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spater seben (im Satze 38), dass die Antwort positiv ist, falls es
nur iiberhaupt nichtaxiomatisierbare Systeme gibt, d. i. falls die
Klasse & unendlich ist; andrerseits wird sich zeigen, dass es unter
derselben Voraussetzung auch nichtkonvergente Systeme gibt. Wir
haben also drei Klassen von Systemen: (1) axiomatisierbare Systeme,
die einzelnen Aussagen zugeordnet sind; (2) nichtaxiomatisierbare
konvergente Systeme, die konvergenten unendlichen Folgen von
(in strengem Sinne) wachsenden Aussagen enteprechen, und endlich
(8) divergente Systeme, die unendlichen divergenten Folgen ent-
sprechen. Die Systeme der ersten beiden Klassen haben im allgemeinen
einander dhnliche Eigenschaften; einer der wesentlichen Unter-
schiede besteht darin, dass kein System der zweiten Klasse den
Satz von der doppelten Negation erfullt.
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Non-separable metric spaces.
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Separability is a property which greatly facilitates work in
metric spaces, but it may be of some interest to point out that this
property has beon unnecessarily assumed in the proofs of certain
theorems concerning such spaces and concerning functions defined
on them. In particular it may be shown that if a subset of an ar-
bitrary metric space is analytic at each of its points, it is an ana-
lytic set in the space. This problem was mentioned recently by
Sierpinski in his discussion of locally separable spaces?), It is
known that a function f(x,y) continuous in x and of class @ in
y is of class @~ 1 in (x,y) under certain restrictions on the spa-
ces in question. Kuratowski? has asked whether or not this
theorem remains true when # and y range over non-separable metric
spaces. It is shown in this note that the theorem does remain true
in this case. The proofs rest on simple lemmas which for some
purposes repluce the classical theorem, true only in separable spaces,
that a decreasing series of closed or open sets is enumerable.

1. The fundamental space to be considered here will be denoted
by M; it is subjeet to no conditions except that it be metric unless
otherwise specified.

Lemma 1. If
() 0% O%..., 0% 0¥,

#) National Research Iellow.

1Y) Fundamenta Mathematicas, Vol. 21 (1988) p. 112, problem of Banach.

) Kuarntowski, Topologie I' (Monografje Matematyezne t. III, Warszawa~
Liwéw, 1938) p. 181 (footnote).
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is a well ordered family of increasing open seis and O"-—w% 0# con-
u<
tains (for each A) a closed set E*, then H= f’ E* is an F,.

Let E} be all points of Z* whose distances from M — 04 are
<{Y,. The set B} is closed. The set £,= 3 E} is also closed
A

a fact which may be shown in the following manner.
Suppose

)  Puy Paaees

is a sequence of points which are in E, and suppose the sequence
converges to a point p not in ,. At most a finite number of points
of (2) can be in a given K} for if there were an infinite number
this infinite subset of (2) would converge to p and E? would not
be closed. Therefore, for every m there is a k>m such that p,
and p, are not in the same set K2 But if A== u the distance be-
tween the sets £ and Ef is at least !/,. Hencel) d(p,, p) ==Y,
and it has been shown that there are pairs of points indefinitely
far along in the sequence (2) which are at a distance at least 1/,
from each other. The sequence (2) can not be convergent and from
this contradiction it follows that £, is closed. It is clear that
H=ZZ'E"=2E,, and therefore H is an F,.

Lemma 2. If the sequence (1) is such that for every A, 0*— 3 Ow
u<i
contains a set E* which is a @, (F (@>0), then H= 3 E?* is o
2

u( Ct) )'

The proof will first be given for the case in which every E*
is an F;. An F, is the sum of an enumerable number of closed
sets, so that for each 1, Z*=—= 3 F? where E? is closed. The set

n

E,,::%'E,f' is an F; by lemma 1, and since H==3E*=23IE,,
n

p
H is also an F;. The proof is thus completed for this case.
Consider next the case where each £4 is a G,. Let A%=

== 04 — ﬁ O#— E* The set A* is an F, and from what has already
&

) The rymbol d(x,y) denotes the distance from & to 9.

%) The classification of Borel sets used here is the one given by Kuratowski
loc, cit. p. 160. See also Hausdorff, Mengeniehre, p. 178. An F, is a closed set,
an F, is an Fy an F, is an Fyy, 2 G, is an open set, a Gy is a Gy and so on.
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been proved X A* is an Fy. Since H =3 K*== 02— J A% H is
) P a

P

a G,. This concludes the proof in case ¢ ==1. The remainder of
the proof is by transfinite induction and is so entirely analogous
to the case already considered that details need not be given.

The lemma obviously remains true when & =0 for the G's
but simple examples show that it is not true for the F}s.

