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We add that the funetion
0¥ (x, y) == %‘ip |G, (2, )]

satisfies theorems analogous to Theorems 1, 2 and 5, The same may
be said of the Abel and (C, &, 8) (&> 0, § > 0) means.

Corrigenda to the paper ,,On the differentiability of multiple integrals«
by A. Zygmund (Fundamenta Mathematicae, vol. 28, p. 148—149).

Prof. Banach kindly called my aitention to the fact that the proof of the
lemma on p. 14 is incomplete, for the argument on p, 146, line 15, is valid in
the case % =1 only. The proof may be completed in various ways, and, in parti-
cular, as follows,

We have to show, that, given any functions h==h(x, y), k ==k (o, y), the expression

w(, v) = f f L@ —w) Luly — v) da dy
s

satisfles an inequality Ip[s] < 4y, where 4, depends on ¢ only. In tho first place,
1

we observe that, given any function g == g(x), the function A(u) =.f‘Lg(u-—-m)dm

belongs to every L9, and the integral of A9(u) over 0 <Cw <1 does not exceed

a constant Bj. This is an analogue, for the one-dimensional space, of the result
which we have to prove; the proof follows by an argument similar to that of
section 4 of the paper. Assuming this, let us consider any of the terms of the
sum 3 {ITW,.. 170,

M_l{‘_l s .} on p, 146, line 9. Supposo first that k<7, e. g. k=1,
1=2. Integrating first with respect to &,,...,®gy Yy,..., ¥, ond then with respect
to %,,%,,%,,Y,, Wo obtain

‘101 1 1
f f duw, dy, w2 (3, y,) / Lty (00 — 20,) oo, f Lok (s — ) dy,.-
L 0

Applying Holder's inequality with the three exponents ¢/(g —2),q, ¢, We see

that the integral does not exceed I *[u ]Bg. If k=1, e. g. k=1==1, the integral

is equal to f f w1 (e, y,) doc, dy, < I ). Collecting the terms, we finally obtain

L) < T (] + 2772 ],
where C, depends on ¢ only. It is plainly sufficient to consider the case when
h(x,y) and k(x, y) bave a positive minimum, Then I,[4] is finite, and so does not

exceed the largest root of the equation £7— Cp(#9~14 #9—2) == 0, This comaplotes
the proof,
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On the strong derivatives of functions of intervals.
By ‘
S. Saks (Warszawa).

Introduction. Given a set of 2p numbers a, (b, a3 <Jby,...
a,<<b, the set of points (z;, #,,..., %,) such that ¢, <z, <Jb; for
i=1, 2,.., p, will be denoted as the interval [a, b;; ay, by a5, b,
of the p-dimensional space R,. If F(I) is an addditive function of
intervals and I, an interval in R, then V (#7;1,) will denote the total
(absolute) variation of F over I,. If F(I) is a function of
intervals of bounded variation then it may be extended as a com-
pletely addditive function of sets to the family of all sets measu-
rable 1) (B); accordingly, in this case, V(F; A) for any set 4 mea-
surable (B) will mean the total variation of Fover 4.

If (2,, 2y5..., %,) is a point in the space i, and F(I) a function
of intervals, then the lower and upper limits of the quotient
F(I)/meas I, where I is an arbitrary interval containing (%1, Zay.) %)
and d(Z)—>0, will be called the lower and upper strong
derivates of F(I) at the point (2, %,...,%,), and denoted by
F*(x,, 24,..., ,) and F*(z,, xy,..., x,) respectively. In the case
when they are equal we shall write F* (2, #;,..., #,) for their
common value, that will be called the strong derivative?)
of F(I) at the point considered. F’(x, @,,..., %,) will as usually
denote the derivative of F(Z) in the ordinary sense. In the case

1) See for instance de 1a Vallée-P oussin, Intégrales de Lebesgue, Fonctions
d'ensemble, Classes de Baire, 2° 4., Paris (1934), pp. 88-—-95 Saks, Théorie
de Vintégrale, Warszawa (1933), p. 250

3) Bome problems concerning the strong derivation of additive functions of
intervals have been recently discussed in a series of papers published in these
Fundamenta; see the list at the end of this note.
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p==1 both methods of derivation, ordinary and strong, are com-
pletely identical. In the case p =2, however, they essentially differ
and the existence of the ordinary derivative does not in .general
imply that of the strong one. In a former paper ®) we have set an
example of an additive non-negative and absolutely continuous
function of intervals @([) whose upper strong derivate is every-
where equal to co. In the first part of this note we attempt to
complete this result as follows:

