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séries qui sont données seulement & titre d’exemple, car la variété
des possibilités est considérable. Tl y a un trds vaste champ de
recherches & explorer. ‘

Signalons enfin, pour mémoire, 'étude des cas ol la croissance
des fonctions considérées ne serait pas régulidre, c'est-d-dire en
relation simple avee la fonetion exponentielle.

Les ensembles définis par les intervalles fondamentaux normaux
rattachés 4 des ensembles énumérables classiques sont assurément
fort particuliers; ils donnent toutefois des exemples en fait fort
généraux et permettent d’étudier trés complétement la classification
des ensembles de mesure nulle. Je souhaite que les bréves indieations
qui précédent encouragent & poursuivre cette étude ceux qui #'in-
téressent & la théorie des ensembles.

A set of axioms for plane analysis situs.
By
R. L. Moore (Austin).

As far as I know, Veblen was the first to conceive the idea
of basing geometry on a set of axioms in terms of what he called
pchunks® (of space). He had this idea as early as 1905 and discussed
it with me at that time. In 1913 Huntington published a paper?)
in which he founded geometry on a set of postulates in terms of
nSphere® and ,inclusion“; and Whitehead and Nicod have given
some thought to related questions.

Huntington makes much use of what may be termed the
convexity of his undefined spatial elements. It is natural that he
should do so in founding a geometry. The notion of the convexity
of these elements is intimately 3) related to the mnotion straight line
which is one of the fundamental elements of geometry.

For many years I have endeavored to found point-set theoretic
analysis situs on the basis of a set of axioms in terms of the notion
of what I shall call ,piece“ and the relation ,embedded in“. In so
far as I was endeavoring to found analysis situs, as opposed to
geometry, 1 would naturally avoid postulating that these pieces be
convex, the notions convexity and colinearity being foreign to ana-
lysis situs. In April, 1930, I delivered 3), at The University of Texas,
a set of five lectures in which I dealt with a set of Axioms in

1) A set of postulates for abstract geometry, expressed in terms of the simple
relation of inclusion, Math. Ann., Bd. LXXILI, 522—b59.

1) In order that three given points of a Euclidean space should be colinear
it is necessary and sufficient that they may be lettered 4, B and C in such a way
that 5 is contained in every convex region that contains both 4 and C.

3 As Universify of Texas research lecturer for the session 1929—1930.
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terms of piece and embedded in. On November 18, 1931, at a mee-
ting of the American Mathematical Society at Pasadens, Oalifornia,
I delivered an address dealing with the same set of axioms except,
possibly, for more or less minor modifications. This set included
a set?) of axioms which (except possibly for minor considerations)
was identical with the set consisting of Axioms 2, 8, 4 and D and
that portion of Axiom 1, of the present paper, which remains on
the removal of the statement numbered (6). To these were added
additional axioms limiting space to being topologically equivalent
either to the plane or to a sphere. I was, however, not well satisfied
with some of these additional axioms and it is only recently that I
have obtained the formulations given below of Axioms 7 and 8 and
the proposition labelled (6) in the statement of Axiom 1. In con-
nection with Axiom 8, I am much indebted to Kuratowskis
paper ,Une caractérisation topologique de la surface de la sphére® #).
This axiom is formulated in such a way as to enable me to prove
Theorem 4 of Section IIT by an argument closely related to that
given by Kuratowski, on pages 311 and 312 of his paper, to
prove the proposition that &, — J.

The set of Axioms 1—8 is satisfied if, speaking roughly, the
word ,piece” is interpreted to mean any limited piece (in the ordi-
nary ®) sense) of the plane and the word ,embedded* is interpreted
in a natural manner. In such an interpretation, a piece of a plane
is not regarded as a set of points. '

Speaking accurately, if S is a plane, Axioms 1—8 are satistied
if the word ,piece“ is interpreted to mean any 4) connected and
limited domain in S (regardless of what sort of boundary it has)
and the piece « is said to be embedded in the piece y if, and only
if, y contains x together with its boundary.

If a space satisfies Axioms 1—8 and the terms point and limit
point are defined as described in this paper then the set of all

1) Every space satisfying these axioms is topologically equivalent to & connected,
locally connected and complete metric space having no cut point,

%) Fund. Math, XIII, 1929, pp. 307—818.