A set is said to be additive (multiplicative) of class
(a> 0) if it is the sum (product) of an enumerable number of sets
of class less than «. When o =0, the open and closed sets sre
additive and multiplicative of class « (For these definitions see
Kuratowski loe. eit. p. 160). As a corollary to the preceding
lemma, there is the following.

Corollary. If the sequence (1) is such that for each A, OF— 3 O

u#<i
contains a set B* which is additive (multiplicative) of class o (&> 0)

then the set H == 3 E'* ig additive (multiplicative) of class a.
A
The proof can be made by methods already used.
Lenwvma 3. If the sequence (1) is such that for every A, 0*— 3 0w
<A
contains a set B* which is analytic, then H==3 E* is analytic.
)
From the definition of analytic sets,
W= 3 Fh Bl ..
()

where the summation is extended over all sequences of integers

and where ¥, , is a closed set for every finite set of mtegers
Define the set F,,,.,, as follows:

1 J_— A . —_—
I{n,u....nk""“ 2, [Eqn,...nk OZ 2 0‘“]‘
A

pu<i
From lemma 1 each of the sets defined in this manner is an F,.
It can be verified that

H— Vuz 2’""1 P+

(g g e,

and therefore H is analytxc 1),

) Hausdorff, loc, cit. p, 92. Of. W, Sierpifiski Introduction to General
Topology, Toronto 1984, p. 141—142.
Fandamenta Mathematicae. I XXV, 84
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2. A set £ is said to be locally o G, (F,) at a point p if there
is some open set including p in which K is a &, (F,). A similar
definition applies to the property of being analytic or the complement
of an analytic set. In these various cases p is said to be a G, (F.)
point of E, to be an analytic point of E and so on.

Theorem 1. If every point of E is a Gy (F,) (@ > 0), point
of B, then E is a G, (Fy).

Consider first the #, case and well order all points of E in
the sequence (3):

(3) Prs Doy

About p, there is an open set O such that £. O! is an F,, Let
E.0'=F" and let p, be the first point of (3) not in O
About p,, there is an open set O* such that K. 0% is an F,. Let
Ei=E. 0'— 0. Suppose that there has been chosen an open
set O# for all w<'4, and let p,, be the first point of (3) not
in E O¥. About p,, choose an open set O* such that E- 0% is an F,,

9 Pay Patrs---

and let E4=F.(0* — 3 0¢. Continue in this manner until the

<
points of (3) have been’4 exhausted. Kach of the sets Z* is an F,
and lemma 2 may be applied. The increasing series of open sets
required by that lemma is here the sels O} = 01, 0% = 0* -} O,
04 =2 0~ Tt follows from the lemma, (since Z = EE“), that £

WA
is an F,. The proof for the G, case is exactly the same

Theorem 2. If every point of E is an analylic point of E,
then E is an analytic set.

This is proved from lemma 3 in exactly the same manner as
the preceding theorem is proved from lemma 2.

A lemma similar to lemma 3 may be proved for sets which are
cbmplements of apalytic sets and from it one may conclude that
if E is a complement of an analytic set at each of its points, then
it s a complement of an analytic set.

3. Assume now that X, ¥, Z, are metric spaces subject to no
further restrictions and assume that f(z,y) is defined on the product
space ) X X Y and that the values of f(z,3) are in the space Z.

1) Kuratowski, loc. c1t p. 87.
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Theorem. 3. Ij /(x, y) 8 continuous in x and of class @ in y,
i is of class a1 in (x,y).

Kuratowski (loc. cit. p. 181) has already considered the case
where @ ==0, so that the proof will be given for the case where
a>>0. Let (4) be a well ordered series of the points of X
4) Ty, dgy..
For n fixed choose about 2, an open set 0. of diameter less than ..
Let o be the first point of (4) not in OL. Continue in this manner
until all points of X are covered and suppose this covering made
for every 7. In order to prove the theorem it is necessary to show
that all points (x,y), such that f(x,y) is in a set F' closed. in Z,
form a set which is multiplicative of elass a 1. Let 7* be all
points of Z whose distances from [ are <C1/,, and let K* be the set of
all points (%,y) such that f(x,y) is in I*. Also let ("2 X ¥)- Kk= 4zt

II’

This set is additive of class a. Let B7* be the set of all points (z, y)

such that z is in O} — 3 Off and such that y is in the projection
u<a

on ¥ of A4%. The set .B"“ ig also additive of class a. Since B is
in (0} X Y)— (27 ol X Y) and sinece 04 X Y is an open set, the

corollary to lemma 2 may be applied, where the open sets required
by the corollary are sums of the sets 0% It follows that Z’ Bt is
additive of class a. Let B""==Z'B’"‘ If (x,y) is in B then there

is an @2 such that the distance. from @4 to  is less than !/, and
such that (%2, y) is in K* Let