A. Given an arbitrary function o(8) >0 in [0,00] such that
lim inf 0(¢) = O there ewists in the interval S, =[0,1;0,1;...50, 1]

{00
of R, a non-negative measwrable function @ (24, 2y,..., 2,) such that

+
a(lp]) @] log”|@| is summable in S, and that for the indefinite
integral D (1) of @ the equation B (x,, Zy,..., )=+ oo holds
everywhere in S,

In a sense, this is the best possible result, For by a remarkable theorem of
Jessen,.Marcinkiewicz and Zygmund+), if f¢|l:)g'1""1|q)[ is integrable
then the indefinite integral @(I) of ¢ is strongly derivable almost everywhere and
therefore &%= @ almost everywhere in ?R,,. However, from another point of
view, it remains yet to decide whether the cpndition @ == 0o in Theorem A might
be replaced by a more complete one, viz, by 4R @* = co. This may he done

rather easily if we merely require the integrability of g. A more serious difficulty

‘s +
seems to consist in the demand that o(|p|)|@|log”1|p| should be integrable,

In t;he second part which is independent of the first the following
generalization of a theorem of Lusin will be established.

B. If (2, 2,,...,2,) is a measurable function in the interval
S = [0,1; 0, 15...5 0, 1], then for every & >0 there exists an additive
continuous function of intervals @(I) such that

@) Py, @), @) = @ (@, @y,..., z,) almost everywhere in S,
(b) V@ <+ [ ... [ipldn... da,
So

Condition (b) is immaterial if ¢ is not summable in Sy, In the
case, however, when ¢ is a summable function, it means that B(l) is

'3) §a,ks, 6; see also Busemann u, Kellor, 2.
9) Jessen, Marcinkiewicz and Zygmund, 8,
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of & bounded variation. More precisely, Theorem B may in that
case be stated as follows: :

BUis, If a function @ (&, @y,..., &, is summabdle in the interval
Sy ==1[0,1; 0, 1;...; 0,1] and F(I) denotes the indefinite integral of @,
then, for every 1 > 0, there exists an additive continuous and singular ®)
function of intervals A(I), such that V(4; 5)<<7 and thet the
function ®(I)= F(1)+ A(I) satisfies the condition (a) of Theorem A.

Indeed, let ¥, denote the integral of |p| over S, and let e=1/V,
(we may obviously admit V,>>0). Let @(I) be a continuous additive
function of intervals subject to the conditions (a) and (b) of Thec-
rem A, and let A(]) = @(I) — F(I). As A/ = @' — F' = o —gp=0
almost everywhere in S,, the function 4 is a singular one. Thus
there exists a set of measure zero F in S, such that®) V(4 S,) =
= V (4; E). Consequently

YV (@; 5) = V(8; B) + V(8; 8 —F) = V(& B) + V(F; &) =
=V (4; So) + Vo

and so, in virtue of (b), we get V(4;8,)<<&V,=1, which proves
the result.

Tor the cuse of one variable (p = 1), Theorem A was established by Lusin?).
In that case the condition (b) is naturally omitted as a superfluous ons, since in
§R1 the condition (a) is satisfied by the indefinite integral @(x) of the given
function ¢ () whenever the latter is summable in [0, 1]. The same remark applies to
the case of a space %R,, for arbitrary p provided that the ordinary derivative is
considered instead of the strong one.

For the sake of simplicity we shall consider the case of the
plane. The reasonings are actually the same in the general case.
Thus, in the sequel, by an interval [q, b5 ¢, d] we shall mean the
rectangle whose sides are parallel to the coordinate axes and
whose oppusite corners, lower left hand and upper right-band, are

5) An additive function of intervals is said to be singular if it is of bounded
variation and has the derivative (in the ordinary sense) almost everywhere equal
to zero. .

8 Cf e g. de la Vallée-Poussin, 1L c.1), pp. 102—1i2; Saks, L e.%),
pp. 256—257.

) Lusin, Integral and Trigonometrical Series (in Russian), Moscow (1915),
pp. 84—41; Sur la notion de lintégrale, Annali di Mat, (3),t. 26 (1917), pp. 77—129.
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(@ ¢) and (b, d) respectively, Given a function F(z,y) of two va-
riables, the corresponding function of intervals will be denoted by
the same letter; i, e. we shall put #(1)=F(h,d) — F(a,d)— F'(c, d)-}-
+ F(a,b) for 1= [a,b; ¢, d].

I

1. Bohr construction. We shall recall some details of a Bohr®)
construction upon which the proof of Theorem A actually rests.
Let S=/{a,b; ¢,d] be an interval, @ >1 an arbitrary number
.and N==Ea. Consider a finite set of subintervals in §
b—a

1.1) I‘”:[a, a-tg- R c+d;cJ where j=1,2,..., N.

