22 V. Jarnik, Uiber einen Satz von A, Khintchine, IL

also
(52) Bi{B1, Oz .-t

Andererseits: ist 7 ganz, 1==2, so liegt (6:, fy,...,0s) in einem Wirfel
n-ter Ordnung, Nach A1, A2 gibt es also ganze Zahlen p;, pa, ...,
Ps, g mit

ves)gﬁ'

148
1
53 Jei_% = ;ti_i (i=1.2....9) Zn§q§kzznzn_1“s+’.
22, °
Wird also M:G gesetzt, so ist nach (32), (53)
s(s+1)
20 = g =Ry 2n (log 2a) S ko zn (log ),
also
sHitp
.6,-~£’3 S_}_(kz[loélﬂ") Coi=1,2...,9),
q| 2 q
also
(54) By (01, By, ..., 0) =8,
Nach (1), (52), (54) ist aber
Bi1(01, Oy, ... 0 =By (01,05, ...,0)=5,
w.z. b.w,

Praha, den 24. September 1935, %)

(Eingegangen am 4. Oktober 1935.)

2?) Zusatz bei der Korrektur: Herr Mahler wird demnichst ecinem sehr einfachen
Beweis von (2) verdffentlichen.
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On the order of magnitude of the difference
between consecutive prime numbers.

By

Harald Cramér (Stockholm).

Introduction.

Let p» denote the n: th prime number, It has been proved by Hoh- '
eisel [8]!) that we have

(1) Prr—pn=0(px'7)
for some >0, On the other hand, it is known (Westzynthius [11])

that the relation
@)

is certainly not true. Thus with respect to the maximum order of the
difference pni1—p» there remains a large domain of uncertainty.

If the Riemann hypothesis is assumed, it is possible (Cramér
{4]) to improve (1) to

3)

but obviously even in this case a comparatively wide gap is still left
open between (2) and (3). It has been conjectured by Piliz [9] that
we have for every £ >0

Prii—pPn=— (0] [log ]7,1)

Prpi— Pn= 0 (y/pnlog pn),

Pnpi— Pn= 0 (pn E),

but this has never been proved.

) Numbers in brackets refer to the appended list of references.
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In the first section of the present paper, an heuristic methot foun-
ded on probability arguments is briefly exposed. It is sugdested that
the true maximum order of put1—p» should be equal to {log pi)% so
that we should be able to replace (1) and (3) by?)

(4) Dt — Pa=0((log p=)*) .

In the second section it will be shown that, if the Riemann
hypothesis is assumed, a number of results may be proved which, rough-
ly speaking, may be interpreted in the following way. Let us consi-
der the primes p,, such that the difference  prnt1—p. is exceptionally
large, i. e. larger than some function f(p.) increasing more rapidly than
(log pn)2. Then the trequency of such primes p, is small.

We shall here only mention two particular theorems belonging to
this order of ideas. (For preliminary results cf. Cramér [4], [5], [6].)

1} Consider the sums

SW= (prts— pr)

Pp<lz

S0 =Y (Pas1—pa),

Pp<*

and

the first of which is extended to all primes p,<x, while in the second
the summation is restricted to those p,<x which satisfy

‘ Patr— pn > (log pr)?.
We then obviously have, as X tends to infinity,
Sx)eox,

while it will be shown that on the Riemann hypothesis we have

):o[x).

This is only a very particular case of our theorem II, which gives an
upper limit for the frequency of ,prime intervals” (pn, put1) satisfying
an inequality of the form pnyi— pn > pa* (log ps)?.

2) If the relation (4) could be proved, it is immediately seen that
the series

X

S X)) =0 ——
e (1oglogx

%) Ci the numerical data given by Western [10).

icm
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Y _(Prss —pa
Pn [log pn)l

would be convergent for 21 >>4, It will be shown that this is actually
the case, if the Riemann hypothesis is true. (For =2 the series is
certainly divergent.)