3) It would seem to be accordance with ordinary usage to refrain fromn applying
the term ,piece of space¥ to a point or a straight line or anything else which
has no interior,

4). These axioms are also satisfied if, for example, the word ,piece* is vestricta!

to those limited and connected domains of the plane whose boundaries are inde-
composable continua.
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points is topologically equivalent either to a plane or to the surface
of a sphere,

Notation. For each i less than 8, the notation Axiom 1, will be
used to dencte the axiom obtained by retaining only that part of
the statement of Axiom 1 remaining after the deletion of the phra-
ses numbered from (1) to (7) inclusive that occur in.its formu-
lation.

L. Consequences of Axioms 1,, 2 and 3.

Definitions. The piece x is said to embed the piece y if y is
embedded in . The piece z is said to énfersect the piece y if there
exists a piece which is embedded both in x and in y. The piece =
is said to be defached from the piece y if one of the pieces x and y
is embedded in a piece that does not intersect the other one. Under
these conditions  and y are also said to be mutually detached (and
the word ,mutually® may sometimes be omitted). If G and H are
finite sets of pieces, G is said to be defached from H (and G and H
are said to be mutually detached), if every piece of the set G is
detached from every piece of the set H. A set of pieces is said to
be coherent if it is mot the sum of two sets such that no piece of
one of these sets intersects any piece of the other one. The set W
of pieces is said to separate the piece h from the piece % if every
coherent set of pieces that contains 4 and %k contains a piece that
intersects some of piece of W.

Awiom 1. There exists a sequence Gy, Gy, Gy,... such that

(1) for each n, G, is a set of pieces,

(2) for each n, G, is a subset of G, ‘

(8) if g is a piece then, for each n, there is a piece belonging
to G, and embedded in g,

(4) if the piece k is embedded in the piece h there exists a num~
ber m such that every piece that belongs to G, and intersects k is
embedded in h,

(6) if g is a piece and n is a natural number the set of all pieces
of the set G, that are embedded in g is coherent,

(6) if g is a piece and n is a natural number there exist a na-
tural number m and a finite subset H, of G, such that if x is a piece
of the set G, which intersects g without being embedded in it then x
is embedded in some piece of the set H,, :
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(7) the statement labelled (6) remains true if the phrase ,without
being embedded in it* is omitled.

Aaiom 2. If the piece g is embedded in the piece h and h is
embedded in the piece k then g is embedded in k.

Aaiom 3. 1f the piece g is embedded in the piece h then h is
not embedded in g.

Definition. If ¢,, g5, 95,... is a sequence of pieces such that,
for each %, g, belongs to G, and g, is embedded in g,, then the
set of all pieces # sucl that some piece of this sequence is embedded
in z is called a point and the sequence ¢, g, s,.., i8 said to
determine this point.

Definition. The point O is said to pertain to the piece g if some
piece of the set 0 is embedded in g. In other words, 0 is said to
pertain to g if ¢ belongs to 0,

Theorem 1. If W is a point and o is a sequence hy, hy, hg,...
such that, for each n, h, belongs both to W and to G, and h,, is
embedded in h, then o determines W.

Proof. Let § denote a sequence of pieces g,, gy, gs, .. which

determines W. Let x denote a piece of the set W. There exists a
number # such that g, is embedded in 2. There exists a number &
such that every piece of G that intersects g, is embedded in .
But /s belongs to W and therefore intersects 4,. Hence 4, is em-
bedded in x. Thus every piece of the set W embeds some piece of
the sequence a. Suppose y is a piece that embeds some piece 4,
of a. Since h, belongs to W it embeds some piece g, of 8 and
therefore y embeds g, and consequently belongs to W. Thus W is
the set of all pieces w such that w embeds some piece of the se-
quence . It follows that o determines W.

Theorem 2. If A and B are distinct points, not every piece
belonging to A intersects every one that belongs to B. :

Proof. Let o and 8 denote sequences gy, gy, g3, 80d hy, hg, Ay,
determining A and B respectively and therefore such that, for
each n, g, and h, belong to G,. Since A and B are distinet either
there is a piece which embeds some piece of & but which embeds
0o piece of § or there is a piece which embeds some piece of §
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but no piece of @ Suppose there is a piece & which embeds g,
but no piece of §. There exists a number # such that % embeds
every piece of the set G, that intersects g,. The piece k4, does
not intersect g, .

Theorem 3. If the point O pertains both to the piece x and
to the picce y then some piece of the sev 0 is embedded both in x and in y.

Proof. Let gy, gs, gs:-.. denote a sequence of pieces that deter-
mines 0. There exist numbers m and » such that g, and g, are
embedded in # and y respectively. The piece g,., belongs to 0
and is embedded both in z and in y.

