## On the compactness of the function-set by the convergence in mean of general type

by

## T. TAKAHASHI (Sendai).

1. Introduction. Let  $L_p(p \gg 1)$  be the function space consisting of all functions f(x) defined and measurable in  $(-\infty, \infty)$  and such that

$$\int_{-\infty}^{\infty} |f(x)|^p dx < \infty.$$

A set F of functions which are elements of  $L_p$ , is called compact, if every subset of F contains at least one sequence which is convergent in mean.

Kolmogoroff<sup>1</sup>) has derived necessary and sufficient conditions in order that F is compact under the restrictions that p>1 and elements of F are defined in a mesurable bounded set.  $T_{AMARKIN}^2$ ) has found the necessary and sufficient conditions in the case p>1 and the region of definition is a measurable set which may be bounded or not.  $T_{ULAJKOV}^5$ ) has proved that if p=1, the  $T_{AMARKIN}$ 's conditions are also necessary and sufficient for the compactness of F. M. Resz<sup>4</sup>) has derived the necessary and

<sup>1)</sup> A. Kolmogoroff, Über Kompaktheit der Funktionenmengen bei der Konvergenz im Mittel, Göttinger Nachrichten (1931) p. 60-63.

<sup>&</sup>lt;sup>2)</sup> J. D. Tamarkin, On the compactness of the space  $L_p$ , Bull. Amer. Math. Soc. 38 (1932) p. 79-84.

<sup>3)</sup> A. Tulajkov, Zur Kompaktheit im Raum  $L_p$  für p=1, Göttinger Nachrichten (1933) p. 167-170.

<sup>4)</sup> M. Riesz, Sur les ensembles compacts de fonctions sommables, Acta Szeged 6 (1933) p. 136-142.

sufficient conditions from the well known theorem of HAUSDORFF 5) concerning the compactness of a set in abstract metric space.

Let f(x) be defined in  $(-\infty, \infty)$  and let

$$(1.1) \quad f_{\delta}(x) = \frac{1}{2} \int_{x=0}^{x+\delta} f(y) \, dy$$

(1.2) 
$$f^{N}(x) = \begin{cases} f(x) & \text{in } -N \leqslant x \leqslant N \\ 0 & \text{elsewhere.} \end{cases}$$

TAMARKIN and TULAJKOV's theorem is the following.

Theorem A. In order that a set  $F \in L_p(p \gg 1)$  be compact, it is necessary and sufficient that there exist a constant M = M(F)and, for given positive  $\varepsilon$ , two constants  $\delta = \delta(\varepsilon, F)$  and  $N_0 = N_0(\varepsilon, F)$ depending only on F and  $\varepsilon$ , F respectively but not on  $f(x) \in F$ , such that the following conditions are satisfied:

(i) 
$$\int_{-\infty}^{\infty} |f(x)|^p dx \leqslant M,$$

(ii) 
$$\int_{-\infty}^{\infty} |f(x) - f_h(x)|^p dx \leqslant \varepsilon, \quad 0 < h \leqslant \delta$$

(ii) 
$$\int_{-\infty}^{\infty} |f(x) - f_h(x)|^p dx \leqslant \varepsilon, \quad 0 < h \leqslant \delta,$$
(iii) 
$$\int_{-\infty}^{\infty} |f(x) - f^N(x)|^p dx \leqslant \varepsilon, \quad N \geqslant N_0$$

for all elements of  $f \in F$ .

2. Let M(u) be defined in  $(-\infty, \infty)$  and such that

- (2.1) M(u) is continuous,
- (2.2) M(0) = 0 and M(u) > 0 for u > 0.
- (2.3) M(u) = M(|u|) for negative u.
- (2.4) there exist two positive numbers  $\alpha$ ,  $\beta$  such that  $M(u) > \beta$  holds always for  $u > \alpha$ .

(2.5) 
$$\lim_{|u|=0} \frac{M(u)}{|u|} = 0$$
,  $\lim_{|u|=\infty} \frac{M(u)}{|u|} = \infty$ .

The function M(u) conditioned as above is called N'-function  $^{6}$ ).

Now for every N'-function M(u), we define for  $v \ge 0$ a function N(v) such that

(2.6) 
$$N(v) = \max_{u \ge 0} [uv - M(u)],$$

and for v < 0, N(v) = N(|v|). Thus defined function N(v) is said the complementary function of M(u). Then the complementary function N(v) of an N'-function is a convex N'-function and such that

(2.7) 
$$uv \leq M(u) + N(v)^{7}$$
.