The proofs of the theorems of Section II are founded on a num-
ber of Lemmas, some of which are independent of the Riemann hy-
pothesis. In particular, we would draw the attention to Lemma 3, from
which i a. a proof of Hoheisel's theorem (1) may be obtained.?)

n=2

I. Results suggested by probability arguments.

In investigations concerning the asymptotic properties of arithme-
tic functions, it is often possible to make an interesting heuristic use
of probability arguments. If, e. g., we are interested in the distribution
of a given sequence S of integers, we then consider S as a member of
an infinite class C of sequences, which may be concretely interpreted
as the possible realizations of some game of chance.?) It is then in
many cases possible to prove that, with a probability=1, a certain re-
lation R holds in C, i. e. that in a definite mathematical sense ,almost
all* sequences of C satisty R. Of course we cannot in general conclu-
de that R bolds for the particular sequence S, but results suggested in
this way may sometimes afterwards be rigorously proved by other
methods.

With respect to the ordinary prime numbers, it is well known
that, roughly speaking, we may say that the chance that a given inte-

3) While the present paper was being printed, N, Tchudakoff has published
a theorem (C. R, Acad. Sci. U. R, S, S,, vol. 1, 1936, p, 201} on the zeros of the function
{(s). from which he states (without proof) that it is possible to deduce the relation

3
Pugr — Pn= 0(pﬂ°2+5) for every £=>0, This deduction can be performed by means

of our Lemma 3,

%) Arguments of this character being frequently misunderstood, it will be con-
venient tc make the following remarks. By the methods of the modern theory of pro-
bability, the class C may be defined in a purely analytic way as an abstract space with-
out any reference to concrete inlerpretation, The term ,almost all" is then inter-
preted -in the sense of the Lebesgue measure theory, Up to this point. the develop-
ments indicated in the text are thus mathematically exact, The heuristic part of the
argument does not come in until it is suggested that the relation R may hold for the
particular sequence S, The present Section I being of an introductory character, we
shall not enter upon all details of the procfs, The theorems on probability required in
the sequel will be found in a convenient form ¢. g. in Cantelli [2], p. 334 and 336.
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1 .
ger 1 should be a prime is approximately m. This suggests that by

considering the following series of independent trials we should obtain
sequences of integers presenting a certain analogy with the sequence
of ordinary prime numbers pn.

Let U, U,, Uy, ... be an infinite series of urns containing black
and white balls, the chance of drawing a white ball from U, being
1
logn
chosen. We now assume that one ball is drawn from each urn, so
that an infinite series of alternately black and white balls is obtained.
If P, denotes the number of the urn from which the n: th white ball
in the series was drawn, the numbers P;, P,, ... will form an increa-
sing sequence of integers, and we shall consider the class C of all pos-
sible sequences (P,). Obviously the sequence S of ordinary prime

numbers (p.) belongs to this class.

We shall denote by Il (x)} the number of those P, which are =,
thus forming an analogy to the ordinary notation = (x) for the number
of primes p.=x, Then II(x) is a random variable, and if we denote
by 2. a variable taking the value 1 if the n: th urn gives a white ball
and the value 0 in the opposite case, we have

H(x):Zzny

and it is easily seen that the mean value of IL(X) is, for large values
of X, asymptotically equal to Li(x). It is, however, possible to obtain
much more precise information concerning the behaviour of II(x) for
large values of Xx. As a matter of fact, it may be shown (cf, Cra-
mér [6]) that, with a probabilily =1, the relation

(5) lim sup M: 1
¥—00 1/ k. loglogx
log x
is satisfied. With respect to the corresponding difference = () — Li (%)
in the prime number problem, it is known that, if the Riemann hypo-
thesis is assumed, the true maximum order of this difference lies be-

for n>>2, while the composition of U: and U, may be arbitrarily

tween the functions l—llgx.;and Vx - logx. It is interesting to find that
o

the order of the function occurring in the denominator of (5) falls
inside this interval of indetermination,
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We shall now consider the order of magnitude of the difference
Pupy—P,. Let ¢>0 be a given constant and let E, denote the event
that black balls are obtained from all urns Unq, with 1= v=rc (log m)’.
Then it is seen that the following two events have the same probabi-
lity: a) The inequality

(6) plz+1 - Pn =>c UOQ Pﬂ}z

is satisfied for an infinity of values of 7z, and b) An infinite number
of the events E, are realized,
If e denotes the probability of the event E,, we have
¢ (log m)® 1
Em = (1 — —_.—-————)
v=1 log (m -+ )
and it is easily shown that we can find two positive constants A and B
such that for all sufficiently larde values of m

A B
(7 << —.
me me

Thus if ¢>1 the series L&, is convergent, and consequently the
probability of the realization of an infinite number of events En is equal
to zero. (Cf. Cantelli [2], p. 334.)

