The strong summability of Fourier series.
By .
G. H. Hardy and J. E. Littlewood (Oambridge).
§ 1. Introduction.

1.1. A series
Ao+ Ay + 4y +...

may be said to be strongly summable, with index % and sum 8, if k>0,

S,=A, 4 4, 4...4+ 4,,

and

1 n
(11.1) ) 02']3,,~s|k—->0

when 7— co. It follows from Hslder's inequality that (1.1.1) says
the more the larger .

Suppose now that S(?) is a periodic function of the class I
where 7> 1, that ’

oo 1 =]
(1.1.2) A, +2An=§ a, +2‘ (ay cos nt b, sin nt)
1 1

is the Fourier series of S (), that

118) 9@ ) =g (f@+ i +flw—t)— 24)
(114 O, )= [ pa, w) du,

and :

(1.15) B¥ (3, t) = / |p(, u)]” du.
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If
(1.1.6) @ (z, 1) = ot
and
(L.1.7) ' D¥ (z, t) = O(t)

for small t, then the series (1.1.2) is strongly summable, to sum s,
for every k). The conditions (1.1.6) and (1.1.7) are satisfied for
almost all # when s= f(z). In particular

(1.18) OF (@, f) = o (1)

which includes both (1.1.6) and (1.1.7), is a sufficient condition for
strong summability. )

The proof fails when =1, and this case of the problem has
remained unsolved 2), '

1.2. Our main purpose ‘here is to settle this unsolved problem,
Our solution is (as was to be expected) negative; (1.1.8).is not
sufficient, when 7= 1, for strong summability with any index % 3).
We prove, however, a good deal more. If >0, and

(1.2.1) 2= =o(logm),
then (1.1.8), with r = 1, does not imply .

(1.2.2) s, —st=o(nzY.
0
We state the proof primarily for the case £ =1.

1) Hardy and Littlewood (4, Theorem 1), The first theorem of this char-
acter appeared in 3, and the theorem stated here is the result of successive gen-
eralisations by Carleman (1), Sutton (8), and curselves,

S8till further generalisations were made by Paley (7). Thus (1.1.6) may be

" replaced by

pt)—>0 (G
with any I, and (1.1.7) by

Bf¢({§0(m:u)l)du = O(i))

where 1 () may be, for example, any of
10 (logt 103438, 1w logt o (logt log+ w)lts , ., (>0,
%) See, for example, Zygmund (3, 240). '

") However small.
11%
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164 G. H. Hardy and J. E. Littlewood:

This negative result raises a further problem. The proof suggests

that the function Jlogn should be, in a sense, a ,best possible“
tunction; and in § 3 we prove that, substantially, this is so, since

(1.1.8) implies
(1.2.3) Z | s,~— st = o (n(log n)%k)

at any rate when k= 2,
This result completes the main purpose of the paper. In § 4
we discuss, more cursorily, some further problems left open by

our work.,
§ 2. Negative Theorems.

2.1. In § 2 we suppose that f(f) is even and
z=0, §=0,
so that

¢ (@ t) = f(®)

4, B, C,...

The numbers

are positive ,world-constants“, .which preserve their identity
throughout the argument, unless the contrary is stated expressly.

2.2. Theorem 1. Suppose that y=y(n) is an increasing function
of n, and that

(22.1) : 2(n) = o(Jlogn).
Then there is an integrable function f(t) for which

2.22) f | f(0)] du= o(t)
and '
(2.2.3) 2‘ Is,| = o(ny).

We begin by transforming the theorem. We may suppose that

ao=%ff(t)dt=0,

icm
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and then (2.2.3) is equivalent to

n

il Fo(uy),

1
where

1
bh=ay; +a, +"'+a’n—1+§an-

Now
ty=mnb,,

where b, is the Fourier constant

T

2
b, = - fcos ntg(t) di

0

of the even and integrable function 4)

g(@) =2lfcot-%—uf(u) du.

t
Since

§(O)=— 1ot 1tf0)

(2.2.2) is equivalent to
z

2.2.4) f ulg ()] du = o (9.

