A problem in “Factorisatio Numerorum*,
By
Einar Hille (New Haven, Conn.)

1. Introduction. This note is devoted to a study of the number
theoretic function f(7) which gives the number of representations of the
natural number 7 as a product of factors greater than one. Here two
representations are considered identical if and only if they contain the
same factors written in the same order, We define f (1}=1. Some gen-
eralizations are indicated at the end of the note.

This function f(n) does not seem to have attracted much attention,
It is intimately connected with the algorithm of Mébius

ay by=1,

Z [ %] bn/d =),

B ain

(1.1) n=2,3

which arises in a number of analytical problems, for instance, in the
expansion of the reciprocal of an ordinary Dirichlet series into a series
of the same type. The relationship is simply

{1.2) D(s)= an ns, = ) byns, .
B=2, D~ 20

where the coefficients are connected by (1.1). Taking a,=1, a, =—1
n==2,3,..., we get b,=7,(n) as will be shown below.
The only papers on this function which are known to the author

'
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are those of L Kalmér,!) These contain a study of the summatory

function
n
(1.3) F= Y f (m).
m=1
Denoting by ¢ the positive root of the equation
(1.4) Ls)=2,
Kalmar proved that
n
(1.5) ——{t+o (1)},
& {p)

and gave various estimates of the remainder.

It is obvious that f(#) itself is a very irregular function, and next
to nothing seems to be known about its behavior under different assump-
tions regarding the number of prime factors in 7. A study of this pro-
blem does not call for particularly complicated machinery, and the re-
sults are not quite devoid of interest.” They were found as a by-product
in an investigation of the algorithm of Mé&bius which will be published
elsewhere. ?)

2, Elementary properties. Let

(2.1) n=pLp;...p’

be the representation of 7 as a product of prime factors. It is clear
that f(n) depends only upon the divisibility properties of 7 and not
upon the actual numerical values of the prime factors, It follows that
f(n) is a symmetric function of the v variables o, @,..., 2,

Let d|n and put n=md,m>1, All the factorizations of # which
contain m as first factor are obtained by considering all factorizations
of d. They are f(d) in number. It is clear that these particular factor-
izations can be obtained in no other way. Hence we have

Fly= Y £(d),

din

(2.2)

1) A ,factorisatio numerorum” problémajarél, Matematikai és Fizikai Lapok, 38
(1931) 1—15, and Uber die mittlere Anzahl der Produktdarstellungen der Zahlen. (Erste
Mitteilung ) Acta Litterarum ac Scientiarum, Szeged, 5 (1931) 5—107. The second part:
of the latter paper does not seem to have appeared. I am indebted to Prof. O, Szdsz.
for this reference.

2) See also E. Hille and O. Szdsz, On the completeness of Lambert func‘clons.
Part I, Bulletin Amer. Math. Soc,42 (1936). and Part 1I, Annals of Math,, (2)37 (1936)
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where the summation extends over all divisors d of n which are <n
This functional equation together with the initial conditions

(2.3) F)y=f(p)=1
determine f (1) completely. :
Formula (2.2) recalls Dedekind's inversion formula. If

hw) =D g(d)

ajn
for all n, then

g=r) =LA 3 (]

where the summations extend over all tHe combinations 1, 2, 3, ... at
a time of the distinct prime factors pi, Pi, ..., P, of n. Putting 2(n) =
2f(n), g(n)=f(n) we get after simplification

e Ve

which is more suitable for numerical computation than (2.2).
ular 3)

(2.51) fp?)
{2.52) Flpr gy =21f (=g 4 f (=" 9B — f (p*~* g)].

Let us return to (2.2). Sum both sides of this equation with re-
spect to all values of 7 for which oy 4oy, - av =&, a given inte-
ger. Here «, =0 and the basis pi, pi,, ..., p;, is kept fixed. Then

=) fl) =YY" fd).

[&] ) din

(2.4)

In partic-

=2f(p) =2,

(2.6)

The values of d which occur in the last member are all of the form
d=p?;p?:...p?vv where B +8,+... B =% 0=<w=k—1, Moreover,
every such integer occurs in the sum, Let us collect all terms which
have the same value of % A divisor d with %==%— 1 divides exactly v
different values of 7 It follows that every such d occurs v times, and
2f(d) extended over these values equals vSp—1,. A d with v =k —2 is

a divisor of exactly ( ; )—[—( ;) = (V 'g 1) different values of 72 and these

¥) Formula (252) was communicated to me by Dr. Marshall Hall who had found
iit by a different method.
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terms contribute (V"lz_ 1) Si2.. We can prove by complete induction

that o
27 ( )Sk—l,v ( —+2— 1) Se—zn + —{—(V‘(“l;—— I)SO
V1 ‘
Let us now put
oo
(2.8) S (2) =Z Sea?h, v=1,2,3,...
=0
Using (2.7) we see that
1+(1—2 S (2)=2S, (2),
whence
L —2y
} S, i
@9 (e} = 20—z —1°