On the other hand, suppose c<<1 and let us consider the events
En,s Emyyonnn. , where m,=2 and

mrp=nm,+[c{logm)?]41.

It is then shown without difficulty that we have for some constant K

“and for all sufficiently large 7

m,<Kr(logr)?,

and thus according to (7) the series %&n, is divergent if c<<1. The
events E, being mutually independent, we conclude that with a pro-
bability = 1 an infinite number of these events will be realized. (Ci.
Cantelli [2], p. 336.)

Thus the probability of an infinite number of solutions of the
inequality (6) is equal to zero if ¢>>1 and to one if ¢<(1. Combining
these two results, we obtain the following theorem: With a probability=1,
the relation

lim sup —————PnJ'—l#P" =
n— 00 (Iog pn)2
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is satistied. — Obviously we may take this as a suggestion that, for the
particular sequence of ordinary prime numbers p,, some similar relation
may hold.

II. Some theorems concerning the difference pn,y1—p,.

We shall begin by proving a series of Lemmas, the three first of
which are independent of the Riemann hypothesis.— Let us denote by
s=c-}-it a complex variable and by p==B-iy, (1>>0), a complex
zero of {(s), situated in the upper half-plane, By A (1) we denote the
arithmetical function defined by the relations

logp  for n==pm™  (p prime, m integer),
An)=
0 otherwise.
We shall consider the following two analytic functions:
(8) F(s]::Z em=2 e——iBs,
=0 =0
the sum being extended to all zeros g in the upper half - plane, and

9 G(s):iA_(”l( . 1)_

& n \s—ilogn ' ilogn

Obviously the Dirichlet series with complex exponents represen-
ting F(s) is absolutely convergent for ¢ >0, and F(s) is regular in
every point of this half-plane., G(s) is a meromorphic function with
simple poles in the points s=1logp™ Putting

(10) His)=2=F(s)+G (s},

it can be shown (cf. Cramér [3]) that, if a cut is made in the §~plane
along the negative imaginary axis from s=0 to S=—1loo, H($) is
regular and uniform in every finite domain which has no point common
with the cut. In this paper we shall, however, only consider the func-
tion H(s) in the domain D defined by the inequalities

0<{a=1, T>1.
In the first place, the following Lemma will be proved.
Lemma 1. We have
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MH(S):?:—}—O(%)

uniformly in D.
According to a theorem which I have previously given (Cramér
[3], formula (13), p. 114), we have for s >0

' ﬁ . 1 s
27 F(s)=e G(~s]——G[S)+(;+’”) (H"S_;)"l?(?)Jr
. 1 ooeiu d
is __ isv —_ £ -"_z“
+ze sfe log|L()|dv+ sf e—1 z-is’
0 )

where b denotes a real constant and the last integral is taken along
the vector arg z=a with O<u<~:-. If, now, we suppose that s belongs

to the domain D, we get by some easy calculation
I‘l
27:F(s)=—G(s)—1——E+bi———i—‘—(—§—)-—
2 I'\=
1
—sfe"”log]t(w)idw—l—o(—l).
T

1]

Throughout the proof of this Lemma, all O's hold uniformly in D,
By well -known properties of the Gamma function we have in D

ke

2

T

- ol

Thus we obtain by (10)

1
:R'H[s)=x—msfeiw log | L(®) | dv+0(—:~).
0

We find, however, easily .
1

s [emtog | c(0) | dw=0( [(1+v9elog 2 dﬂ}=0("1—)v
: 0

1—wv
0
and thus Lemma 1 is proved. '
Introducing the definition of G ($) according to (9), we obtain from

Lemma 1
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A : a=ﬁ—zﬁn’ms}+o(~-}).

() &~ n ‘uﬁ—f-(c—log n)?

