Notes on orthogonal series I.

by S. KACZMARZ (Lwów).

1. We prove first a theorem which is a partial generalisation of a theorem of Kolmogoroff 1).

Suppose that $\sum_{n=1}^{\infty} a_n \varphi_n(t)$ is an orthogonal series, $\sum_{n=1}^{\infty} a_n^2 < +\infty$, the functions $\varphi_n(t)$ orthogonal and normal in $\langle 0,1 \rangle$. Suppose further that the series is almost everywhere summable by a linear method $T(b_{n,k})$; then the theorem is as follows.

Theorem. There exists a sequence of indices $\{n_i\}$, dependent only of the linear method T, such that the sequence

$$s_{n_i}(t) = \sum_{k=1}^{n_i} a_k \varphi_k(t)$$
 is almost ewerywhere convergent.

In Kolmogoroff's theorem we assume that the series is summable (C, 1) almost ewerywhere and assert, that the sequence $s_{2i}(t)$ is convergent almost everywhere; our proof gives in that case the sequence $n = i^i$.

To prove the theorem we denote by $\sigma_n(t)$ the expression $\sum_{k=1}^{\infty} s_k(t) b_{n,k}$; by hypothesis $\sigma_n(t)$ is almost everywhere convergent. The method T being linear and regular we have:

$$\lim_{n\to\infty}\sum_{k=1}^{\infty}b_{n,k}=1,$$

2)
$$\lim_{n\to\infty} b_{n,k} = 0 \qquad (k=1,2,...),$$

$$\sum_{k=1}^{\infty} |b_{n,k}| \leqslant M.$$

Denote further by I_n the integral $\int_0^1 [s_n(t) - \sigma_n(t)]^2 dt$, then we have

$$s_{n}(t) - \sigma_{n}(t) = \sum_{k=1}^{n} a_{k} \varphi_{k}(t) \left[1 - b_{n,k} - b_{n,k+1} - \dots\right] dt - \sum_{k=n+1}^{\infty} a_{k} \varphi_{k}(t) \left[b_{n,k} + b_{n,k+1} + \dots\right] dt$$

and

$$I_{n} = \sum_{k=1}^{n} a_{k}^{2} \left[1 - b_{n,k} - b_{n,k-1} \dots\right]^{2} + \sum_{k=n+1}^{\infty} a_{n}^{2} \left[b_{n,k} + b_{n,k+1} + \dots\right]^{2}.$$

We write

$$1-b_{n,\,k}-b_{n,\,k+1}-\ldots=b_{n,\,1}+b_{n,\,2}+\ldots+b_{n,\,k-1}+\varepsilon_n\,,$$
 where $\varepsilon_n\to 0$ with $1/n$.

Let now the sequence $\{n_i\}$ be defined as follows:

a)
$$|\varepsilon_{n_i}| \leqslant \frac{1}{i}$$
,

b)
$$\sum_{i=1}^{l} b_{n_{i,j}} | < \frac{1}{i} \text{ for } l \leqslant n_{i-1}, \ n_0 = 0,$$

c)
$$\sum_{i=1}^{l} b_{n_{i,j}} | > 1 - \frac{1}{i}$$
 for $l > n_{i+1}$.

The inequalites a) and c) are possible on account of the property 1) of the matrix $T(b_{n,k})$ and the inequality b) by the property 2). Consider now the sum

$$\sum_{i=1}^{\infty} I_{n_i} = \sum_{i=1}^{\infty} \left[\sum_{k=1}^{n_i} a_k^2 \left(b_{n_i,1} + \ldots + b_{n_i,k-1} + \varepsilon_{n_i} \right)^2 + \sum_{k=n_i+1}^{\infty} a_k^2 \left(b_{n_i,k} + \ldots \right) \right] =$$

$$= \sum_{k=1}^{\infty} a_k^2 \left[(b_{n_{j,1}} + \ldots + b_{n_{j,k-1}} + \varepsilon_{n_j})^2 + (b_{n_{j+1,1}} + \ldots + b_{n_{j+1,k-1}} + \varepsilon_{n_{j+1}})^2 + \ldots \right] + \sum_{k=n_1+1}^{\infty} a_k^2 \left[(b_{n_{1,k}} + \ldots)^2 + (b_{n_{2,k}} + \ldots)^2 + \varepsilon_{n_{2,k}} + \ldots + (b_{n_{j,k}} + \ldots)^2 \right],$$

¹⁾ Fund. Math. V (1924) p. 96-97.

where n_i and n_l are chosen so that

$$n_{j-1} < k \leqslant n_j, \quad n_l < k \leqslant n_{l+1}.$$

We see that the first sum on the right hand is less than

$$\sum_{k=1}^{\infty} a_k^2 \left[(M+1)^2 + \frac{1}{(j+1)^2} + \frac{1}{(j+2)^2} + \dots \right] < C \sum_{k=1}^{\infty} a_k^2$$

by the properties 3) and b). The second one is by the properties a) and c) less than

$$\sum_{k=1}^{\infty} a_k^2 \left[\frac{4}{1^2} + \frac{4}{2^2} + \ldots + \frac{4}{l^2} + M \right] \leqslant C_1 \sum_{k=1}^{\infty} a_k^2.$$

It follows that $\sum_{i=1}^{\infty} I_n$ is finite and hence $s_{n_i} - \sigma_{n_i} \to 0$ almost everywhere, that is, the sequence $s_{n_i}(t)$ is almost everywhere convergent. Thus the theorem is proved.