Now we consider a convex N'-function M(u) which is necessarily nondecreasing for u > 0. We say that a measurable function defined in  $(-\infty, \infty)$  is integrable with respect to M(u) if

$$\int_{-\infty}^{\infty} M[f(x)] dx < \infty.$$

Let  $\{f_n(x)\}\$  be the sequence of functions such that  $f_m(x)$   $f_n(x)$  are integrable with respect to M(u) (m, n = 0, 1, 2...). If

$$\lim_{m,n=\infty}\int\limits_{-\infty}^{\infty}M\left[f_{m}\left(x\right)-f_{n}\left(x\right)\right]dx=0,\text{ then we say that }\left\{ f_{n}\left(x\right)\right\} \text{ is }$$

convergent in mean with respect to M(u). Throughout the paper we suppose that M(u) is a convex N'-function such that

$$M(2u) \leqslant LM(u)$$
 for  $u > 0$ ,

L being a constant independent of u.

Let E be a function-set consisting of all functions which are integrable with respect to M(u). The object of the present paper is to derive the necessary and sufficient conditions that a subset of E should be compact<sup>8</sup>).

3. We will prove lemmas which are usefull in the sequel. Lemma 1. A function f(x) which is integrable with respect

to M(u) is also integrable in ordinary sense in every finite interval.

<sup>5)</sup> F. Hausdorff, Grundzüge der Mengenlehre, Leipzig (1930), p. 107

<sup>6)</sup> Concerning the properties of N'-function, see: Z. W. Birnbaum und W. Orlicz, Über die Verallgemeinerung des Begriffes der zueinander konjugierten Potenzen, Studia Math. 3 (1931) p. 1-67.

<sup>7)</sup> The concept of a complementary function is due to Birnbaum and Orlicz, loc. cit.

<sup>8)</sup> The space E is complete in the sense of mean convergence above defined. A set  $F \subset E$  is said to be compact if any subset of F contains at least a sequence of functions which is convergent in mean.

For, let the complementary function of M(u) be N(v). Then by (2.7)

$$|f(x)| \leqslant M[f(x)] + N(1).$$

Thus the lemma is immediate.

Lemma 2.

$$M[f(x) + g(x)] \le L\{M[f(x)] + M[g(x)]\}.$$

This is easy. From lemma 2 we see immediately that if f(x) and g(x) are integrable with respect to M(u), then f(x) + g(x) is also.

Lemma 3.

$$\int_{-\infty}^{\infty} M[f_{\delta}(x)] dx \leqslant \int_{-\infty}^{\infty} M[f(x)] dx.$$

For,

$$\int_{-\infty}^{\infty} M[f_{\delta}(x)] dx = \int_{-\infty}^{\infty} M\left[\frac{1}{2} \int_{x-\delta}^{x+\delta} f(y) dy\right] dx \leqslant \int_{-\infty}^{\infty} \frac{dx}{2} \int_{x-\delta}^{x+\delta} M[f(y)] dy =$$

$$\frac{1}{2} \int_{-\infty}^{\infty} dx \int_{-\delta}^{\delta} M[f(x+y)] dy = \frac{1}{2} \int_{-\delta}^{\delta} dy \int_{-\infty}^{\infty} M[f(x+y)] dx = \int_{-\infty}^{\infty} M[f(x)] dx.$$

Lemma 410).

$$\lim_{\delta=0}\int_{-\infty}^{\infty}M[f_{\delta}(x)-f(x)]\,dx=0.$$

Proof. We can find N independent of  $\delta$  (<1) such that

$$(3.1) \int_{N}^{\infty} M[f_{\delta}(x) - f(x)] dx < \varepsilon,$$

$$(3.2) \int_{N}^{N} M[f_{\delta}(x) - f(x)] dx < \varepsilon,$$

for given ε. For

$$\int_{N}^{\infty} M[f_{\delta}(x) - f(x)] dx \leq L \left\{ \int_{N}^{\infty} M[f_{\delta}(x)] dx + \int_{N}^{\infty} M[f(x)] dx \right\}$$

and

$$\int_{N}^{\infty} M[f_{\delta}(x)] dx \leq \frac{1}{2\delta} \int_{-\delta}^{\delta} dy \int_{N}^{\infty} M[f(x+y)] dx =$$

$$\frac{1}{2\delta} \int_{-\delta}^{\delta} dy \int_{N+y}^{\infty} M[f(x)] dx \leq \int_{N-1}^{\infty} M[f(x)] dx.$$

Also for  $\int_{-\infty}^{-N}$ . Thus (3.1), (3.2) are immediate.