B ~—-(B"‘—-}—-B”‘—{-,B*”’—{—...)~(B”+Ba"—-{—-...)....
If (z,y) is in B* there is some point ! whose distance from = is
arbitrarily small and which is such that (#%,y) is in K* That is
if (% y) is in B% (w,y) is either in K* or else there is a sequence
of #'s converging to x such.that (z',y) is in K*. Because of the
continuity of f(#,y) in x, (X X y).K* is open in (X Xy) for
every y, so that if (#,y) is in K* there is for every N an n >N
and a 4 such that (%42, ) is in K* and 2 is in O}. Hence whenever
(,) is in K* it is in B, and therefore in B". Siuce this is true
for infinitely many #'s, (v, y) must also be in B* This proves that
K*C B, and it follows that II K*Cﬂ B* The converse relatlon

of inclugion will now be demonstrated

vy Xgy Bpygyes

84
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Suppose (a,0) is in B% Let a;, be a sequence of points in X
approaching a and such that f(a;, ) is io J* That such a sequence
exists was shown above. From the continvity of f(z,%) in x one
concludes that f{a,0) is in F% so that if (4,0) is in B* for all k,
fla,b) is in F* for all k. Therefore f(a,b) is in K and it has been
demonstrated that II K* ) II B% From the two inequalilies one

k k

copcludes that IT K* = IT B* But if (2,y) is in IkIK", Sflx,y) isin F
k k
and conversely, Therefore II K*= II B* is the set whose nature
k k

concerns us. The set B"* bas been shown to be additive of class e,
and by definition B* is multiplicative of class « - 1. Therefore

IT B* is also multiplicative of the same clags, and it follows that
k

f(® ) is of class ¢ 1. This completes the proof.

Assume now that f(w) is a function defined on the space X and
having values in the space Y. The set of all points (z, f(x)) in XX Y
is called the image of f(x) and is denoted by I In case Y is
separable and f(z) is of class @ it is known (Kuratowski loc.
cit. p. 183) that I is multiplicative of class @. The same result is
true when Y is non-separable, as will now be shown.

Theorem 4. If f(x) is of class a, I is multiplicative of class a.

As the theorem is obviously true in case @& =0, it will now he
assumed that @>0. Let (5) be a well ordered series of the points of ¥°

®) ' Yis Yoyooos Yoy Yotay---

Let G; be the open sphere of center y, and radius !/,, and let £% be

the set of points # in X such that f(z) is in G}. The set E% is

multiplicative of class . Let Hj=[Ej X (G4 — 3 )] and let
nw<i

0;=X X 2@, Thesets 0} are increasing with 4 and are open.

<A

For each 4, H;C 0; — 3 0., so that the corollary to lemma 2
u<a
may be applied. From this corollary it follows that H* — 3 H 4 is
A

maultiplicative of class a; this is because Hj as the product of two
sets each of which is multiplicative of class a is itself multiplicative
of class @. The set I is in H” In order to show this let (ay b) be
any point of I. Let 4 be the first ordinal such that G contains b.
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Then G4 — 2 64, must also contain b and by definition (4, b) must
u<a

be in HZ, and therefore in I7”. Therefore (a,b) is in ITH" and
it follows that [ II H*. 1t will now be shown that oOAE"C1
Let (c,d) be any point in I7 H" Then for every » the distance

from (¢, d) to (¢, f(¢)) is <</, Hence d= f(c) and (¢, d) is in I
It has now been shown that f= /7 A" Since H" is multiplicative

n
of class a it follows that I is the same., The theorem is thus seen
to be true.

4. A set I/ is said to be developable if it can be written in
the form
(6) ,1’1""-7—""-,1/‘1 - F2 "'l“‘..."l".[’:%""".l’}_*_l—l—'.-.

where the termy of the series are closed and deereasing, and where I,
is assumed to be positive if 4 iv a limit ordinal. Kuratowski
(p. 112) shows that & developable set in a separable space is both
an F, and a G This fact remains true when the space is arbitrary.
In order to show this it may be assumed that the last term of (6)
in case a last term exists, is negative for if there is a last term
and it is positive another term which is the null set may be added
and given a negative sign. Let 8, 8, 8,... be the indices of the
positive terms in (6) written in inereasing order. Let O, be the

complement of Fﬂ,q;l'l and let If'ﬂ";‘ == ‘If"m O, — 57.0‘9/" To this series
of sets lemma 2 may be applied and it follows that 2., which
2

is equal to K, is an F,. Since the complement of K is developable,
CE must also be an /), and therefore E is a G,.

Therefore in complete metric spaces sets which are F)s and Gy's
coincide with developable sets (See Kuratowski loe. cit. p. 207).
It now follows that a function f(x) which is pointwise discontinuous
on every closed set is & function of class 1, because the proof given
by Kuratowski (loe. cit. p. 190) is now valid for the more
general case,

The following question is an interesting one: If f(x) is of
class 1 (as defined by Kuratowski) on an arbitrary complete
metric space and bhas values in an arbitrary metric space, must it
have points of continuity? I was unable to answer this question.
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