0

Hence Theorem 1 is equivalent to

Theorem 2. There is a function

g(b) ~ é b+ Y b, cos nt,
1

satisfying (2.2.4), for which
n

(2.2.5) : S i Folny).

1

It is in this form that we shall consider the theorem.

4) See Hardy (2).

165
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166 G. H. Hardy and J. E. Littlewood:

Lemmas for Theorems 1 and 2.
2.8. Lemma 1. Suppose that
(2.3.1) n== 10 k=3, I == [log k].
Then there are positive constants A, B, and an even function
@)=/
possessing the following properties.

(8) f(H)=¢, where &,= + 1, in the intervals

5 = (1_0’;;{, .1%.) (=r<h)
and f)=0 if t>107"n or 0=1t<<10~*m.
(b) f(¥) satisfies
(23.2) fu[df(u)]§At, O=si=sn)

0

(23.3) f;uf(u)j:o (ogtg%).

0

(¢) The Fourier constants ¢, =c,(f) of f satisfy
(@34 ' v10,(f)| = Bnlicgn.

This is the critical lemma; when it is proved, the remainder
of the proof of Theorems 1 and 2 will be a matter of routine,

In the first place, (2.3.3) is obvious.

Next, f(#) is a step function with discontinuities, of magnitude 2,
at some of the ends of the intervals é,. If

10y <t<< 10 =
o =t /7 (=s<k
d v 27 10 _ 2007
d < 5 £<____,_ et
(ful f(u)l = 2 ‘ 10:--—-— 103 9 S-— 9 t’

which proves (2.3.2).

It remains to prove that, if the &, are selected properly, ¢, sa-
tisfies (2.3.4).
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24. Now
1 10~"g
¢, (f) :2 e,fcos vt dt,
re=l 10"_1;1
A-1
(2.4.1) ve,(f)=2 &4.,,
r=1
where
< TS L BINE L.
(2:4.2) 4,,=sin io gln‘—l o

Suppose, if possible, that

n

(2.4.8) 2' v|e,| < Cn}logn

1
for every set of & and let
€ A ;D’
denote an ‘average taken over the 2" sets of ¢. Then, after (2.4.3),

(2.4.4) 2 Av(@]e,|) < CnJiogn

But %) there is a D such that

)gbl/ 2‘ a2,;

r=I1

A—1

(245)  Av(w|c,|)=Ao (}2‘5,4,,,

and therefore, after (2.4.4),

1

= &—1
; c
(2.4.6) P l/ £, < = nllogn.
<=5

=1

If we can prove that (2.4.6) is false, for some C, we shall have
proved that (2.4.3) is false for at any rate one selection of the &,
and this will complete the proof of the lemma,

) Littlewood (6, Lemma 4).


GUEST


168 G. H. Hardy and J. E. Littlewood:

25. We suppose now that
0<r<<n=10% w=1 4...%
(in the decimal scale), and consider the conditions under which it
is possible that
’Al ,Arvl< 100, ’I'<k.
If » <E then

v

A=sin 22 _ &
=8 ——«—-sn—oﬂ_—l

10
= (—1fersin (B 4 ) g

e (e 1N (o
(= Weertsin (3 o)
== = sin 6 4 sin g,

say; and [sin 6] and |sin | differ by more than unless i;_,.,

1
100
has one of the 6 values

'L.k._ry 'l:],_,-“— 1, ik_,-"l"‘ 1, 10— Z.k_,., 10 — ik—r + 17 10 — ik—-r_ i 6)_

Hence
141> 150 100

unless 4., satisfies this condition.
We may regard each of the 10*—1 values of » as determined
by successive choice of the digits