Let us put

N N
= 31p, o= JF 1o,

fea1 [

We have
meas If) = Nmeas & for j=1,2,..., N,

meas AV = N(l—[—% ++%) meas 6‘1>>N10g

) N meas 6.
The remaining part of S, viz. §—A®, will be divided into a finite
system of non-overlapping intervals. To each of them we apply
.the same operation as above to S. We carry out this process a suf-
ficient number of times till the area of the remainder is less than
(meas S)/(N--1)2 Then we divide the remainder into a finite number
of arbitrary non-overlapping intervals, J®, J®,. .. J®, sny. So we
obtain a subdivision of S into a set of non-overlapping intervals

IO, Iy I8, ey IR
such that, upon putting

N N
A@ :2,' ij, o0 =”Lw fO?‘ 4 m== 1, 2)--') 8

J=1 . Jomy

o, I, Jo ge, o ge

we have
(1.2) meas I” = Nmeas 0¥ for i=1, 2.,87=12..N

.
7

%) Bee Carathéodory Vorlesungen #tber reelle Funktionen, 2 Aufl
) 2 . ., Leipzi
(1927), P. 689 -691. ’ e
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(1.3) meas AO = % Nlog Nmeas 6© for i=1,...,s;

meas S

(1.4) meas (J(1)+J(2)+...+J(r))<(‘N.—_!_1—)’.

In the above subdivision of S we have started from a set (1,1) of intervals
with a common corner at (a, ¢) and their opposite corners on the curve (x—a)(y—c)=
= (b—a) (d — c¢)/N == (meas S)/N, So the total area A() of these intervals was
approximately equal to :

b—a
meas S [ dx logN
i P meas S.
(6—a)N

If, however, instead of an interval on the plane we considered an interval
S={[a,,b,; a,,b,;..., 8, bp) in a space ER,,, then we should have to start Bohr's
construction from a set of p-dimensional intervals with the common corner
(@, 8,..., a,) and the opposite corners belonging to a (p-—1)-dimensional
variety (&, —a,) (%, — @,)... (%, — a,) = (meas §)/N7—1, The total volume of these

log N\r—1 .
intervals, as we easily compute, is approximately equal to (O,E;\T ) . meas S, while

their product is an interval -of volume (meas S)/N#—1, Accordingly, passing to a
space %R, we merely have to replace Nlog N in (1.8) by Nlogs-1N (with
a suitable constant coefficient) and (N-}-1)? in (1.4) by (N—1)?. This explaina the
réle of the (p — 1)-st power of log|@| in the general enunciation of Theorem A.

Now let y(x,y) be the function equal to e over the set
2376“)4—2’1&7(”, and to O elsewhere. In virtue of (1.3)

l=l im=l

. 8 : 8 meas S
2‘ © by P nidady
meas 9 <(N+ 1)log (N 1) ‘1 ]' mess A0 aloga

=]
fe=1

Hence, by (1.4)

f f plogydzdy=cloga- (2‘ meas 9 -{—2,' meas J' ‘0) < 9meas S.

P f=1 =1
On the other hand, it results from (12) and the definition of
Y (z,y) that
¢ dedy — a meas 60 = meas If? where i=1,2,..,s; j=1, 2,0, N3

16
’lj

fwdxdyzameas JO  where i=1,2,.., 1.
J0
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From the above discussion there follows

Lemma. Given an interval S and a number a>>1 there ewists
in 8 a function s,y (% y) which enjoys the following properties:

(Ay) s, takes on two values only O and @, each on o fzmtc
aggregate of intervals 9);

(A,) [fzps'u(x, ) 10g Ps,o (2, y) doe dy < I meas S5

A,) every point (x,y) in S belongs to an interval IC S such that

f/ 5.0 (@, y) diw dy > meas L.

2. Proof of Theorem A. Let now o(f) >0 be a function in [0, 1]
such that lim inf o(f) = 0, and let {#} be an inereasing sequence of
{00 :

values of ¢ such that #,—> oo, o(t;) — 0. Denote by &(¢) a continuous,
non-decreasing function in [0, 1], which coincides with o) at the
points #,. We can obviously assume that &(t) <1.