Theorem 4. If P, Py, Py,..., P, is a finite set of distinct
points there exigts a set of n mubually detached pieces xy, 2,,..., @
such that, for each Fk less than or equal to n, P, pertwins to .

n

Proof. If 4 and j are any two natural numbers less than or
equal to » and such that ¢ <Cj then, by Theorem 2, there exist
two non-intersecting pieces z,;, and y,; belonging to F, and 7
respectively. By Theorem 3 and Axiom 2, for every % not greater
than » there exists a piece z, belonging to P, and embedded in
all the 7 — 1 PIECes ¥ 4y Yskrer s Yetps Lrrtrs Ltz s Lone Lhe
pieces @), &y, &3,..., %, are mutually detached.

Theorem 5. If A and B are distinct points pertaining to the
piece p, there exist two non-intersecting pieces both embedded in p
and belonging to the sets A and B respectively.

Proof Let & and § denote sequences g, gs. gg,.. and Ay, fog, By,
that determine A and B respectively. By hypothesis there exist two
numbers m, and m, such that g, and k, are both embedded in p,
By Theorem 2 there exist two non-intersecting pieces = and y
belonging to A and B respectively. There exist numbers m, and n,
such that g,, and h,, are embedded in # and y respectively. The
pieces @,.m, and h,,, are non-intersecting and they are both
embedded in p.

Theorvem 6. If r is a piece there is at least ome point per-
taining to r.

Proof. By Axiom 1y there exist a piece g, belonging to Gy
and embedded in 7, a piece g, /_J?‘t?'le‘&ging to G, and embedded

ffundamenta Mathematicae, t. XXV, 2
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in g, and so on. It follows that there exists a sequence gy, o, Jaye--
such that g, is embedded in » and, for each n, g, be.longs to (?L,‘,
and g, is embedded in g,. This sequence determines a point
pertaining to r.

Definition. If » is a piece, the set of all points that pertain
to # is called a region.

Convention. If a certain letter is used to denote a piece, the
same letter primed will be used to denote the region consisting of
all the points that pertain to that piece and if a lefler is used to
denote a set of pieces then that letter primed will be used to denote
the set of all regions «’ such that, for some piece x of that set of
pieces, ' is the set of all points that pertain to .

Theorem 'i. If the piece q is embedded in the picce r then the
region ¢ is a subset of the region r'.

Theorem 8. If A and B are distinct points there exist tiwo

regions containing A and B respectively and having no poin in common.

Theorem 8 may be proved with the aid of Theorem 2.

Theorem 9. If q and r are pieces and the regions ¢’ and »’

have a point O in common there exists a piece & such that the region k'
contains O and is a subset both of ¢ and of r' and such that,
furthermore, the piece k is embedded both in q and in r.

Theorem 9 may be proved with the help of Theorem 3.

Theorem 10. If A and B are distinet points of the region I
there exist two mutually exclusive regions both subsets of It and one
containing A and the other containing B.

Theorem 10 may be proved with the aid of Theorem b.

Definition. The point P is said to be a limit point of the point
set M/ if, and only if, every region that contains P contains a point
of M distinct from P.

Definition. The point P is said to be a boundary point of the
point set M if every region that contains P contains both a point
of M and a point not belonging to 2. The point set consisting of
all the boundary points of M is called the boundary of M.

Notation. If M is a point set the potation M will be used to
denote the point set consisting of I together with its boundary.
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Theovem 11. If the piece ¢ is embedded i . _
is a subset of p’. g . ed in the piece p then g

_ PJ:"0.0 f. By Theorem 7, ¢ is a subset of p’. Suppose now that X
Is a limit point of ¢’. Suppose r is a piece to which X pertains
Then the region » contains a point belonging to ¢’. Hence, b :
Theo‘rem 9, there exists a piece # which is embedded both :in ?
fmd In ¢. Thus g intersects every piece to which X pertains. Hence
if 915 92 gs,--- 18 a sequence of pieces which determines X there
exists a number » such that g, is embedded in p. Hence 7X be-
longs to p’.

Definition. Two point sets are said to infersect if they have at
least one point in common.

.Deﬁnil’[;ion. The region R will be said to be embedded in the
region K if, and only if, there exist two pieces x and y such that =
is embedded in y and such that 2'=—R and y =K.

Notation. The set of all points will be denoted by the letter S.