S, (2) has v simple poles at 2=2z,,=1—2"" w* where w=¢%¥ =0,

1,2,...,v—1. Expanding the corresponding principal parts in geomet-
ric series and adding, we get
[ So,,, = 1,
(2.10) vt
1 ,
S " =____2—1—1,w wt (1 ___2—1,4 th) k> 1,
B Do

=0

In this sum the term corresponding to (=0 dominates all the rest.

v
Indeed, putting 2—'% =R, we have for v>1, 0<{p. <— ,

Il—Rw"I>R|1——m"}—-2Rsm- >4R >2V2‘

1 2
— RS
- whence
1
Sk _—2—1—“ 1—27W =11 4], N
(2.11) ! ke ( + k=1v>1)
I ﬁk | <47
It follows in particular that
1 .
mps, pi) < (1 — 27
2.12) foepg.. . pi) <
o o4, toa =k £=0,1,2 ..., v=1, 2,3,...
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It seems likely that this estimate is not a very close one for large val-
ues of v.

3. Generating Dirichlet series. Let fk.(n] denote the number of
representations of 7 as the product of % factors, each greater than one
when 77>>1, the order of the factors bemg essential. 1t is well known
that

N =1t — 1k k=1,2,3,...
n=2
for N (s)=0>1. Since
fly =2 fln), F)=1,
we have
B, D Fmn={2—tE)})

‘=1

for N (s) >p, where p is the positive root the equation (1.4).
Let us now consider v distinct primes p, <p,<...<p,. and
let P denote the multiplicative system of all integers of the form

pip...p, where the exponents are non-negative integers. We refer
to Pi, Pi,,.... P, as the basis of P. Put

(32) tls P)=T0[t —py ™ R (9 >0,

Then = ‘ '

(3.3) D fyns= {2~ (5P) ) =Fs; P),

(P)

where on the left the summation extends over all integers in P
By a well-known theorem of Landau on Dirichlet series with positive
coefficients, the series converges for N [S)>p[P] where p(P) is the
positive root of the equation

(3.4) L(s, P)_~2

Since & (o; P) is monotone decreasing from -;~co to 1 as ¢ goes from 0
to |-co, this equation has one and only one positive root. We have
clearly &(o; P)< L (o) for 6 > 1. Hence the former function reaches the
value 2 before the latter does, i. é.,

(3.5) 0<p(P) <o
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If po=2 and v>1, L(1;P)>2, so that the lower bound O can be
replaced by 1 in (3.5).

Taking a sequence of multiplicative systems of the type described
above, such that P CP;C...CP,, where C indicates a proper subset,
we have obviously

tlo; P)<tlo; P) < ... <Llo
p(Pr) <p(P)<...<p(P)<p

If the sequence is infinite and P, C P,y for all p, there exists a unique
limiting system Poo which contains all systems P, and is the smallest
multiplicative system of positive integers having this property. Let NV
be the system of all natural numbers, i. e., the multiplicative system
based on all primes. Then Poo L N. Put

i P, S > 0,
so that

(3.6)

N o0

3.7) L (8; Poo) = H1I1 —p
where the product is extended over the basis' of Poy. Let the abscissa
of (absolute) convergence of the product be o5, 0=0,=1. For o,
+e=Zo 1/:-: , L(o; P.) converges uniformly to §(5; Poo) as p—rco.
Moreover, & (o; P,)< L (0 Pco) and for 6>>1 the latter is = & (s; N) =L (o)
where the first sign of equality holds if and only if it holds identically.
Consequently
(3.8)
with obvious notation.

In (3.6) it was assumed that the systems mvolved had ﬁmte bases.
But it is clear that Py C P2 CN implies :

(3.9) p(P)<pP)<pN)=

whethier or not the: bases are finite.

P)TelPoo)=0,

4. The summatory functions. Let P be a multiplicative system
of the type described above, the basis being finile or infinite. The well
known relation in the theory of Dirichlet series betwen the partial sums
of the coefficients and the abscissa of convergence shows that

msn

(41 Z f(m) =0 [w™+]

Here the summation is extended over aII 1ntegers m
‘We can' get"much more - precise results, however.

for every positive €.
in' -P-which: are =n.
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Suppose first that the basis conmsists of a single prime p. Then
by (2.51) ;

(42) 10g2

logp’
We note that the corresponding generating Diri-

Z f(p?)==B(n) D,  p(P)=

prEn
where é— =B@W)=1.