2. Some theorems on the (C, 1) summability of orthogonal series make assumptions concerning the order of infinity of the

Lebesgue function
$$\varrho_n(t) = \int\limits_0^1 |\sum_{k=1}^n \varphi_k(t) \, \varphi_k(u) \left(1 - \frac{k-1}{n}\right)| \, du$$
.

If for example w(n) is a positive non decreasing function of $n, w(n) \rightarrow \infty$, and

$$(2.1) \qquad \Delta \frac{1}{w(n)} = O\left[\frac{1}{n w(n)}\right], \sum_{k=1}^{\infty} k |\Delta^2 \frac{1}{w(k)}| < \infty,$$

then the orthogonal series is almost everywhere summable (C, 1)under the hypothesis $\sum_{n=0}^{\infty} a_n^2 w^2(n) < \infty$.²)

But a stronger result is true, namely the assumptions (2.1) are superfluous.

Theorem. If 1)
$$\sum_{n=1}^{\infty} a_n^2 w^2(n) < \infty$$
2) ϱ $(t \le w(n),$

then the series $\sum_{n=0}^{\infty} a_n \varphi_n(t)$ is almost everywhere summable (C, 1).

This theorem gives an extension of an analogous theorem in the case that w(n) = O(1).

We know that the sequence $s_{n_L}(t)$ is almost everywhere convergent, if we take $\{n_{k}\}$ such that $k \leq w^{2}(n_{k}) < k+1$ ³). Let p be any integer satisfying the inequality $n_k , then it$ is sufficient to prove that $\sigma_p - s_{nL} \to 0$.

We have

(2.2)
$$\sigma_p - s_{n_k} = \sum_{i=1}^{n_k} a_i \varphi_i(t) (i-1) \frac{1}{p} + \sum_{i=n_k+1}^{p} a_i \varphi_i(t) \left[1 - \frac{i-1}{p}\right].$$

Using ABEL's transformation in the second sum on the right we obtain

$$\frac{1}{w(n_k)} \sum_{i=n_k+1}^{p} a_i \varphi_i(t) w(n_k) \left[1 - \frac{i-1}{p} \right] =$$

$$= \frac{1}{w(n_k)} \left[\sum_{i=n_k+1}^{p} \overline{s_i} \frac{1}{p} - \overline{s_{n_k}} \left[1 - \frac{n_k}{p} \right] + \overline{s_p} \cdot 0 \right].$$

In the sum written above s, denote the partial sums of the series obtained by multiplying the terms with indices between n, and n_{j+1} of the series $\sum_{i=1}^{\infty} a_i \varphi_i(t)$ by $w(n_j)$. The sequence $\{s_{n_k}\}$ is convergent, thus $\overline{s}_{n_k} = o[w(n_k)]$ and further

$$\frac{1}{p}\sum_{i=n_k+1}^p\overline{s_i}=\overline{\sigma_p}-n_k\overline{\sigma_{n_k}}\frac{1}{p},$$

where $\overline{\sigma_i}$ denotes the (C,1) sequence of $\{\overline{s_i}\}$. Therefore the second sum in (2.2) is $o\left(\frac{\overline{\sigma_p} - \overline{\sigma_{n_k}}}{\sigma_n(n_k)}\right)$. But the expression $\frac{\overline{\sigma_n}}{w(n)}$ converges to zero 4), hence the second sum is convergent to zero almost everywhere.

The same transformation gives us in the first sum

$$\frac{1}{p}\left[\sum_{l=1}^{k}n_{l}\left(\overline{s}_{n_{l}}-\overline{\sigma}_{n_{l}}\right)\left(\frac{1}{w\left(n_{l}\right)}-\frac{1}{w\left(n_{i+1}\right)}\right)+n_{k}\left(\overline{s}_{n_{k}}-\overline{\sigma}_{n_{k}}\right)\frac{1}{w\left(n_{k+1}\right)}\right].$$

²⁾ S. Kaczmarz, Stud. Math. 1 (1929) p. 112.

³) l. c. ²), lemme 1, p. 91. ⁴) l. c. ²), th. 17, remarque p. 111.

Here we have as bevore $\overline{s}_{n_k} - \overline{\sigma}_{n_k} = o[w(n_k)]$. It remains to prove that the sum is o(p). It is less indeed than

$$C \sum_{i=1}^{k} n_{i} | \overline{s}_{n_{i}} - \overline{\sigma}_{n_{i}} | i^{-\frac{3}{2}}$$

on account of $\sqrt{i} < w(n_i)$, $w(n_{i+1}) \leqslant \sqrt{i+1}$.

On the other hand

$$\int_{0}^{1} \frac{|\overline{s}_{n_{i}} - \overline{\sigma}_{n_{i}}|}{i^{\frac{3}{2}}} \leqslant \frac{1}{i^{\frac{3}{2}}} \sqrt{\sum_{k=1}^{\infty} a_{k}^{2} w^{2}(k)},$$

and therefore the series $\sum_{i=1}^{\infty} |\overline{s}_{n_i} - \overline{\sigma}_{n_i}| i^{-\frac{3}{2}}$ is almost everywhere convergent. From Kroneckers theorem it follows that

$$\sum_{i=1}^{k} n_{i} | \overline{s}_{n_{i}} - \overline{\sigma}_{n_{i}} | i^{-\frac{3}{2}} = o(p)$$

which proves the theorem.

The analoguous theorem for (C, k) summability is also true 5).

(Reçu par la Rédaction le 24. 5. 1934).

⁵) l. c. ²) Th. 23, p. 119.