Theorem 12. There exists a sequence @y, Qgy Qs. ... such that

(1) for each n, Q, is a collection of regions covering 8,

(2) for each n, Q.. is a subcollection of Qs

(8) if X s a point of a region R there exists a number m such
that if @ and y are intersecting regions of the collection Q,, and x
contains X then y is a subset of R,

(4) of My, M,, My,... is a sequence of closed point sets such that,
for each n, M, contains Moy and, for each n, there exists o region g,
of the collection @, such that M, is a subset of 9., then there is at
least one point common to all the point sets of the sequencé iy, M,,...

Proof Let Q, denote the set of all regions x of G such that =
is embedded in some region of G. Let @, denote the set of all
regions # of G5 such that z is embedded in some region of Q,.
This process may be continued. Thus there exists a sequence
015 Qs, Qy,... such that ¢, is as described and, for each n, @rta
is the set of all regions 2 of (1o such that  is embedded in some
region of Q,. For each n, the collection Q.41 covers S and is a sub-
collection of @,.

Suppose X is a point of a region B. There exists a piece K
such that K'=R. Let t,, t,, f;,... denote a sequence of pieces that

2%
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determines X. There exists a number & such that ¢, is embedd?d
in the piece K. The piece #,., is embedded in tk..Hence there emf;t
numbers %, and n, such that ¢, embeds every piece of. the set ¢/,
that intersects £, and K embeds every piece of ()Z,.,, that }nt@rsec‘ta b
Let m denote n; -+ m,. If p and ¢ are intersectmg pieces ‘ot the
set @, and X pertains to p then ¢ is embedded in {f It ‘k(/)llows
that if p/. and ¢’ are intersecting regions of the set &, and p con-
tains X then g’ is a subset of K’. But, for every #, thta set (,}.,,, is
a subset of &,. It follows that if # and y are intersecting regions
of @, and z contains X then 7 is a subset of R.
Suppose ¢y, ¢a, gs,... i8 & sequence of regions such that, for
~each n, ¢, belongs to @, and such that if ¢ and j. are any two
natural numbers then g, and ¢, have at least one point in common.
The region ¢, is embedded in some region g, belonging to (f].
There exists a number #, snch that g, embeds every region of G,
that intersects ¢,. The region ¢, intersects ¢, and is embedded in
some region ¢, of Gf,. The region g, is embedded in g,. There
exists a number », such that g, embeds every region of ¢, that
intersects g,,. The region g, intersects ¢, and is embedded in some
region g, of G,. The region g, is embedded in g,. This process
may be continued, Thus there exist an ascending sequence of natural
numbers 7, 7y, fg,... and a 8eQUENES Gy, i Jny- .- Of regions such
‘that, for each 4, (1) g,, belongs to G, and (2) 9y, 804 g, are both
embedded in g,. There exists one, and only one, point P common
to all the regions g,, gu, s, ... Suppose m is a number and R is
a region containing P. There exists a number k¥ such that g, is
a subset of E. The region ¢,, is a subset of 9n, 8nd therefore of k.
But g, has a point in common with ¢,,. Hence R contains a point
of g,,. Thus, for every m, P belongs to g,.

Suppose now that M, M;, My, ... is a sequence of closed point
sets such that, for each n, M, contains M,,; and, for each m, there
exists a region g, of the set ¢, such that M, is a subset of s
For each n, there exist regions g, and k, belonging to ¢, and
such that g,,, is a subset of g, and g, is a subset of k,. There
exists a point P common to all the point sets g, gy, 7y,... and
therefore to all the regions &y, &y, hy,... Suppose there exists a num-
ber % such that P does not belong to M. Then there exists a region &
containing P but no point of M,. There exists a number m such
that B embeds every region of ), that contains P. But h,, belongs
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to @, and contains P. Therefore %, is a subset of B. But Gmsa
is a subset of A,. Therefore gmys COntaing uwo point of A7,. Thus
the supposition that 2 does not belong to all the point sets of the
sequence M,, M,, M,,... has led to a contradiction.

The truth of Theorem 12 has now been established.

With the aid of Theorems 10 and 12 it easily follows that
Axiom 1 of my book Foundations of Point Set Theory 1) holds true
here. Furthermore space is metric. To see this proceed exactly as
in the proof of Theorem 26 of Chapter VII of this book, except
for the substitution of the words ‘wTheorem 12 of the present paper#
in place of the words ,Theorem 74 of Chapter I, as being satisfied
with respect to M“. In this proof no use is made of anything in
Theorem 74 beyond the result stated under (3) in the formulation

"of Theorem 12 of the present paper.