If in this relation we take ¢ very small and © very large, and consider
the quantity

a
@+ (c—logn)®

it is readily seen that this quantity is large for values of 7 lying near
€%, but becomes small as soon as n differs considerably from e®. This
makes it possible to show that the value of the sum in the first member
of (11) is dominated by the terms corresponding to values of # in a certain
vicinity of €&, As A (n) differs from zero only when 7 is a power of a
prime number, and the influence of the squares and higher powers can
be estimated without difficulty, we can in this way obtain some infor-
mation as to the occurrence of primes in a given interval, This will be
shown by Lemma 3 below. For the proof of this Lemma, the following
elementary Lemma 2 will be required.

(rn=2,3,...),

Lemma 2. Two posilive constants @ and b being given, we can
always determine C= C (a, b) such that

A [n]< c hlog x
s<n=xth N xlogh

holds for x>2,h>2, a logx<h <b x.

1
Denoting by f[x)=1t[x)—|—~;~w(x7)+,.. the well-known prime
number function introduced by Riemann, we have

Al _ log(b+1)x
X

xln=x4-h n

Flet+n—rfx))

luf(x—{;h]

of, 1

logb—-I—l)x Z ( ([x—{—lz]'r“)-_ﬂ:[xir"))
log x % 1 ! L !

C?,}-_ﬁ p (1:[.’6 +/zx ™ m(x )),

Throughout the proof of this Lemma, the letter C will be used to de-
note an unspecified constant depending only on @ and 4. — We have
further (cf. Brun [1] p. 32—35, Hardy-Littlewood [7] B. 69)
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Rr+h)—z(x)<C

1_ L_l 1_ 1——l /1,
Al Hh ) —w () <A TS £ 41,22,

and thus we obtain

£@<Clogx( h +(i+1)6'logxl)

x<n=Sxt+h n X IOQ}Z V } r=2
C—IP—g—J-C( k —{—(i_-{—l)loglogx)
x \logh Vx
hlogx
xloglz

so that Lemma 2 is proved. — We now proceed to the proof of the
fundamental Lemma 3.

Lemma 3. If is possible fo find fwo positive absolute constants )
and <, such that the inequality

et — = (0> 25 (1 -390 F(9)),

where
= hact
ttloga’
holds for
T >,
(12)

'clogi"ce—‘<c<—12~,
T

In order to prove this Lemma, we shall consider (11). Putting
YO

n o4 (t—logn)? '
- v _ 4

t4logo Aol

we shall first show that A and t, may be so determined that we
have, subject to the conditions (12),

(13) S=3'z <

the sum being extended to all #=2 such that

Zn =
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|c—logn| >kgo.
We put
(14) S=Sl+32_|_88+54v

the sums Si,...,S; containing the groups of terms Z, defined by the
inequalities:

Stz logn<s—1,

NS t—1=logn<lt—XAigg,

Sy tipologn=rc-1,

Sy t--1<logn.
One or more of these sums may be empty, if the corresponding in-
equalities are not satisfied by any integral value of 7. We shall assume

from the beginning ¢ >7, >>10. and the letter K will be used to denote
an unspecified absolute constant. From (12) we obtain easily

(15) 1<(P<log':' .

We now proceed to the evaluation of the sums S,, In the first
place, we have by (12)

eT
(16) SI<UZ*__“”]<KM<~K_,
Further, if we put
00
&:éu
with
U= | Zn
v lognSeofvi-1
° Al Ko
v h<lognzctv+1 ve!
we have
(17) s.<Ka<X
2
We shall now consider S,. Putting
V.= Z,
f+()~?+\')°<10E'§VHX'P+V+U° "
we have

On the difference between consecutive prime numbers, 33
=
(18) S= Z v,
7 being determined by the condition
(19) het+relI=Ao-+r-+1)a
We have further
(20) VL1 . A,

SAQ+Y?  fpprp<lcimRetetts B

In order te estimate the sum in the second member of (20) by means
of Lemma 2, we put in the inequality stated in this Lemma

x= gtHliehl |
h=(ee—1) x.

