Lemma 16a. If F,(x) is w. s, ¢. in (a,b), D*H(x) > K in that
interval, then D* H(x) exists p. p. -

We may suppose that k= 0. Then D*F,(x) > 0 by lemma 15a.
The remainder of the proof is the same as for lemma 16.

Finally, lemma 17 remains unaltered in enunciation. The de-
duction of Theorem Va, now presents no new difficulties.

1) Khintchine, Fund. Math. 9 (1927) 212279 (242).

Absolut-additive abstrakte Mengenfunktionen.

Von

S. Bochnér (Cambridge, England).

Diese Note schliesst sich unmittelbar an eine andere Note des
Verfassers an?), in welcher die Lebesguesche Integrations- und -
Differentiationstheorie fir den Fall ertrtert wurde, dass die Werte
der (in kartesischen Raumen definierten) Funktionen nicht Zahlen
sondern, allgemeiner, Elemente eines vollstindigen, komplex-linearen
(Vector-) Raumes sind. Es wurde nachgewiesen, dass sich die Be-
griffe und Sitze der Lebesgueschen Theorie in weitem Umfange auf-
rechterhalten lassen, mit Ausnahme der Besselschen Ungleichung fiir
Fourierreihen, deren Versagen an einem Beispiel aufgewiesen wurde %),
und mit Ausnahme des Satzes, dass jede absolut-additive Mengen-
funktion fast tberall differenzierbar ist, dessen Giltigkeit unent-
schieden blieb. — Ziel der vorliegenden Note ist es, an einem
Gegenbeispiel nachzuweisen, dass auch dieser Differentiationssatz
zn bestehen aufhért. .

Diese Entscheidung dirfte, obwohl sie eine negative ist, von
Interesse sein. Denn in der neueren Theorie der Potenzreihen

oo

S

n=0

(mit komplexen Werten der Variablen 2) spielt der Lebesguesche
Differentiationssatz im wesentlichen nur an einer Stellé eine Rolle,

nimlich beim Beweis des sogenannten Satzes von Fatou. In einem

1) Fundamenta Math, XX (1933), p. 262—276; vgl. auch daselbst.
1) Wegen eines prignanteren Beispiels vgl. Gottinger Nuchrichten, Mathem.-
Phys. Klasss 1933, 178—180.
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