II. Comnsequences of Axioms 15, 2 and 3.

Definition. If / and k are pieces, a simple chuin from h to k&
is a finite sequence of pieces ky, hy, k.. .., h, such that hy=h and
h,=1F% and such that if l=i=n 1=j=n and i<j then %,
intersects %, if, and only if, j=1i-+ 1. The piece A (1< k=<n)
is said to be the k#h link of the chain Ry, hyy by, b

e

Theorem 1. If h and k are two picces belonging to the coherent
collection W there is a simple chain from h to k such that every link
of this chain is a piece belonging to W.

Proof. Suppose there is no such simple chain. Let W, denote
the set of all pieces  of the set W such that there is a simple
chain, from % to'z, whose links all belong to W5 and let W, denote
the set W — W,. Since W is coherent there exists a piece y,
belonging to W, and intersecting some piece y, of the set W,.
There exists a simple chain Ay, hy, ..., h, whose links all belong
to W and whose first and last links are & and y, respectively.
If %, is the first link of this chain which intersects ¥, then
By by, by, ..\ by, y, is a simple chain from A to ¥,. But this involves
a contradiction.

1) American Mathematical Society Colloguium Publications, volume XIII, New
York, 1932. Hereafter, in this paper, this book will be referred to as Point
Set Theory.
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Theovem 2. If, for ecach n, H, is a finite set of pieces and,
for each n, cach piece of the set H,iy is embedded in some picee of

the set H,, then there ewists a sequence of pieces hy, by, hy,... such

that, for each n, h, belongs to H, and h,y, is embedded in h,.

Theorem 2 may be proved by an argument closely analogous
to that employed to establish Theorem 78 of Chapter I of Point

Set Theory.

Notation. If a letter is used to denote a collection of point sots,
then that letter with an asterisk as a suffix will be used to denote
the sum of all the point sets of this collection.

Theorem 3. If H, Hy, Hy,.. is a sequence such that, for each

(1) H, is a finite subset of G, and

(2) each piece that belongs to H,yy is embedded in some picce that
belongs to H,;

then there exists at least one point common to all the point sets
H*, Hy*, Hy*,... and K, the set of all their common points, is
a compact closed point set and if, for each n, P, is a point of H,*
some subsequence of the scquence Py, Py, Py,... converges to a point of K.

Theorem 3 may be proved by an argument involving reasoning
closely related to that employed in portions of the proof of Theorer 79
in Chapter I of Point Set Theory.

- Theovem 4. If D is o point set and H is a coherent set of

regions and some region of the set H contains a point of D and
some region of H contains o point of 8— D, then there exists
a region of D which contains both a point of D and a point of §—D.

Proof. Suppose, on the contrary, that A is the sum of two
collections H, and H, such that no region of H, contains a point
of §— D and no region of H, contains a point of D. Then no
region of H; intersecls auy region of H, contrary to the hypothesis
that H is coherent.

Theorem 5. If, under the same hypothesis as in Theorem 3,
each set of the sequence Hy, H,, Hy.... is coherent then the COMmMon
part of the point sets Hy*, Hy*, Hy*, ... is connected.

Proof TLet K denote the common part of these point sets,
Suppose K is not a continuum. Then, since by Theorem 3, K is
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closed and compaet, it is the sum of two mutunally exclusive closed
and compact point sets 7" and L. There exists a domain I) containing 7'
and such that D contains no point of L. For each n, H,is a coherent
set of regions and some region of H, coutains a point of D and
some region of H, contains a point of § — D. Therefore, by The-
orem 4, for each z, some region of H. contains both a point of D
and a puint not belonging to D. For each n, let W, denote the set
of all those that do so. Then, for each n, W, is a finite subset
of @, and, for each n, each region of W,y is embedded in
some region of W,. It follows, with the help of Theorem 2, that
there is a point P common to all the point sets of the sequence
Wi, Wy, Wi¥,... The point P belongs to D —D and therefore
neither to 7" nor to L. But it belongs to K. Thus the supposition
that K is not a continuum leads to a contradietion.

Theorem 6. Every region is arcwise connected,

With the help of Theorems 1, 2, 3 and 5, Theorem 6 may be
proved by an argument closely analogous to that used to prove
Theorem 1 in Chapter II, with the aid of Theorems 71, 18, 79
and 80 of Chapter II, of Point Set Theory.