We shall define a sequence of non-negative functions {1,(x, y)}
in the square S, = [0,1;0,1] so as to satisfy the following conditions:

(C,) b, takes on a finite number of values only, say 0= o <
< o ... < P, each of which over an aggregate of a finite number
of intervals; P, =3 identically;

k=1

o >22 af)  for kz=1:

Je=1 el

) e(af) <1/2%

(Cs) the sum

Yol 9) | Pil,y) ot Yu(® y)
e (agu))Jl/z e (a(”) 1/2

(e}
admits only the values which belong to the set {t.};

o+
(C)) ff¢kdxdy<ffwklogwkdxdyg9
So So

(C5) every point (x,y) in S belongs to an interval IC S, such that
d(I) <1/k and ffw,, dx dy = meas I,
1

%) We neglect sets of points of measure wero.
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For suppose that , are defined and satisfy the above conditions
for <Ch—1. D1v1de S, into a finite number of intervals Iy, L., I,

go that the sum E'Lp, (2, )/\e (e{")}** has a econstant value over each

of them, say ﬂ,, over I, for n=1,2,...,n, This may obviously
be done in virtue of the conditiou (Cl) which by assumption is
satisfied for k=1, 2,..., h— 1. We can admit that I, are of dia-
meters less than 1/h.

Now a number af? will be chosen sufficiently large so as to
satisfy the condition (C,) for % =~h. Since ¢/[e(f)]”* is continuous
and tends with ¢ to -~ oo, the value of af¥ may be determined
in such manner that B, - a{?/[e(a{")]"* belong to the set {t}. Next
the numbers ¥ for n=2,..., n, will be defined so that o{® <C
<o <...<af) and that the values B, -+ a®/[e (ef?)]** all belong
to the set {¢}. Thus upon putting ¥, (z, y) =1, @ (x,y) on I, for
n=1,2,..,n, where ¢, ,# is a function satisfying the conditions
of the lemma of §1 with S=1, and @=a®, it is readily seen
that ¥, (2, y) and o, ef,..., af? verify all the conditions (C,), (Gy),
(Gy), (C,) and (C;) for k=nh.

We now turn to the proof of Theorem A. Let us set
- wk(xs .7/)
z,y) = ¥ — ==
@ (2, y) hzov‘[s(agk))]uz
and let @,(,y) denote the n th partial sum of ¢ (x,y). Let
=(Py)[q)n (@) ) > Pus (2,9)] =(E)[¢n () 2 asn).]‘
It results from (C,) and (C,) that over R, we have

n—1 ) &)

R, a\;u) AU
Pua (2, 9) g; [G(ai:;)]m vulrd)
k=0

@ el

whence @, (z, y) << 2 ¥, (x, y)/[e(@)]*? for (x,y)eR,, and in virtue
of (C,) ’

e [ f #alog 9, dv dy < (ag,.,}]m [ f Valog v, du dy +

-+ log [E(aﬁ”)) 1/2 f P, dx d.l/ [ (@ (n))]1/2 (1 -+ log (a(n))]m)

Fundamenta Mathematicas T. XXV, . 16
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Thus, since by (Cs) the valucs of g,(,y) belong to the set {f}
we have o[p, (@, y)] = &[p.(@, y)] < &(af”) for (,y)eR,, and the-
refore, it follows from (2.1) that

22) f f 6(g2) @ log 9 dev dy < &4,
Rll

where &, has been written for 18 [e(a{")]"* (1 - log 2/[e (a{*)]"*)." In
virtue of the first of the relations (C,) we have

oo

(2.8) 2,1 &, < -} o0,

neal

Now let £, ....E[ (@, ¥) = @, (@ ) > Pu-1(@, ¥)). As it results

from (C,) and (01) We have v, (z,y)==0 everywhere in &, with
the exception at most over a set of measure less than 9/a{®. Hence,

since by the second of the relations (C,) the series 2&]&‘&)~ appar-
k

ently converges, we have S, == £ - 3 K, where I/ is a set of mea-
n

sure zero. As K, R,, from (2.2) and (2.3) we infer thus

@) [ [enviwpisay <3 [ [oppione. s <
0 el “n
<Z £, < oo,

nrml

On the other hand, it follows from (C;) that for any % there

corresponds to every point (%,%) in S, an interval J(C S, such
that (z, y)eZ, d({) <<1/k and

f ,f ¢ do dy > »-;,j) f / e d dy >m°;i,f

Since &(af?) >0 as k-—>oo, this means that the upper strong
derivate of the indefinite integral of ¢ (%, y) is co everywhere in S,

Hence in view of (24) the function ¢(z, ) satisfies both conditions
of Theorem A,

icm
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IIL

1. Lemmas. The proof of Theorem B will rest on a few
elementary lemmas.

Lemma 1. Given a linear function Fx)=px-q in an
interval [a,b] and positive numbers &, 1 <1, there exist a monotonic
continuous function @(x) in [a,b] and a set P of measure 1+ (b— a)
such that

(L1) |B() — F@)| <t [a,8], 0@ =F@), O(3)=F0);

(1.2) O () =0 almost everywhere in [a, b];

(1.3) |B()— @(x)|<é?'7ﬂ|m'—-x| for o ela,B), welab —P.