Now take a function u(x) which is uniformly continuous in  $(-\infty,\infty)$  and such that

$$(3.3) \int_{-N-1}^{N+1} M[f(x) - u(x)] dx < \varepsilon^{11}).$$

Then clearly there exists a  $\delta_0$ , such that

$$(3.4) \int_{-N}^{N} M[u(x) - u_{\delta}(x)] dx < \varepsilon \quad \text{for } 0 < \delta < \delta_{0}.$$

As in lemma 3, we have

(3.5) 
$$\int_{-N}^{N} M[u_{\theta}(x) - f_{\theta}(x)] dx \leqslant \int_{-N-1}^{N+1} M[u(x) - f(x)] dx < \varepsilon$$

Hence by lemma 2,

$$\int_{-N}^{N} M[f_{\delta}(x) - f(x)] dx = \int_{-N}^{N} M[f_{\delta}(x) - u_{\delta}(x) + u_{\delta}(x) - u(x) + u(x) - f(x)] dx \le$$

$$L \int_{-N}^{N} M[f_{\delta}(x) - u_{\delta}(x)] dx + L^{2} \int_{-N}^{N} M[u_{\delta}(x) - u(x)] dx +$$

$$L^{2} \int_{-N}^{N} M[u(x) - f(x)] dx \le L\varepsilon + L^{2}\varepsilon + L^{2}\varepsilon, \quad \text{for } 0 < \delta < \delta_{0}$$
by (3.3), (3.4) and (3.5).

<sup>9)</sup> By the Jensen inequality.

<sup>10)</sup> We can also prove that  $\lim_{h=0} \int_{-\infty}^{\infty} M[f(x+h) - f(x)] dx = 0$ .

<sup>&</sup>lt;sup>11</sup>) This is possible; see: Z. W. Birnbaum und W. Orlicz, Über Approximation im Mittel, Studia Math. 2 (1930) p. 197-206.

Combining with (3.1) and (3.2), we have

$$\int_{-\infty}^{\infty} M[f_{\delta}(x) - f(x)] dx \leqslant \varepsilon (1 + L + 2L^{2}) \text{ for } 0 < \delta < \delta_{0}.$$

Thus the lemma is proved.

4. We will now prove the following theorem.

Theorem. In order that a set  $F \subset E$  be compact, it is necessary and sufficient that there exist a constant K = K(F) and, for a given  $\varepsilon$ , two constants  $\delta = \delta(\varepsilon, F)$  and  $N_0 = N_0(\varepsilon, F)$  depending only on F and  $\varepsilon$ , F respectively but not on  $f(x) \in F$ , such that the following conditions are satisfied:

$$(4.1) \int_{-\infty}^{\infty} M[f(x)] dx \leqslant K,$$

$$(4.2) \int_{-\infty}^{\infty} M[f(x) - f_h(x)] dx \leqslant \varepsilon, \text{ for } 0 < h \leqslant \delta,$$

$$(4.3) \int_{-\infty}^{\infty} M[f(x) - f^N(x)] dx \leqslant \varepsilon, \text{ for } N \geqslant N_0$$

for all elements  $f \in F$ .

Proof. Necessity of (4.1). Suppose that (4.1) does not hold. Then there exists a sequence  $\{f_n(x)\}$  such that

$$\lim_{n=\infty}\int_{-\infty}^{\infty}M[f_n(x)]dx=\infty.$$

Let f(x) be any function of F or E.

$$\int_{-\infty}^{\infty} M[f_n(x)] dx = \int_{-\infty}^{\infty} M[f_n(x) - f(x) + f(x)] dx \le$$

$$L \int_{-\infty}^{\infty} M[f_n(x) - f(x)] dx + L \int_{-\infty}^{\infty} M[f(x)] dx.$$

Hence

OI

$$\int_{-\infty}^{\infty} M[f_n(x) - f(x)] dx \geqslant \frac{1}{L} \int_{-\infty}^{\infty} M[f_n(x)] dx - \int_{-\infty}^{\infty} M[f(x)] dx \to \infty \text{ as } n \to \infty.$$
Thus  $F$  is not compact.