Uy Ggyenny Bpy Gpprgyeeny Gy
In general there are 10 posmble choices of 4,_,,,; but if 4 ty—npq i8 to be

chosen so that |A| <<=~ 100, then there are at most 6,

®) Divide the angle # into ten equal sectors. Then ¢ lies in & sector whieh
is not the same as or adjacent to that containing 6, nor supplementary to such
a gector; and
in
lisin 6] — [sin @l > [ cos e dur = 1 — cos = L
ol 10~ 700"
1n—rm
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Summability of Fourier Series 169

Suppose now that, for a particular »,

k—1
(2.5.1) 2‘ &, <,
Faal
where h=h(n) is a function of » (or of k) to be chosen later. Then
4> 150
for at most
A4 =1[104 %]

values of . At most 4 of the choices for » are unrestricted, and
the remainder, at least &—1J— 4, restricted. The 1 unrestricted
choices can correspond to at most

k
A
gets of positions, and the total number of values of » which satisfy
(25.1) is at most
25.2) = 10° (ﬁ) 102 6414,
We take

h=E|logn

and find an upper bound for m for large n. We have

=[104E2log n] =y k,
where

is small with E. Also
(k)_k(k—l)...(k—l+l)
1=

Kt _ kot et
SA=GEE T

= 10% = n?,

where
_y—ylgy
log 10

is small with Z and y. We can therefore choose Z so that

(2.5.3) (I;) < nglﬁ
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and

(2.5.4) 104 = 10%* = n? < 280

for sufficiently large ». Finally

(265) 10 = 100028 8

for large #, and

(256) B4 < 6 = plos T — pp18-rs < 1,

and these four inequalities and (2.5.2) show that

m < n"aﬁ""i% = n'l'oU

for large n.
It follows that

k1

ZAa,ygh»:Euogn
F=i
for at least
n— n_i% > % n
values of #, and therefore that

TR

) VZ 8, =3 En)logn.

y=] re=l

This contradicts (2.4.6) when
1
and the contradiction proves the lemma.

2.6.}3em¢na 2. Suppose that n, k, 1 satisfy (2.3.1). Then there
-are positive constants H, K, and an even Sunction

‘ 90) = ga(t)
with the following properties,
() g (t) satisfies
t
(2.6.1) fu}g'(u)]dué‘ﬂt O=t=mn),
0

icm
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¢
‘ = z
262) Ju]g ()] du=0 (o__<_f_g_w,,).

(c’j The Fourier constants ¢, ==c,(g) of g satisfy
(2.6.3) Z ve,(g)| = En Jlogn.
1

The f of Lemma 1 has discontinuities at some of the points
107=; we construct g by smoothing away these discontinuities
appropriately. If, for example, ! <<r<Ck—1, and f jumps from
—1 to }1 at 107z, then we join the points

A0z —ns, —1), (107wt 1)

by a straight line, and take this as part of the definition of g.
A jump from 41 to — 1, or a jump of half the height when »
is I or k—1, is dealt with similarly. Since g.is stationary except
along these lines, and

10~ gd-n—2 ]0"n+n_3

ulg @] du = [ ulafe)

g has the properties (2.6.1) and (2.6.2). Also f and g differ by at
most 1, and that in a set of measure at most

2k logn
<L
Hence
logn
leu(f) — el < L%,
and

n

27l

1

3l

differ by less than
1 log 11’
n

so that g has the property (2.6.3).
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2.1, In this paragraph we vary our notation a little. M is a
world-constant wherever it occurs, but the constants in different
places are not the same.

Lemvma 3. The function g of Lemma 2 has also the properties

m

@1.1) D' le, ()| = Mmlogn,
1
2.1.2) Sle, (@)= Mmlogm,
Jor m > 1. '
(i) Since

v]e, ()| = MV (y),

where V{(g) is the total variation of 9, and V(g) is less than M%
or Mlogn, g has the property (2.7.1).
(ii) We have

BI=1, GO = [u]|yw|du= Ht.