It is clear that Axioms 1 and 2 of Point Set Theory are con-
sequences of Theorems 10 and 12 of Section.I, and Theorem 6
of this Section, of the present paper. Therefore from Axioms 15, 2
and 3 of this paper follow all the numbered theorems of Chapters I
and II of Point Set Theory except, of course, in those eases where
such theorems are not?) properly stated.

1) In Chapter I write ,completely" before ,separable’ in the statement of
Theorem 72.

In Chapter II, in the statement of Theorem 25, in line 4 from the bottom
of the page, replace ,every" by if 7' is a“and, in line 3 from the bottom, write
pthen T after (M —L-M)* In Theorem 86, after ,I1f* write »S is connected,“.
In Theorem 60 substitute ,point* for ,dendron®.In the statement of ,Theorem 73%,
between ,connected“ and ,there®, interpolate ,and no point of K — B is s limit
point of the component of S— K that contains 4%,

In Chapter IV after the last ,G* in Theorem 113, write ,or by O plus any
one of these sets that contains a point of (¥, )

In Chapter V write ,compact’ before ,element” in Theorem 9 and, in Theo-
rems 9’ and 10, after ,If“ write ,the elements of the collection G are all compact
and“. In Theorew 13, replace ,continuum® by ,closed point set®.

In Chapter VII, in Theorem 8, write ,and compact’ before ppoint sets in
line 2 and compact" before continua in line 4, In numerous places, in this chapter,
write ,reversibly before ,continuous®.
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II1. Consequences of Axioms 15, 2, 3, 4, 5, 6 and 7,
Axiom 4. There exists three mutually non-intersecting picces.

Aoxiom 8. If u and b are detached pieces and p,, py, py,... i8
a sequence of pieces such that

(1) for each n, p,.; is embedded in p, and

(2) for each n, p, separates a from b,

then there exist two pieces x and y such that x is embedded in y
and such that every piece of the sequence py, Py, Pg,... intersects x
but mo one of them is embedded in y.

Theorem 1, No point separates?) S.

Proof. Suppose 4, B and P are three distinet points. By The-
orem 4 of Section I, there exist three mutually detached pieces «, b
and p belonging to A, B and P respectively. The point /> ix de-
termined by a sequence of pieces p;, p,, ps,... all embedded in p.
If  and y are two pieces such that x is embedded in y and inter-
sects every piece of this sequence then there are not more than
a finite number of the pieces of this sequence that are not embedded
in y. Hence, by Axiom b, there exists a number m such that p, does
not separate @ from b. Hence there exists a coherent set H of pieces
such that both a and b belong to H but p does not intersect any
piece belonging to H. With the help of Theorem 6 of Section II,
it is easy to se that the point set H’* is a connected subset of
8— P. But it con-tains both 4 and B.

Theorem 2. The set of all points is connected.

Proof. Suppose A and B are two distinet points By Axiom 4
there exist three mutually non-intersecting pieces. Hence there
exists a piece y belonging neither to 4 nor to B. By Theorem 6
of Section I, there exists a point P pertaining to 9. By Theorem 1,
S— P is connected. Thus if 4 and B are any two points there is
a connected point set containing both 4 and B. Therefore S is
connected.

Aaiom 6, If U and V are finite collections of pieces and U.V
is a coherent collection and the collections U— U-V ond V—1U.V

1) The subset K of the point set J7 is smid to separate M it M — K s not
connected. ‘
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are wutually detached and neither U nor V separates the piece @
from the piece 8 then the .collection U--V does not separate o _from j.

Theorem 3. If H.and K are two closed and compact point
sets and H - K is connected and neither H nor K separates the point A
from the point B then H -+ K does not separate A from B.