Proof Divide [a,b] into n intervals I1,, I,,...,I, of equal
length 6 = (b —a)/n < ¢/|p|. Next, divide each interval I ==
=[a+4 (k—1) 6, a -+ k] into five sub-intervals, viz.

J;l):[a+(k_ 16, a 4 (k_1+§j_:)a],
J,gﬂ):[a+(k_1+g) 3, a -+ (k—1+;l)a],
sz[a—}-(k—l—{—g)é, a+(k—-g)a],

P = [a+ (r—7)s a+(z;—;l)a],
Je — [a—{— (k«%) 3, a+ka].

The intervals J¢? (where k=1,2,.,n; j=1,2,3,4) are of equal
length %0/4, and so, upon denoting their sum by P, we have
meas P=4nn /¢ =1n-(b— a)

Now let @(x) denotes a continnous and monotonic function in [a, b}
which has the derivative @'(z) almost everywhere equal to O,
coincides with #'(x) at the middle- and end-points of the intervals Z,
and is constant in the intervals J@® - J, 4 Jf. Since the oscillation
of @(x) — F(z) over each interval I, is less than, or equal to, [p|d<le
we see at once that the condition (1.1) is satlsﬁed In order to

16*
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prove (1.3) we may evidently suppose that both points &' and
belong to the same interval I,, i. e. that xe.J, and & ¢ l,. Then
if o eJ® 4 J+JP we have D (x') = P(x) and the inequality
in (1.3) is obvious. If, however, 2’ ¢ Ji” + J# then |2’ — x| 2= nd/4
and, since | B(z')— D(@)<|p|, we again obtain the inequality in (1.3).

Lemma 2. Let p(x) be a measurable function in [a, b] such
that ()| << M < oo. Then for any pair of positive numbers & n< 1
there exist a continuous function W(x) in [a,b] and a set P of
measure 1 - (b — a) such that

\Te) <e in la,b)
U’ () = (x) almost everywhere in @, D],

|0(x) — Ulz)| << é;?y|x‘w x| whenever @ ¢ [a,b] and x ¢[a,b] P,

b
V(T; 4, b)g?j ()| da.

Proof Let G(x) be an indefinite integral of ¢(x) in [a, 4]
Divide [, 0] into a finite number of intervals I, I,., I, so that
the oscillation of G(x) be less than &/2 on each of then. Let F(x)
denote the function which is linear in each of these intervals and
coincides with G(x) at their end-points. The angular coefficient
of F(z) in every interval I, is less than, or cqual to M. Hence,

by applying the preceding lemma to the function F'(x) in each of the -

intervals I, we obtain a set P of measure +(b~a) and & function ®(x),
continuous in [a, 5] and monotonic in each I, such that ‘

fz/) (@) dx

I

(15) @' (e)=0 oalmost everywhere in [a, D],

%;E@’——-wl whenever z'e(a,b] and xe[a,b]—P.

Let ¥ ()= G(x)— @ (x). Since |G(x)— F'(x)| < &2 throughout
the interval [a, b], and |G(z")— G(z)| << M- |2 — 2| for any
pair of points &', " in [a, b], we conclude at once from (1.4), (1.5)
and (1.6) that the function ¥'(x) together with the set P satisfy the
required conditions of the lemma.

(14) |0)— F@) <2 in [0, V(@)=

’

16) [06)—0@)| <
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Lemma 3. Let f(x, y) be a measurable function, £ a closed set in
the square Sy =1[0,1; 0,1] and o<1 a positive number. Then there
exist in S, an additive continuous function of intervals F(I) and
a measurable set Q such that

(¥ meas @ < 0,

(i) F*(x,y) =0 at every point (%,y)eE,
(i) / f (%@, 5) — fla 9] do dy < o,

@ P gsj meas I whenever 1+ (B— Q) =0,
) vF sy <4 ﬁf(w, y)| de dy,

(vi) [P <o for asn; interval T (C S,.