[

Now
9 v 7T
@1y a6=2(f+ Jeos vt gty at= 1 43,
0 alv
say. Here
v
2
214 =2 flomas?,
since |g| < 1. Also ’
2 F 2 [
e]2—E/coswtg(t)dt=—n——q}fsma)tg'(t)dt,
afv 7l
b ayd Yo
2.75) |J2[§7/|g'(t);dt~_—f’ff9_@dt
zly ’”nlv ¢
_ M (G Gap) , M faw
v( o n/*u——)_‘u; _trdt
nly
M, MH [fat_ 1o
s =452 [oar g
=5t ) FsMEs

icm
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From (2.7.3), (2.7.4), and (2.75) we deduce

lo
lou(9)| = 125,

and so (2.7.2).
Proof of Theorem 2.

2.8. We can now prove Theorem 2 (and so Theorem 1).
We define g(£) by

o0

9= tg0=Y 9—”“—)

§=1 s=1

where 7, >0 and n, = 10% are sequences, to be chosen later, which
tend to infinity, when s— oo, with great rapidity. It is plain that,
if the increase of #, is sufficiently rapid, at most ome g, differs
from O for any #. Also g, =0 if ¢ < 107% 7 = z/n,, and
4
/u |9, ()| du= O(2)
[

uniformly in s. Hence

fulg’(u)| du éz E;Julg;s(u)ldu.—: 0(52' gs)_—_o(t),

10— %5 7

which is (2.2.4). It remains to verify (2.2.5).
‘We have

¢, (9) =2 L cv(gn,)a

6@ = Lo lea(g)] — 3 Lo lesga)l — 3 Celen(n),

s<¢ >0

28.1) 8= vleg)l =t I 7lels)]

p=1 »=1
"g g

— 33l — 6 3 vl

<o »=1 >0 y=1
= 8% — Sl - Szy

say.
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In the first place, by (2.6.3),
(28.2) 8* > K, n,|logn, > ny 5 (n,) ")
if
V log n,
(2.8.3) 200 & N

Next, in 8, s <o and, by (2.7.1),

Zuw leu(gn)| = Mn,log n, = Mn, log n, 4,
go that "

8 = Mn,log 77,,_12‘ L= Mn,logn,,,
and ’
(2.8.4) 8 < my x(n,)
if
(2.8.5) log -1 < % ().

For this it is only necessary that , should tend to infinity with
sufficient rapidity.
Finally, in 8y, >0 and, by (2.7.2),

g

S vle,g.) = Mn,logn,,

y=]l
Hence

8y = M n,log "u(§a+l + é‘o'-i-ﬂ +.0= M, log Ny §a+11

if {; decreases with sufficient rapidity. It follows that

(2.8.6) Sy < g 2 (n,)
if

log
2.8.7 270 op .
( ) Z(”o) < No41

) We write @ >~ if p/p—> o when the variable involved in ¢ and ¢
tends to infinity, and p<y if p/y—>0.

icm
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Collecting our results from (2.8.1), (28.2), (284) and (2.8.6),
we see that

332 wlcv@)l (k Ry x(”ﬂ)

if n, and 7, tend to infinity both with sufficient rapidity and in
such a manner as fo satisfy (2.8.3) and (2.8.7). Since we can satisfy
these conditions by successive choice of

) Ty Mgy oy By Ng,enn,
the theorem follows,

We have supposed that the % of § 1 is 1. It is plain’ that the
same argument proves that

Dlsitomyy

for any positive k.

§ 3. Positive theorems. -

3.1, The notation of this section differs from that of § 2
We suppose that u(f) is periodic and integrable; that

u(6) ~ %ao +2 (a,co8 28 -+ b, sin n6) = % 4, +2’ 4,(6);
that 1 ' '
P (6, 1) = %{u(ﬂ O+ (0 — 2 — 24);
and that
Ca=s) =44 + X 4,0,
We also suppose that '

uGy0) =3 4o+ 3 4,6) 1"

is the harmonie fanetion associated with %(6), or Poisson integral
of %(6); and that

f(2) = f(r &%) =2 ¢, 2" =2 Cp 1" €™,
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where
Co-—"‘%ao, cn=a/z”‘ibn ("‘>0)’

is the analytic function, regular for » <1, whose real part is u(r, )
and whose imaginary part vanishes at the origin.

