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1. We prove first a theorem which is a partial generalisation
of a theorem of KoLmocororr *).

o0 0
Suppose that 3’ a, ¢, (#) is an orthogonal series, P ai <A w®,

n==1 nw=al
the functions ¢ () orthogonal and normal in {0, 1). Suppose
further that the series is almost everywhere summable by a linear
method 7'(b, ,); then the theorem is as follows.
Theorem. There exists a sequence of indices {n,}, depen-
dent only of the linear method T, such that the sequence

s, (t)— Z’ a, 9, (D) is almosl ewerywhere convergent.
r=1

In Kowmocorore’s theorem we assume that the series is sum-
mable (C,1) almost ewerywhere and assert, that the sequence
s,: () is convergent almost everywhere; our proof gives in that
case the sequence n,==1i'

To prove the theorem we denote by 0, (/) the expression

Z’ 5.(D)b, .3 by hypothesis o, () is almost everywhere conver-
=1

gent. The method T being linear and regular we have:

1) lim ank-—l

n-—» oo k=1

2) lim 5, ,=0 (k=1,2,..),
3) 2|bn,k!‘<M
k=1

1) Fund, Math. V (1924) p. 96—97.
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1
Denote further by / the integral [ [s,()—0, (O di, then we have
s,()—0, () = z,’a,cwk(i)ll-b — b,y — o] di—

— 3 0,0, b, o+ by gy .-

fe==n-}-1
and
1 2 ‘ 2 1 2 2
n:‘mZak [1 —“bn,kw b L ” -] '1"2”‘,1 [bn,k+bn,k+1+ S
A k=nt1
We write

lwbn,kmbn,k%mlw" N mbn,l -i_ bn,2+ ceo bn,k—-l +€n ’

where & -0 with 1/n.
Let now the sequence {n} be defined as follows:

a) lanll"ﬁ’?“'z-_’
! )
b) .f}*:bn,-,j‘<7' for I<n, _,, ny=0,
==

!
y 1
c) zbnwl>1 : for I>n, 4.

==l
The inequalites a) and c) are possible on account of the
property 1) of the matrix 7'(5, ) and the inequality b) by the
property 2). Consider now the sum

o

j:[”i—_z’:lk alz‘(b"z1+"'+b"i:k—1+€"i)2+
b S, )=
fe==n;--1
..wk%la?[(bnl I R i (P R LR
'+" 'y "I“ J+27a/cl.(bn k "')2+(bn k+"')2+
ljl 1 kmnl _1 23

oG D,

n, k
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where n; and n, are chosen so that
n_y <kLn, m<kLny,.
We see that the first sum on the right hand is less than
1 J o 2
Ll Cda
(G+1) (1+2) k=1

by the properties 3) and b). The second one is by the proper-
ties a) and c) less than

Ja [(M+1)’+ 5+
k=1

& 4 4
3 [F+‘27+---+%+M]<C12a2

k=1 ks ]

It follows that 2] is finite and hence s, —0, —-»O almost eve-

n=1
rywhere, that is, the sequence s, (t) is almost everywhere conver-
gent. Thus the theorem is proved

2. Some theorems on the (C, 1) summability of orthogonal
series make assumptions concerning the order of infinity of the

Lesescue function ¢, (f) = f [kzl’ @, () @, (w) (1 — k_l'?.l_) | du.
o =

If for example w(n) is a positive non decreasing function
of n, w(n)->o, and

1 2 1
0. age =0 gl Skl Sl <

k=1

then the orthogonal series is almost everywhere summable (C,‘l)

under the hypothesis j ai w’ (n) < ©.2)

n=1

But a stronger result is true, namely the assumptions (2. 1)
are superfluous.

Theorem. [f 1) 3 d®w’(n) < w |

n==1

2) ¢,(t<uw(n),

then the series 2 a, ¢, (9 is almost everywhere summable (C, 1).

n=1

%) S. Kaczmarz, Stud. Math. 1 (1929) p. 112,
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This theorem gives an extension of an analogous theorem

in the case that w(n) =0 (1).
We know that the sequence snk(t) is almost everywhere
convergent, if we take {n,} such that k< 2(nk) < k+1%. Let

p be any integer satisfying the inequality n, <p <n,,, then it
is sufficient to prove that 0, — s, 0.

We have
v "lcy 1
@.2) 0,—s, """za(pi(t)(z—l)~——+2agv(t)[ ]
fe=nl r==np--1 P

Using AssL's transformation in the second sum on the right
we obtain

L Dag@ue[1-=2)=
w(nk)i _‘,,:;.;« 1 & p

P — — '
] ¢ SI%__.. snk_[ ——%‘]Jrsp.o].

‘ 'lU(le) A=zl

In the sum written above s, denote the partial sums of the se-
ries obtained by multiplying the terms with indices between n;

and n;, 4 of the series 2, a,9,(1) by w(n) The sequence {snk}
pe=1

is convergent, thus s =olw (nk)] and further

nL
L 35 =7 e
— s; ma n,o,

P I:::nk+1 k kp

where cf denotes the (C,1) sequence of {s 5. Therefore the second

0o —a a
p n . n
i L2) i . But the expression —— .conver-
sum in (2.2) is o ( & ) ) p o)

ges to zero ), hence the second sum is convergent to zero

almost everywhere.
The same transformation gives us in the first sum

2 el

1
w(n, +1)

1 1

ey <nf-.-1>) +n, G, —0,)

WL ), ]bmmel b L.
H 1. & %), th, 17, remarque p, 111,
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Here we have as bevore ;nk—ugnk:o [w (n,)]. It remains to prove
that the sum is o(p). It is less indeed than

‘ 3

k —
o Znil—s—n.—;j—,;.‘ i ?
=1 i i
on account of \i< w(n), w (n, )< Ji+i.
On the other hand

1|—;"z‘_5:"il 1 3/ v 2 2 N
f—-—<—£ Zakw(k),
0

P k=1
ll

° . _ 3
and therefore the series Y |s, —¢ |i % is almost everywhere
I 1

i=1

convergent. From Kroneckers theorem it follows that

3
2 n,| Sp 0, |1

i==1
which proves the theorem.
- The analoguous theorem for (C, k) summability is also true %).

o w

=o(p)

%) L e %) Th. 23, p. 119,

(Recu par la Rédaction le 24. 5. 1934).