chlet series F(s; P) has infinitely many poles on the line o==p(P),

If 1<_v=co, the situation is different, In order that {(c+-if; P)=2
for o=p(P) it is necessary as well as sufficient that p,™* is positive
for all values of pn, For a {0, this condition contradjcts the linear
independence of the logarithms of the prime numbers, Hence F(s, P)
has a single pole on the line s=p(P) at s=p(P). This pole is simple
and the residue obviously equals — [&'(p(P); P)])—'. There are of course
infinitely many poles in any strip p(P) —8=o=p(P) for every §>>0
owing to the almost periodic character of {(s; P) in such a strip, but
the only thing we need to know about these poles is the fact that there
is only one of them on the right boundary of the strip. It follows that
the hypotheses of the Ikehara- Wiener theorem?) are satisfied so that

mEn 7204P)
S ) = — e (10 ),
(P’f[”) o (PYE (o (P); P]{ om]

(4.3)

Here P is any multiplicative system whose basis contains at least
two primes. In particular, we might take P=N in which case we
obtain Kalmar's formula (1.5).

5. Estimates of f(1) in terms of 7. It follows from (4.3) that

there exists a positive Ci(P) such that
(5.1) F<C(P)w®), neP.

If v is finite we can also get a converse inequality. The number of
terms on the left hand side of (4.3) is then equal to the number of
solutions of the inequality

(5.2) arlog pi+ oy log pr,+ ...+ o log pi, = logn

in non-negative integers. This number is obviously O[(log n)']. Suppose
that 7 is so chosen that f(n) is the largest term of the sum in (4.3)
This will happen for infinitely many values of 7. Hence there exists
a positive C,(P) such that

) See, e g, N. Wiener, The Fourier integral, Cambriage, 1933, pp. 127—130.
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(5.3) Fim) > C(P) (logn)~" mP), neP,

for infinitely many values of 7 in P. But here we can replace v by
y—1 and if v>>1 we can take C,(P) as large as we please. The case
y=1 is already settled by formula (2.51) so we can take v>1. Sup-
pose that it has been shown that for some choice of 1 and =

f () =o0[(log n) "]

for n in P, n—co, We have then also

m<‘r‘z, m<11
fim)= OI 1og m)—+ m

+ o log pi 17 [ . P }
where the summation here and below extends over all positive o's
satisfying (5.2). If 1 is taken to be positive, the relation between the
arithmetic and the geometric means shows that the last sum is bounded
above by some multiple of

Yool

Summing for o, we get an expression which is of the order of magni-
tude of

=o{Z[a1 log pi+ ..

o a1
PoopPF -
iv

ok .
7 Z[al eo.gy) " (logn—aoylog pr,— ... —a logp)
and if @ <v the sum is of the order of magnitude of the integral

n

f[)c1 v Xyt (log n—x, log pi,— ... — X—1 log Pz’v_,)]—T‘iS

taken over that portion of the (v—1)- dimensional space in which all
factors of the bracket are positive. A simple calculation shows that
this integral is O [(log 7)—'~*]. Thus, taking t=p(P) we get

msn

2 f(m) = o [(log ny—t—+nAP)],

(P)

(5.4)

Strictly speaking, the summation should extend over only those inte-
gers in P which have exactly v distinct prime factors, but formula
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(3.6) shows that the added terms do not disturb the estimate,
(5.4) contradicts (4.3) unless p.<v—1. It follows that

(55) F(n) > M (log )+ P

But

for an arbitrarily large M and for infinitely many values of n in P,
provided v>>1. It is possible that this estimale could be still further
improved, But it is good enough to show that if p is the root of equa-
tion (1.4) and & is a fixed, arbitrarily small positive number then the
inequality

{5.6) f) > ne

holds for infinitely many values of n.

6. Generalizations. The previous discussion admits of very con-
siderable extensions. In § 2 we considered a number theoretical func-
tion f(#) satisfying the functional equation (2.2) with the initial condi-
tions (2.3). In the discussion we have used only the divisibility proper-
ties of the natural numbers. It is clear that the results will remain
unchanged if we replace the natural numbersby any other system hav-
ing similar divisibility properties. Consider the set of integral ideals
@ in a commutative ring R without divisors of zero. We suppose that
the finite chain condition is satisfied, that the prime ideals, except the
null ideal, have no proper divisors, and that R is integrally closed with
respect to its quotient field. In this case every ideal in R has a u-
nique representation as product of prime ideals p, the conditions men-
tioned being necessary and sufficient for unique factorization. We can
then define f(a) as the number of representations of ¢ as product of
ideals, omitting powers of the unit ideal o, i.-e., R considered as an
ideal, two representations being considered equal if and only. if they in-
volve the same factors written in the same order. We have f (0} =F (p)=1.
Further (2.2) is satisfied, and it is clear that

6.1) F(ospge . p)=F(@243% ... p).