The A are positive world-constants, different on different occas-
ions, while C is a positive number which remains the same
throughout a proposition and its proof.

Theorem 3. If

(3.1.1) f lp (6, )| dw = o(®),
then . ”0 |

(3.L.2) (s, —s)*=o(nlogn)
and ’ )

(3.13) s, —s|=o(n)iogn).

We need only prove (3.1.2), since (3.1.3) then follows by
Cauchy’s inequality. The theorem shows that the condition (2.2.1),
imposed on x(n). in Theorems 1 and 2, is the ,best possible”
condition of its kind.

The series

—;—Ao — +2’A,,-(0) cos nt
1

is the Fourier series in ¢ of the even function @ (6,¢), and converges
to zero when g, converges to s. We may therefore suppose, without
real loss of generality, that 6 =0, s =0, and that u(¢) is an even
function of £ In these circumstances ¢ (6,t) = u(f). The letters 6
and @ then disappear from the theorem, and there will be no
inconvenience in using them in other senses.

Lemmas for Theorem 3.
3.2. Lemma 4. If 6 is positive, and 0 real, then

o gt

3.2.
G20 J(é*+q>*) @Fp—om <4
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9 g A
22) f(d“+¢>2) (6"-(Htp—0)’) 9 <4

. o

(1) Since @? < d* 4 pt, we have

d J g1 " bdg
_[(di+¢2)(5z+(¢_g)z)dfpi‘/‘m:i);=m

(11) We may suppose 6 positive. It is then sufficient to consider
the integral over (0, co), the other part being smaller,

‘We write
j" 69(]) 10 2p oo
J eTmEre=ate= [+ [+ [=r+n+a.
0 }g 20
In J;,
Pt@—br>0-p=lo=leg
80 that
: ~ odg
J<2f___= :
1 : FF gt T
In J,,
1
62+q32><ng—2-6(p,
so that
r ddo
J2<2/‘6—2‘*—*————+(¢_~0)2=2m

Finally, in J, Hééq) and so

0+ (p —6)”>é(62 + 9%,

oo

opd g 1
A<t [l =gn

Fundamenta Mathamaticae, T. XXV. 12
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3.3. Lemma 5. If

]
(8.3.1) ;flu(t)!dt‘ = Cl6,
[
Jfor all 6, then .
(3.3.2) lflu(f",t)ldtléz‘wl@l ‘
0
Jor r=1
We may suppose that

We write
0=1—r,

so that 0 == d =1, Then

d (I—rulp)
u(r’t)=§7z/1—2rcos( -t)—}—_ﬁd ’

b4

]
l“(":t)!<Af(jz [utp

+ (@ — t)’z
]
(3.33) Sl njar=4 f |4(9)| 2(9, 6,8 d g,
where ’ -
) dt
(3.3.4) 2(@, 6, 0) f o

It will be Venough to prove that

a0 T=J60=[lu()|2(p, 6,9 dp =40,

If

L4
U= [lu@la= oy,

then

638 = [ 00)1(9,0,0)dp=Ulx) 1m0, 0~ [ V) L a
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The first term is plainly less than 4 C6. In the second, we have

oy d( o N & g

P ai\d*+ (@ t)) S+t B (p—o®
19| d(6 g+ 6
2 =TT Lo — o

P [ d0g ey
WECETOEY Dfa=+«p=><a*+(<p R lr=40h.

0

by Lemma 4.
34. Lemma 6. If

]
(8.4.1) flu(t)l dt=o(|6])
then ’
g
(3.4.2) fiu(r, )] dt=o(]4]),

uniformly for 1 —r <16|.