Proof We can approximate f(x,y) by a function

folwg) =3 5@ k()

k=1

where h,(z) and g,(x) are continuous functions in [0, 1], so that 10)

1) [ [11@n—re) s <G,
08 3 [ fin mitaods< [ f17 ) =y

On the other hand, an aggregate of non-overlapping intervals
I, I,..., I, may be determined in S,— Z so that

(1.9) f [ S, ) dwdy <G where B= Y L

S—E—R k=1

10) In order to satisfy the condition (1.8) itis convenient to set the function f(z,y)
in the form f=f,—f,, where f,=0, £,=>0 and f;* f,=0, and then to apply
the well-known methods of approximation to f; and f; separately.
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Let M denote the upper bound of the values of |g,(x)| and
[hy(2)| in [0, 1] and let I==d(k R)>0 be the distance of the
sets & and R. Then, in virtue of Lemma 2 & system of functions
Gi(®), Hy(x), where k==1,2,..., », and a set P’ of linear measure
less than ¢/2, may be defined in [0, 1] so as to satisfy the following
conditions:

lo® lo?

(L10) Gu(@)| < srmr—s— H@ < oo gm0 10

160 M n2m’

A11)  Gi(x)=gu(®), Hp(x) = hu(x) almost everywhere in [0, 1];

64(a) — Gyl < R HZ 2]
(1.12) |H, (2') — Hy@)| < %()_M”Lx T w|,

whenewer x' e[0,1] and 260, 1] — P;

1 1
118) V(650 )<2 [lpwlds,  V(H;0,1)<? / (s
0

Let us now put

114 Tay)=Y G H) Fl)=IUU-L),
kel kea),
and let ¢ denote the plane set of points (x,y) whose at least one

coordinate belongs to P. It will be shown that the funetion ' (I)
and the set @ satisfy the conditions (i—rvi).

Indeed, we have meas @ <C 2 lin meas P < ¢ i. e. the condition ().
Next, by (1.14), the function F(I) vanishes for any interval outside

of E, whence I*(z,y) = 0 identically over S,— R, and in particular
over the set Z. Further, by (1.14) and (1.11)

A *(x,y):z Gi(x) Hy(y) =2 9:(2) h(y) =1fo(,y) almost everywhere;

Kol kel

and therefore, on account of (1.14), (1.9) and (1.7), we have

[ fren—feiasys< [ f

So—E

|1* (2, y) — fo (@, y) doz dy -
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+ iy —f vldeds < [ 1w —fiwg) iy +
$ R
+ [ [t v dw iy + [ [ifsto)— @) dody <

So—E—R So
which means the condition (iii).

In order to prove the condition (iv) consider an arbitrary interval
I=[a,b; ¢,d] such that I.(E—@Q)==0. The inequality (1)< o-meas]
is obvious in case I+ R=0, for then F(I}=0. Hence suppose that
I.R=0. Then d(I) > 4d(Z, B) =1, and therefore one at least of
the numbers b—a, c—d is greater than I/2. Suppose that 6—az=1/2.
We may also suppose that one of the corners of I, say thfz point (g, c),
belongs to Z — Q; for, otherwise, we might divide I into four, or
two, intervals so that their common corner should belong to B — @.

Now let J=1e,B; v, 6] be an arbitrary sub-interval of .I. As,
by assumption the point (a,c¢) does not belong to @, its ordinate ¢
certainly does not belong to the set P and, in view of (1.12), we have

: 40 Mn(d —
HL(8)— B < Ha0) — B0 1 Fal) — Bl < =)

for k=1,2,...,n. On the other hand, in virtue of (1.10)

lo? o (b—a)
|G(8) — Gu(@)| < g gnem S 10 Muim

Henee, for every interval J= (o, §; 7 8| C 1,

7)< |Gx(B) — Gul@)| - | Bal®) — B <

kw1 .

ot- (b —a) 40Mn(d—c)<omeas I

e . = .
STT40 Mnsm o m

Thus |F(I)| < 3 |@(I- )| <omeasZ, and so the condition (iv)
Reml .
is established. Further from (1.14), (1.18) and (1.8) we derive

VI o) = V(T B) < V(W3 8) < Y V(65 0,1) - V(H: 0, 1) <

fea1

<4}2‘f11gk<m>1 dw-flhk(w)ldw<4fjif(w,y)i ds dy

k=1 0
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which proves the condition (v). Finally, (vi) apparently follows from
(1.14) and (1.10).