) In order to extend the discussion of §§ 3,4, and 5 we need
a definition of the absolute value of an ideal, | a |, such that

(6.2) [ab|=fa| D],

and that it is possible to form an analog of the zeta function

=) |n |-

6.3) .
AN %)
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The convergence of such a series imposes certain resirictions c¢n R
and on the choice of the absolute value. Thus, only a finite numbker
of ideals in R can have the same absolute value, and [a|>148
for some fixed ¢ >0 if a 5% o,

These conditions are of course satisfied in the classical case of
integral ideals in an algebraic field if we take |« | = Nag, i e, the
number of residue classes in R modulo 6. (6.3) is then simply the De-
dekind zeta function. It is known, however, that in a ring having unique
factorization of ideals it is always possible to introduce an evaluation
(= Bewertung), for the elements as well as for the ideals, based
upon a norm ||| which satisfies the conditions of Kiirschak, one
of which is (6.2). But the existence of a zeta function is in general
not ensured in an evaluation ring, A noteworthy exception is given
by the fields obtained by a finite algebraic extension of the field of
all rational functions of an indeterminate with coefficients modulo
a prime p. The number theory of such fields, which goes back {o De-
dekind, has been developed in recent yeurs by Artin, Hasse, F. K.
Schmidt and others.?)

In these two cases we can obtain estimates of the summatory
function X f(a) where the summation extends over all ideals in the ring
the absolute values of which do not exceed a given integer. This fol-
lows from the formula

D@ el ={2— @}
(@)

(6.4)

In the case of algebraic fields the Ikehara-Wiener theorem applies and
gives the analog of Kalmar's estimate; in the case of characteristic p
we are dealing with a rational function of p°. We can also obtain esti-
mates of #(q) itself by restricting the summation to those ideals of ab-
solute value less than a given integer which involve a given sub-set of
prime ideals. The necessary generating Dirichlet series can be formed
as in § 3 and the discussion of §§ 4 and 5 is easily carried over. In
the congruence case we are still dealing with rational functions of an
exponential function (at least as long as the basis is finite), and the
same is true in the Dedekind case if the norms of the prime ideals in
the basis are all powers of the same rational prime. In the general
Dedekind case the Ikehara-Wiener theorem still gives the estimates.

5) See, e, g, F. K. Schmidt, Analytische Zahlentheorie in Kérpern der Charakte-
ristik p, Math, Zeitschrift, 33 (1931) 1—32. I am indebted to Profs. 0. Ore and M. Zorn
for calling my attention to this possibility and for explications.
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1t should be noted, however, that the existence of a zeta function
for a sub-set of finite basis is independent of the existence of such
a function for the whole set. In order to define an analog of L(s; P)
we only need to have | a|>>1 for @ 5 o in the sub-set. It follows that
it is possible to obtain estimates for F(a) in terms of |a| in other
cases than those mentioned above.

Finally it is possible to extend some of these considerations to
the case of non-commutative rings.

(Received June 4, 1936.)
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Verallgemeinerung einer Mordellschen Beweis-

methode in der Geometrie der Zahlen.

Zweite Mitteilung,
Von

J. G, van der Corput {Groningen).

Satz 7. Ist M eine im n-dimensionalen Raum liegende Menge vom
Volumen V=>koky... ks, wo ky, ki, ... ka positive Zahlen bedeuten, und
hat jedes zu M gehorige Punktepaar (y,... 1) und (', ..., u) die

uy— iy —
Eigenschaft, dass der Punki (iz-l-{l-, 'ik L
1 n
N angehért, so enthélt N ausser dem Koordinatenursprung mehr als ky—1
verschiedene Gitterpunkie (v1,...,vn), die der Bedingung geniigen, dass
die erste nicht verschwindende der Zahlen v, ..., Un positiv isl.

) einer gewissen Menge

Der Beweis ist genau dem in der ersten Mitteilung?) gegebenen
Beweis von Satz 1 analog und verlduft wie folgt: Ist A; fiir ganzes >0
die Anzahl der Punkte ("31.;1’ ,lff—;i'-') von M mit ganzen Ui, ..., Un,

. Wegen

so strebt A bei unbeschrinkt wachsendem [ nach ————
ln k1 /Ez I ku

V>koky... ky ist somit A;>Fk, " bei hinreichend grossem [, Die be-
trachteten Punkte (&1, ..., 4s) gehdren zu hdchstens " verschiedenen
Restklassen mod [, so dass wenigstens eine dieser Restklassen minde-
stens m verschiedene dieser 4; Punkte enthdlt; hierbei ist m die kleinste

1) Acta Arithmetica, 1 (1935). S. 62 — 66.
10. Acta Arithmetica, II.
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