We may suppose 6 positive. The conclusion then asserts that,
given a positive ¢ we have

]
lf|u(r, Hldi=e6

for
6=1—r§6§§(£)3).

8) We state and prove what we shall actaally require, ‘The restrictions on &
and 6 are no doubt stronger than is necessary,
It is of course not true that

]
Slutr, 0l at=o(]o})
uniformly for r=<C1; in fact
8
Jlu(r, B dt~6uir, 0,
0

for a fixed », and wu(r, Q) is not generally 0.

12%
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It is enough to show that the integral J(6, d) of (3.3.5) satisfies

such an inequality.
We transform J(8, 6) as in (3.3.6). Then

U(m) g (m 6, 6) = U(n)féur‘j(;ft

is less than a multiple of 46, and is o(6) in the sense required. It
is therefore sufficient lo prove that

; 309 Ulp)
(84.3) do = o(6)
J

FF o) @+ @—0)

and

(3.4.4) f : 66* Ulg) dp=o(0).

TP @+ @ — o)

The argument is, after Lemma 4, the same for either integral.
We choose n==1(¢) so that

Ulp)=eo
Then (taking the first integral for example) we have

66 Ulp) ~ 66g*
<‘°’“’)f T o-Ho—om P=* f oy =2

But, if 8<727;, we have also

| 869 U(g) S prde j@}_
(346)f62+q)2) i 0),)d(p<0(50/ T =4000 [ 7=

7
4Co66 2
=~~——6 5400 =0(0);
7 n

and (3.4.3) follows from (3.4.5) and (3.4.6).

O<p=n).

3.5. Lemma 7. If u(t) satisfies the condition of Lemma 5, then

(35.1) flf (ref| dt < AO|0|
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It is enough to prove that

(352) [ iwpas =257,
g
(35.3) f e, )| dt<é£9

for 6 >0, ¢ <% Here the suffixes denote partial differentiations

with respeet to » and t.
These inequalities are corollaries of those oceurring in the
proof of Lemma 5. For

) I 1—rt
w{r, t)*.?_n f“(q’)ﬁ (1 —2r cos(tp——t)—l—-r’) a9,

and
' 1
(gt );=£2(1—r)=~4(1+r=)sm2§<«p—t)}
|97 \1—27 cos (p — &) -2/ | ((I_r)2+4”in2%(q)_t))=
is less than
0+ (p—8° 4

(B4 (p— 0 &+ (p — ¥

]

f]u,(r, 8| dt

0

Hence

is majorised by an integral which is, apart from a factor d, that
occurring in the proof of Lemma 5. And similarly

| @ 1—r2 | 27 (1—7? |sin (p — )|
|§f(1—2rcos(q)—t)+r"))_(1—2rcos(q)——t)—|—r’)’

is less than

olp —t¢ Y|
4 = .
(@t —i)p =0+ (@ —1?
Lemma 8. If u(t) satisfies the conditions of Lemma 6, then

(8.5.4) f |f(r €] ( Iﬁlr),

uniformly for 1 —r= 4|
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This follows in the same way from the proof of Lemma 6.

3.6. Lemma 9. If

(36.1) tf dt<CwL
Jfor all 6, and a fortiori if u(i satisfies (3.3.1) then
u(r, 6) A0
{3.6.2) — §1 5
and if .
(36.3) fMQW=awu
1]
and a fortiori if u(f) satisfies (8.4.1), then
: u(r,8) 1 )
(36.4) T:E—°h~w

when z tends to 1 from inside the unit circle.

We shall need only one clause of the lemma; viz. that (3.3.1)
implies (3.6.2); but it is as easy fo prove the stronger form of
this proposition, which has some independent interest.