Proof. If A or B belongs to H or to K then clearly H-|- K
does not separate 4 from B. Suppose neither 4 nor B belongs to
H-+ K. There exist arcs AXB and AYRB such that AXB contains
no point of H and AYB contains no point of K. There exist pieces @
and § belonging to A4 and B respeetively but such that neither @’
non § contains any point of -} K. There exists a finite collection 7"
of pieces such that 7 properly !} covers H.K and such that 7
has 6o point in common with AXB- AYB, and T is detached from «
and from 8. Let H, and K, respectively denote the cluosed point
sets H — H. I"* and K — K- T"¥. There exist two mutually detached
finite collections @, and @ of pieces such that (1) @y and Qj
properly cover H, and K, respectively and (2) (K- AXB)- @}, and
(H~+ AYB)- Qj are vacuous. There exist finite collections L, and L,
of pieces such that (1) L, and L, properly cover 4XB and AYB
respectively, (2) a and # belong both to L, and to L, (8) L, and
On+ 7 are mutually detached and so are L, and Q-4 7. The
common part of the collections @y~ T and @y T is the coherent
colleetion 7'and (Qy + T) — 7" and (Qx—+ T)— T are the mutually
detuched collections @ and Q. Furthermore, the eoherent collec-
tion I, contains & and @ but is detached from ¢, 7, and L, is
a coherent collection containing @ and 8 but detached from Qx+ T
Therefore neither Qu~+ 7' nor Qx-+ 7 separates o from 8. Tt follows,
by Axiom 6, that (Qy— 7)+-(Qx+ T') does not separate o from 8.
Hence (Qu+7")+ (Qx-T") does not separate @' from . But
H—+K is a subset of (Qy—+7") + (Qx+ 7') and o and g are
connected point sets containing A4 and B respectively. Therefore
H-- K does not separate 4 from B. '

') The set W of point sets is said to properly cover the point set M if every
point of M belongs to some point set of W and every point set of W contains
some point of M,

a
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Aodom 7. If G and H are finite and mutually detached collec-
tions of pieces and g and h are pieces //el(mg%ng to G and H respee-
tively then there exists a finite collection V of pieces such that

(1) V separates g from h,

(2) Vand G+ H are mutually detached, -

(8) if U and W are finite and mulually detaaha.«l collections of
pieces there exists a finite and coherent collection Z of pieces such t/_mt

(a) each piece of the collection Z is embedded in some picce of V

(b) Z separates g from h and

(e) every piece of the collection Z which is not detached from U
is delached from every piece of Z which is mot detached from W,

Theorem 4. If the common part of two compact continua cxists
and is not connected then their sum separates S.

Proof. Suppose ¢ and g are two compact continua such that
- is the sum of two mutually exclusive closed point vets y and 6,
There exist finite collections H,, H), H, and Hy of pieces such
that (1) Hy, Hy, H; and Hy cover «, 8,y and J respectively,
(2) H, and Hy are mutually detached, (3) H,-Hy=H, -4 H; and
(4) H,— (H,+ H,;) and Hy— (H,+ H,) are mutually detached.
Let P, and FP; denote points belonging to y and o respectively
aud let h, and i, denote definite pieces belonging respectively to H,
and H, and also belonging respectively to P, and Py. By Axiom 7
there exists a finite set V of pieces such that (1) V separates h,,
from A, (2) V and H,- H; are mutually detached and (8) if U
denotes the set of all pieces  of H, such that z intersects some
piece of ¥V and W denotes the set of all pieces y of Hy such that y
intersects some piece of V" then there exists a finite collection Z of
pieces such that (a) each piece of the collection Z is'embedded in
some piece of V, (b) Z separates h, from /iy and (c) every piece
of Z which is not detached from U is detached from every piece
of Z which is not detached from W. Let Z, denote the collection
of all pieces of Z which are not detached from H, and let Z,
denote the collection of all pieces of Z which are not detached
from H,. Let 2,2,2,... denote the pieces of the ecollection %
which belong neither to Z, nor to Zg

Suppose now that a8 does not separate S, For each 4 less
than 7, there exists an arc f, joining some point of 2, to some
point of &, and containing no point of o0, For each 4 less
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than # there exists a finite collection T, of pieces such that (1) 7
covers ¢, properly, (2) no point of a—- g belongs to, or is on the
boundary of, any region of the set 7. Let Z denote the collection
Z+24-... 42,4 7,4+ T+ ...+ 7,. There exist pieces z, and x;
belonging to P, and Py respectively, embedded in h,, and k, respectively
and detached from E. There exist finite and coherent collections [
and [, of pieces such that (1) I, and 1 cover @ and 8 respectively,
(2) every piece of I, is embedded in some piece of H, and every
piece of I, is embedded in some piece of Hy. (3) both I, and I,
are detached from E, (4) z, and xs; belong to 7, and also to 1;. The
finite collection I, is coherent, . contains both %, and z; and is
detached from & -} Zg; and the finite and coherent collection 7
contains both #, and z,; and is detached from £ Z,. Therefore
neither £ Z, nor B+ 7 separates z, from z;. But the collection %
is coherent and Z_ is detached from Zy. Therefore, by Axiom 6,
the collection & Zo+Zg does not separate z, from z;. But z,
and z; are detached from E+Z,+Zy, Zis a subeollection of
B+ 2,427, and Z separates x, from x;. Thus the supposition
that Theorem 4 is false has led to a contradietion.