2. Proof of Theorem B. Let ¢(x, ) be 5 measurable funetion
in the square S,==[0,1;0,1] and £<1 a positive number. Let
V= _gf |p(x,9)| dz dy. For the sequel we may clearly suppose

that 32e<{ V,. We shall define a non-decreasing sequence of closed
sets {Z,}, a sequence of mesurable sets {¢,} and a sequence of
continuous additive functions of intervals {F.(L)} s0 as to satisfy
the following conditions:

®,) meas (S, -~ K,) < .2. ”11;].;
(Py) meas ¢), << ;}H

: 1
®) D)< 7 Jor n>1 and every interval 1C 8, ;

®.) F.(1 )Q%?«I whenever n> 1 and I-( s —@,) = 0;

) vV, .
®)  VES)STR for a>1; V(i 8) < Vg

(Be) | JF@,0) — playy)| <et on Ly T y)=0 on B, Sor n>1;
Reml
®) [r J {:oocw, v+ glﬁ;*<w,y>i:dxdy<§§f%-

We proceed by induction. First, let K, be a closed set in A
such that p(,y) is continuous over Ey and that /s | die dy < e ifo/33;
Sy~ Ep

let 7, (1) :E.o[;ﬂp(x, y) dady. Since ¢ is bounded over L, we have

F¥(xy)=@(x,y) at almost every point ') (x,y)e H,. Let Z, be
a closed subset of B, such that F¥* (@, y) = p(z, y) ever ywhere
on E, and th“%ﬁél?’] dz dy << eV,/82. On putting @, =0, we see

at once that &, 7, (I) and Q,, as defined above, satisfy the conditions
(P,—P,) for n=1. '

1) See for instance Riesz, P, 5; Busomann u, Foller, 2, pp. 247—260;
Bake, 1. c. ), p. 282, For more general results sec Bosicoviteh 1; Ward, 7.
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Now let us suppose that E,, F,(I) and @, are defined and
satisfy these conditions for n <Cp — 1. Put

1

St ) = p(ay — 3 (= 9).

kel

In virtue of (P;) for n==p — 1 we have

V,
@.1) ff!fp(x, Yl drdy < %
So=Ep—y

Next, let o, <&?/2” be a positive number such that, for aﬁy
measurable set 4 in S,

p—1
v, .
2.2 ff{!w(x,y)! +2 | F¥ (e, y)i}dwdy< %,,T‘; if meas A <o,
A k=1

Let @,= @ be a set and F,=F an additive continuous
function, satisfying the conditions (i—vi) of Lemma 3 with 0=g,,
E=2E,, and f(z,y)=f,(»,y). So we have

23) J i@ —fmpl i<,

SZE,

and therefore the inequality

(24)

. |
Sty —o )= Ef e )=l <o <o

kel

holds everywhere on S,—E, ;, except at most on a subset of
measure less than g,. Let H, denote a closed subset of S, — E, ,
such that (2.4) holds on it everywhere and that

meas (S, — B, , — H,) < 0,.
Hence on putting £, = E, ;- H, we have
2.5) meas (S, — E,) < 0,.

We shall show that Z,, ¢, and F, satisfy the required con-
ditions (P,—P;) for n=p. Indeed, the condition (P;) is already
contained in (2.5). Next, for 0 =¢,, Q = Q,, f = £, the conditions (i),
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{vi) and (iv) of Lemma 3 include the conditions (P,), (Py) and (P
respectively, while from (v), on aceount of (2.1), there follows
Vi S <4 [ [ do dy <550

So—Ep_y

which is the condition (P;). Further, the equation ¥ (x, Y) =0
and the inequality (2.4) are everywhere satisfied over the sote K,
and H,=E,— E, , respectively; hence, as the relations (P,) héld
by assumption for n=p — 1, they are again true for n = == p. -
nally, by (2.5) and (2.2), we have

P~

(2.6) [j(p @, 9) + Y 17¥,y }dmdz/<:
S(;W-E

m

eV,
o i

whence, in virtue of (2.3) and o2 <C &4/2% < &V, /2. 82,
@7) ffﬁ do d ff <&V
SD_EI (@, 9)| dee dy < q_ﬂ!fp(wv Yl de dy + 0, < 55,5

By adding the inequalities (2.6) and (2.7) we obtain the relation (Py)
for n=p. '

Let us now put

(28) P(I)= D:.zﬂu)
Y@y =9@y) — ¥ I*xy), UU)=
) g ) (£) »/Ifzpdmdy,

B ()= F(1) + B

=35 J[ 30

k=1 . n=ml kmp

In virtue of (P;) the series (2.8 i i
wd by (B ha: ) (2.8) converges uniformly in §,,

@9 VIS)ISV@ s+ Y Vimis)< (145w
w2
On the other hand, it follows from (Py)
‘ ] o) and (P,) that almost
everywhere in §, the series ;2' B (@, y) converges and |u(a, DES
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Thus

(2.10) U< etmeasI whence V(U;S,)< Vo,

2
and in view of (2.9) we have V(@;S,)<< (1} ¢)- V,, which is the
relation (b) of Theorem B. Also from the uniform convergence of
the series (2.8) and from the first relation (2.10), it follows that
@ (I) is a continuous additive function of intervals.