It is familiar that
AC
|u(r, 0)‘ § 1 — 7,7
and we may therefore suppose, in the first part of the lemma,

mm0<0§%memﬁ

U,(p) = f w(t) dt

L £ (—r)u(p)
u(r, b)) = 271: 1—-—2reos(q>-~0)-|~r’dq)
1] (1=
271:[1—2“505 (p — 0)+r’]+

we have

1 &y (A —r2)sin (p — 6) U, ()
+2ﬂ: (1—2rcos(p —-0)~|—r’)ﬂ d

icm
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The first term does not exceed AC. The second has a majorant

lollp— d(p
J= Aof(d* ew _Aof(5’+(¢ e)*)ﬂd"’+

g8
+ 4 f(6g+‘(§) 0)3)gd§0—"—']1 +J2y

say. Here
ddo
=
J; Aq/m T =A4C
and
ACH
“Ggfa"wp—e =5
Hence
7}
J§A0ﬁ+3L
and so
ulnt) . AC L AC_AC
T—2|=T=2] "6 =6

This proves the first half of the lemma. The second (with o)
is not wanted here, but we sketch the proof for the sake of comple~
teness. It is enough to show that

1 "27’(1~—r’)sin((p_-0)Ul(¢) 16|
ﬂf (1 —2rcos(p—8) )2 d‘P—O(l)—{—a(_.)

We choose {=7((¢) so that |U,(p)|<<e|p| for |p|<<¢ The
argument which precedes then shows that -

5<A f (6&‘({; gy 19 =4¢ (1+Iﬂl)

and the rest of the integral tends to zero with d and 6, for any
fixed (.

It will be observed that here we need not make any reservation
about the relative magnitudes of # and 4.
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3.1. Lemma 10. If u(t) satisfics (3.3.1) then

(3.1.1) i{_i)i = AOT)Q;

and if u(l) satisfies (8.4.1) then

(3.7.2) lff)z ( 11 5 )

We prove the first clause only; the second is not required, and
the reader will have no difficulty in making the appropriate modi-
fications in the proof.

It is enough to prove that

w0 40 |uy(0) _AC
1—2z|™ ¢’ l—z|= 6"
But 9) neither |u,| nor |u,| exceeds the sum of
lu(w)l __ U U(qo)lq)—ﬂ\
f F+o— T ATy 7 f T+ —om?

and a similar contribution arising from negative values of ¢. The
integral here has a majorant which differs from that of Lemma 9
only in the absence of a factor J, and the conclusion follows.

Proof of Theorem 3.
3.8. We may suppose (as we explained in § 3.1) that
1 oo
u(t) ~ 5% —]—2 a, cos nt
1

is even, and that 6§ =0, s=0,
We write

f(z):Zc,,z", c0=%‘107 b = Q, (n>0),

s=8(fl=c+ec+..4c, o0,= a,,(f)=3°+3;j—_-1--+8n;
so that

01 +2Cz+ —I—nﬂ s,,(f’)
n—+1 a1

8, — O,

9 See § 38.5.
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Then

S

by the theorem of Fejér and Lebesgue, and it is sufficient to

prove that
Z'n s ()
. ) ('v | 1) o{nlog n)

or, what is the same thing, that

(8.8.1) 6. () =0 logn).

0
Suppose now that

0=1—r=

ERE

Then

Z(s rs(i=3) 2‘ QU I

The first factor is less than A4 for n =2, and

: 1 |2
(38.2) 2 (5, ()7 = 1f f)zl ae.
Hence (8.8.1) W111 follow from

S, 1 1
(3.8.3) 27:f = am__a(g§ log 5).

It will be sufﬁcxent to consider the part of the integral in which 4
is positive. We write

(3.8.4) J-_-filf_(_z)llgdﬂ__f—l—f—Jl—l—J,,

and show that J; and J, are of the form required.