Theorem 5. If J is a simple closed curve, S—J is the sum
of two mutually separated conmected point sets such that J is the
boundary of each of them

Theorem 5 may be established by an argument identical, except
for obvious modifications, with that employed by Kuratowski,
on pages 313 and 314 of the article cited above, to prove the
proposition 19,

IV. Consequences of Axioms 1¢, 2, 3,4, 5, 6, and 7.
Theorem 1. If a region has a boundary its boundary 4s compact.

Proof. Suppose g is a piece such that ¢’ has a non-vacuous houn-
dary 7. By Axiom 1, there exist a natural number m, (greater than 1)
and a finite subset H, of G; such that if z is a piece of the set G,
which intersects g, without being embedded in it, then « is embedded
in some piece of H,. Similarly there exist a natural number My
(greater than m,) and a finite subset H, of G, such that if 2 is

wa piece of the set (,, which intersects g, without being embedded

in it, then 2 is embedded in some piece of the set H,. This process
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may be continued indefinitely. Thus there exist an uscending‘sequence
my, Mg, My,... of natural numbers and a sequence H,, Hy, Hy,...
such that (1) H, is a finite subset of @, and, for each i greater
than 1, H, is a finite subset of Gy, (2) for each i, every piece
of the set G, which intersects g, without being embedded in it, is
embedded in some piece of the set H,. For each i, let W, denote
. the set of all pieces of the set M, that intersect g without being
embedded in it. For each i, each piece of the set W, is embedded
in some piece of W;. It follows, by Theorem 3 of Seetion II, that
if K denotes the set of all points X such that X is common to all
the point sefs Wy* W;* Wy*,... then K is compact. But K is
identical with 7.

Tt has been shown that a space satisfying Axioms 1,, 2 and 3
is metric. Now Mxr. P, B. Jones of the University of Texas has
shown that every locally connected, connected and locally peripherally
separable metric space is completely separable. He has also shown
that in a space in which Axioms 1-—4 of Point Set Theory and
Theorem 1 of the present Section hold true, Theorem 2 of Chapter VI
of Point Set Theory holds true. If a space satisfies Theorem 1 of
this section then it is loeally periphevally separable. From these
results and results established in preceding sections of this paper
it follows that if a space satisfies Axioms 1g, 2, 3, 4, b, 6 and 7
then it satisfies Axioms 1—b of Point Set Theory.

V. Consequences of Axioms 1—7.

With the use of Axiom 1,, by an argument similar to that em-
ployed to prove Theorem 1 of Section IV, it may be shown ' that
every region is compact. With the help of results established in
Chapter VII of Point Set Theory it follows that if a space satisties
Axioms 1—T then the set of all points is topologically equivalent
either to a plane or to the surface of a sphere.
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Le théoréme de Souslin dans la théorie générale
des ensembles.

Par
W. Sierpifiski (Varsovie).

Soient S{E Vet T{H,

ny, iy tiy,

.m deux systémes déterminants )

1 gy 00
formés d’ensembles quelconques. Soient N(S) et N(7') respectivement
leurs noyaux 1). Nous dirons que les systémes S et T' sont en relation R,
si pour toutes deux suites infinies d'indices naturels p;, py, Ps,...
et Gy Gy gss-.- il existe un nombre naturel s tel que

E H 0.

PP el LG T

Désignons respectivement par &(S) par &(7') la famille de tous
les ensembles qu'on obtient en partant des ensembles qui forment
respectivement les systémes S et T' ot en effectnant avec eux un
nombre fini ou une infinité dénombrable d’additions et de multipli-
cations d’ensembles.

Théoréme I: Si deur systdmes délerminants S et T sont en
relation R, il existe deux ensembles P et Q) tels que Pe&B(S), QeB(T),
PQ=0, N(S)C P et N(T)C @-

Pour démontrer le théoréme I (par voie apagogique, mais sans
utiliser les nombres transfinis) il suffit de modifier légérement la
démonstration (basée sur une idée de M. Lusin) du théoréme de
Souslin publiée p. 266—267 du vol. XXI des Fund. Math.

Une autre démonstration (constructive, mais utilisant les nombres
transfinis) peut 8tre obtenue comme il suit.

1y Pour les définitions de ces notions voir p. ex. Fund. Math. XXI, p. 250
ou bien Fund. Math. VIII, p. 362. )
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