Necessity of (4.2). If (4.2) does not hold, then there exist a positive number  $\varepsilon$ , a number sequence  $\{\delta_n\}$  such that  $\delta_n \to 0$  as  $n \to \infty$  and a sequence of functions  $\{f_n(x)\}$  such that

$$\int_{-\infty}^{\infty} M[f_n(x) - f_{n\,\delta_n}(x)] dx > \varepsilon,$$

where  $f_{n\delta_n}(x)$  means  $[f_n(x)]_{\delta_n} = \frac{1}{2\delta_n} \int_{x-\delta_n}^{x+\delta_n} f_n(x) dx$ .

From lemma 2 and 3 we have

$$\varepsilon < \int_{-\infty}^{\infty} M[f_n(x) - f_{n\,\vartheta_n}(x)] dx \le L \int_{-\infty}^{\infty} M[f_n(x) - f(x)] dx + L^2 \int_{-\infty}^{\infty} M[f(x) - f_{\vartheta_n}(x)] dx + L^2 \int_{-\infty}^{\infty} M[f_{\vartheta_n}(x) - f_{n\,\vartheta_n}(x)] dx \le (L + L^2) \int_{-\infty}^{\infty} M[f_n(x) - f(x)] dx + L^2 \int_{-\infty}^{\infty} M[f(x) - f_{\vartheta_n}(x)] dx,$$

where f(x) is any function of F or E. From lemma 4

$$\frac{\varepsilon}{L+L^2} \leqslant \lim_{n\to\infty} \int_{-\infty}^{\infty} M[f_n(x)-f(x)] dx.$$

Thus F is not compact.

Necessity of (4.3). If (4.3) is not satisfied, then there exist a positive number  $\varepsilon$ , a number sequence  $\{N_n\}$  such that  $N_n \to \infty$  as  $n \to \infty$  and a sequence of functions  $\{f_n(x)\}$  such that

$$\int_{-\infty}^{\infty} M[f_n(x) - f_n^{N_n}(x)] dx > \varepsilon.$$

Let f(x) be any function of F or E. Then

$$\varepsilon < \int_{-\infty}^{\infty} M[f_n(x) - f_n^{N_n}(x)] dx \le L \int_{-\infty}^{\infty} M[f_n(x) - f(x)] dx + L^2 \int_{-\infty}^{\infty} M[f(x) - f_n^{N_n}(x)] dx + L^2 \int_{-\infty}^{\infty} M[f^{N_n}(x) - f_n^{N_n}(x)] dx \le L^2 \int_{-\infty}^{\infty} M[f(x) -$$

$$L\int_{-\infty}^{\infty} M[f_{n}(x) - f(x)] dx + L^{2} \int_{-\infty}^{\infty} M[f(x) - f^{N_{n}}(x)] dx + L^{2} \int_{-\infty}^{\infty} M[f(x) - f_{n}(x)] dx.$$

Since f(x) is integrable with respect to M(u), we have

$$\lim_{n=\infty}\int_{-\infty}^{\infty}M[f(x)-f^{N_n}(x)]\ dx=\lim_{n=\infty}\Big(\int_{N_n}^{\infty}M[f(x)]\ dx+\int_{-\infty}^{-N_n}M[f(x)]\ dx\Big)=0.$$

Thus

$$\varepsilon \leqslant (L+L^2) \lim_{n=\infty} \int_{-\infty}^{\infty} M[f(x)-f_n(x)] dx.$$

Hence F is not compact.

Next we will prove the sufficiency.

Let  $F_h^N$  be the set of  $f_h^N(x)$ , where f(x) is of F, N and h are fixed and  $f_h^N(x)$  denotes  $\frac{1}{2h} \int\limits_{x-h}^{x+h} f^N(x) \, dx$ . Let  $0 < h \leqslant \delta$  and  $N \geqslant N_0$ .

For a given positive  $\eta$ , take an integer n such that  $\frac{K}{2^n h} < \eta$  and  $d = \frac{h \eta}{2 N(2^n)}$ ; then for any x' and x'' such that

$$|x'-x''| < d,$$
we have 
$$(I = (x'-\delta, x''-\delta) + (x'+\delta, x''+\delta))$$

$$f_h^N(x') - f_h^N(x'') = \frac{1}{2h} \int_I f^N(y) \, dy = \frac{1}{2h} \int_I 2^n \frac{f^N(y)}{2^n} \, dy \le$$

$$\frac{1}{2h} \int_I N(2^n) \, dy + \frac{1}{2h} \int_I M[\frac{f^N(y)}{2^n}] \, dy \le$$

$$\frac{N(2^n)}{h} |x'-x''| + \frac{1}{2^{n+1}h} \int_{-\infty}^{\infty} M[f^N(y)] \, dy \le$$

$$\frac{N(2^n)}{h} \, d + \frac{1}{2^{n+1}h} \int_I^{\infty} M[f(y)] \, dy \le \frac{\eta}{2} + \frac{\eta}{2} = \eta.$$