It F(6) ~f|f (re)|dt then F(&)——O(g), by Lemma 7;

and f (z) 0(31;) by Lemma 10. Hence
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(385) J, =0 }5'5) lf(zldg 0((52) | Lied
1= (2 oy

8
[ _F©) 0F0) .
)1(62_{_62)% +/‘(da_{_gh)1‘} }

(%-(%)JrO(asfé 02d08)

((52 _+_ gs)'e'

—of3)ofh f o8 )=o)

_ (1 + ut
On the other hand

I
o
—— /l\ /\

o (5108 6)

(3.8.6) J,=0 (5_12) L 4
(6 + 32)%
The integral here is
(38.7) Pz _ F(9) f T10) _gs.
(62 ,,:)% (267 3 (0% 4 32

The first two terms give O(1) and O (1/6). In the last, since 0 < 8,

we may use (3.5.4), so that

T : T afs
e SV e Y e

14-u?)2
Hence, after (3.8.6) and (3.8.7), we obtain .

1 1
(3-8.8) e]z == O(‘ﬁ log _6>;
and the theorem follows from (3.8.5) and (3.8.8).

§ 4. Conclusion.
4. 1. We conclude with a few miscellaneous remarks, in part
concerning problems left open by our analysis.

(1) There is no difficult in proving that, under the conditions
of Theorem 3,

n

Sp=_Y ls,—s[* = o (n log n}*-")
[i}

for k=2. We replace (3.82) by
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| f'(2) Jk’ k—l .
I3 ,kn<
Zts (s (m/ FE 0],
where k’*% and repeat the argument with the obvious

changes. The argument of § 2 shows that S, may be nearly as large as

1
2 (log n)2*;

but the gap between (log ,,)%” and (log n)** remains open.

On the other hand Theorem 3, together with Holder’s inequality,

shows that
S, = o(n(log n)‘z
When k = 2; and this, after § 2, is the best possible result.

(2) It is natural to ask whether the Fourier series of an inte-
grable f(0) is strongly summable for almost all 4. Our theorems
do not settle this question, though they may suggest that the answer
is negative. The series is not necessarily strongly summable in the
4Lebesgue set’ of f(6), but it may conceivably be so in some other
Hfull® set of 6. Thus, after Kolmogoroff Seliverstoff, and
Plessner, ’

S =0 (Vm)a
when f(6) is L?, for almost all 6; but this is not necessarily true
in the Lebesgue set or even at a point of continuity.

This is no doubt the most interesting question still left open.

(3) We have asked ourselves whether

[ 9ta ) (1+1og* (e, )] du= o)

is a sufficient condition for strong summability *1), but without

result.
(4) We might define a weaker type of ,strong summability“;
we might define it, for example,

#.1.1) 2 E”—Eﬂ = o(log 1)
1

19) This is effectively one of the Hausdorff inequalities.
11) CQompare the results of Paley referred to in!).


GUEST


188 G. H. Hardy and J. E. Littlewood:

or
n

2 s —sl = o(log log »),

- v log v

or by similar equations with |s, — s[*. The most interesting of these
notions is (41.1), which may be called ,strong logarithmie sum-

mability¥; and we may ask whether this property is a consequence-

of the conditions of Theorem 3. The answer is again negative, as
may be shown by an appropriate modification of the argument of § 2.
There is therefore some interest in our final theorem, which

follows.
Theorem 4. If

f(2) =2 e &

is a power series of the complex class L, and

;

@12) [ 1] at=o(iel),

then ’

(4.1.3) 2‘ @ = o(log ).
We say that

9(2) =Z b2

1 T
wng) =355 [lgtréolas

belongs to L if

is bounded for r<C 1. It is known 12) that' then

nt

Suppose now that f(z) satisfies the conditions of Theorem 4,
and apply (4.1.4) to

wry ¥ Ll acsueg

10 =18 — ¥

12) Hardy and Littlewood (5, 208, Theorem 16).
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on the eircle r=1—d=1— %. Then
v |8n‘ n ¢ f(Z)
gn—}—lr éA‘_f 1—z

An argument like that of § 3.8 shows that the last integral is
o(log %), and (4.1.3) follows.

dé.

Here then there is a difference between Fourier series and
power series: it is the only one which we have found connected
with this particular problem.
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