It remains to prove that
(2.11) D*(z, y) = p(x,y) almost everywhere in S,.
For this purpose, let (2,y) be an arbitrary point in A. Since {E}
is & non-decreasing sequence, there exists a positive integer k, such
that for %>k, the point (@, y) belongs to any set E, while to no
set Q,. Therefore, in view of (P,), for every kZ>=k, and every
interval I which contains (z,y)

iF(I _VF I)I |2v

|meas] & meus I[

meas

passing to the limit as d(I )=>0 and k-—>oo, we receive thus

(212) F* (2, y) = 2 F¥oy)=ox.y) — v,y

n=l
for any point (z,y) in 4, and so, oo account of (P;) and (Py),
almost everywhere in S,. On the other hand, as ¥(#,y) is bounded
in S, (except perhaps on a set of measure zero), we have T*(z, y) ==
=1(x,y) almost everywhere!'); which together with (2 12) establishes
the relation (2.11) and completes the proof of Theorem B. ’

3. Remarks. To the theorem established in the preceding section
afew remarks may be added. It is easily seen that the function @(z,y)
subject to the conditions (a) and (b) of Theorem B may be defined
so as to satisfy some more conditions of regularity; e. g. it may be
supposed to be a sum of two functions @,(z,y) and Ps(z,y) of
which &, (x,5) is an indefinite integral of a bounded function,
and @, (z, y) has continuous partial derivatives of the first
order 12) 9®,/9x, dB,/dy everywhere in S, and those of the

13) 1t may be even supposed that &@,(x,y) has continuous partial derivatives

o* @2/9 :c", o @,/8 yk of all orders.
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second order §2®,/dx dy = 3*®D,/dy dx almost everywhere. Then
the function ®(z,y) almost everywhere possesses the derivatives
a0/9x and 9B)dy, as well the derivatives 9?P/dx dy, 9*P/dy dx,
with the restriction, however, that the. litter are to be understood
with respect to the set only on which 90/dx and 3B/dy exist;
g0 the condition (a) of Theorem B may be replaced by

20 20

(81) P*(x,y)= 95y = by dw = @(x,y) almost everywhere in S,.

We shall also observe that, given an arbitrary enumerable set N
in S,, the function @ may be so constructed that the relation
in (8.1) be satisfied, in particular, at every point of the wet1%) N.
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Uber die stetigen Abbildungen der Strecke.
Von

Stefan Mazurkiewicz (Warszawa).

Bezeichnungen. Sind @, b reelle Zahlen, so bezeichnen wir mit (a,d) das
offene, mit [#,5] dae abgeschlossene Intervall mit den Endpunkten b. Rk bezeichnet
den k-dimensionalen cartesischen Raum, o(P, Q) die Entfernung zweier Punkte P, Q
aus Rk Sind A und B zwei Punktmengen, so ist ¢(4,B) = inf o(P, @), wo Ped
und Qe B, 8(A) der Diameter der Punktmenge 4 (C R¥; ist AC Rk 1>0, 80
bezoichnet U(A, 1) die Menge aller Punkte Pe R%, die der Ungleichung o(P, 4)<{4
geniigen, C* bezeichnet die Menge der in [0, 1] definierten und stetigen Funktio-
nen f, die der Bedingung f(f) e R* geniigen, C#* wird durch die Formel: olfi )=
= Max o(f(£), g(t}); feC* geC¥ metrisiert. Wenn feCk 0e=<p8=<1, 6o ist

osrs1
/‘[a:_ﬂ_l die Menge der Punte f() mit {efe,f). Wenn Pef[0,1) @ef[0,1], so
bezeichnet o( P, @) die relative Entfernung von P und ¢ in Bezug aaf 710,11 9.

H. Jarnik hat folgenden Satz bewiesen ®):

Es gibt in C* eine Residualmenge W2, so dass jedes feW* fol-
gende Eigenschaft besitzt: ist 0 = a << B=1, so ist jeder Punkt der
Kurve fla, B| éin irregulirer Punkt dieser Kurve.

H. Knaster hat mir die Vermutung mitgeteilt, dass folgender
Satz richtig ist.
Satz. Es gibt in C? eine Residualmenge W*, so dass fir feW*

die Kurve f[0, 1] mit der Universalkurve von Sierpinhiski homdo-
morph ist.

1) Fand. Math. 1, p, 167—169. ‘
%) Jarnik, Monatsh. f. Math. Phys, 41, p. 408--423, insb. p. 408, Satz B, 2

und p. 417—428.
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