Thus  $\{F_h^N\}$  is a equi-continuous set.

$$f_h^N(x) = \frac{1}{2h} \int_{x-h}^{x+h} f^N(y) \, dy \leqslant \frac{1}{2h} \left\{ \int_{x-h}^{x+h} N(1) \, dy + \int_{x-h}^{x+h} M[f^N(y)] \, dy \right\} \leqslant N(1) + \frac{1}{2h} \int_{-\infty}^{\infty} M[f(y)] \, dy \leqslant N(1) + \frac{K}{2h}.$$

Thus  $f_{k}^{N}(x)$  is uniformly bounded.

Consider any sequence  $\{f_n(x)\}$  in F. Let the corresponding sequence of  $F_h^N$  be  $\{f_{nh}^N(x)\}$ . Then since  $\{f_{nh}^N(x)\}$  is equi-continuous and uniformly bounded, by the well known ARZELA's theorem, it contains a subsequence  $\{f_{nh}^N(x)\}$  such that

(4.4) 
$$|f_{n_k h}^N(x) - f_{n_l h}^N(x)| < \varepsilon$$
, for  $k, l > p_0$ , where  $p_0$  does not depend on  $x$ .

Let  $\{f_{n_k}(x)\}$  be the corresponding sequence to  $\{f_{n_kh}^N(x)\}$ ,  $\{f_{n_k}(x)\}$  being a subsequence of  $\{f_n(x)\}$ .

From (4.4), we have

$$\int_{-N}^{N} M[f_{n_k h}^N(x) - f_{n_l h}^N(x)] dx < M(\varepsilon) \cdot 2N, \quad \text{for } n_k, \ n_l > p_0.$$

Now

$$\int_{-\infty}^{\infty} M[f_{n_k}(x) - f_{n_l}(x)] dx = \int_{-N}^{N} + \int_{N}^{\infty} + \int_{-\infty}^{-N} = I_1 + I_2 + I_3, \text{ say.}$$

Then

$$I_{2} + I_{3} = \left(\int_{N}^{\infty} + \int_{-\infty}^{-N} M[f_{n_{k}}(x) - f_{n_{l}}(x)] dx = \int_{-\infty}^{\infty} M[f_{n_{k}}(x) - f_{n_{k}}^{N}(x) + f_{n_{l}}(x) - f_{n_{l}}^{N}(x)] dx \le$$

$$L\int_{-\infty}^{\infty} M[f_{n_k}(x) - f_{n_k}^N(x)] dx + L\int_{-\infty}^{\infty} M[f_{n_l}(x) - f_{n_l}^N(x)] dx \leq 2 L \varepsilon,$$

from the assumption (4.3).

$$I_{1} = \int_{-N}^{N} M[f_{n_{k}}(x) - f_{n_{l}}(x)] dx = \int_{-N}^{N} M[f_{n_{k}}^{N}(x) - f_{n_{l}}^{N}(x)] dx \le$$

$$L\int_{-N}^{N} M[f_{n_{k}}^{N}(x) - f_{n_{k}h}^{N}(x)] dx + L^{2} \int_{-N}^{N} M[f_{n_{l}}^{N}(x) - f_{n_{l}h}^{N}(x)] dx + L^{2} \int_{-N}^{N} M[f_{n_{k}h}^{N}(x) - f_{n_{l}h}^{N}(x)] dx \le$$

$$L\int_{-\infty}^{\infty} M[f_{n_k}(x) - f_{n_k h}(x)] dx + L^2 \int_{-\infty}^{\infty} M[f_{n_l}(x) - f_{n_l h}(x)] dx + M(\varepsilon) 2N.$$

From the assumption (4.2), we have

$$I_1 \leqslant L\varepsilon + L^2\varepsilon + M(\varepsilon) \cdot 2N$$

for k,  $l > p_0$ .

Thus

$$\lim_{k, l=\infty} \int_{-\infty}^{\infty} M[f_{n_k}(x) - f_{n_l}(x)] dx \leq 3L\varepsilon + L^2\varepsilon + M(\varepsilon) 2N.$$

Since  $\varepsilon$  is arbitrary,  $\{f_{n_k}(x)\}$  converges in mean with respect to M(u). Thus the theorem is proved.

(Reçu par la Rédaction le 23. 5. 1935).