Then we have by (19) for v=0, 1,...,r
e x<et,

Further we obtain by (12), observing the assumption 7, >10,

h>ax >0 >cloge
>e>logx,

and

h<26x<2x.
For ©,>>10 we thus have x>2, £>>2 and %Iog x < k< 2x, so that
according to Lemma 2 we obtain from (20)

V<K 2cx-logx 1 log x 1

x - log (20 x) ) s(ho-v)? log (s x) ' (Ao 4-v)?
1 Ko
S G — = :
log(ee) (o9 (rpvp2
Then (1B) gives us
21 I
{21) Sa<ch§ PET

Now we have for ¢>1

3. Acta Arithmetica, II,
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If X>>1 we have by (15) Ao >1 and so we obtain from (21)
K
(22) S <7'

In exactly the same way it can be shown that S, satisfies an inequality
of the same form, and thus we conclude from (14}, (16), (17) and (22)

1 1 1
S<K(T+ ':2+ A )
Here K is an absolute constant, and thus it is possible to choose A

1 . .
and 1, such that for ©>t, we have S<?, i. e, (13) is proved.

The value of M determined in this way will l'Je rega:rded as .deii-
nitely fixed, while obviously the Vjalue of t, may without inconvenience
be further increased. From (11) and (13) it foll('w_vs that if ©, is suffi-
ciently large we have, always subject to the conditions (12),

2
Zi>n——2—2nNF(s).
(23) > 3

le—logmisheo

The terms Z, occurring in (23) are different from zero only when 7 is ;

a power of a prime number, 72=p™, and in this case we have

An) o t-hpo ' 1
(24 Zy= : 2 c—lhypo
n o®+4(t—logn)? “ce m
1 . . '
It follows from (12) and (15) that t.(:c<{1 o and thus if v, is suffi-
og <

ciently large the right hand side of (24) is less than
2 = 1

3 se m
This being so, we obtain from (23), f(x) denoting the Riemann fun-
ction (cf. p.)
2z ¢ (
3 e

Flete)—flerr9) > 20 F),

(25) f(ev+>~w]—-f[ev—m)>i:—’(%-3mﬂs)).

We shall now estimate the contribution to the left hand side of

e

On the difference between consecutive prime numbers, 35

(25) which is due to the squares and higher powers of prime numbers,
If =, is sufficiently large, we have by (12) and (15) :

Thdes
log 2 1 ct+lgs T—iza
2wl )
=2
Ke g ; whdes c—lgs %A-— 1
<Z;(e mo_e ™ +1)<K().gme Zﬁ-}—logc)
se — rlogr\) c_e’( -5 1
<KT (),cpre —{——*cf ‘<K - \ke +Iogt
_oe
\8’5'

and thus we obtain from (25), observing that Apo=A,
. ‘ ser
mlevtie) —n =) > 2E (3w F(g),
T

Thus Lemma 3 is proved.

Lemma 3 gives a lower limit for the number of primes in a cer-
tain interval. For a fixed value of =, it is easily seen that the length
of this interval is a steadily increasing function of ¢ between the limits
imposed by (12). Let us now consider o as a function of © which for
all sufficiently large < satisfies the second relation (12). I, for a cer-
tain form of this function, it can be proved that

(26) % F(s) <%

for all sufficiently large values of «, it follows from Lemma 3 that there
is at least one prime p in the interval e (1—28)<p=e(1-4-24). The
smaller we can take the order of the function 6 =0 (c), the smaller be-
comes the order of magnitude of this interval. The principal difficulty
of the problem consists in proving (26) for functions o (1) of sufficiently
small order.

Putting in particular o==¢=*, it is possible to show that, if >0
is sufficiently small, (26) holds for all sufficiently large . According to
Lemma 3 it follows that, from a certain value of ¢ on, there is at least
A el p< e 2 }‘6 eli== Sub-

1—3 1

one prime p in the interval e*—
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20 e 5)
stituting here x for ef——l_ 8e(1 9+ and ¢ for ey we conclude that

for all sufficiently large x. there is at least one prime p in the interval
xp=Zx+tcx—. Taking x=ps, we thus obtain a new proof of
Hoheisel's relation (1). The detailed proof of (26) in this case will, ho-
wever, not be given here®).

Up to this point, everything has been independent of the Rie'»
mann hypothesis. We shall now develop some consequences of ':d-us
hypothesis, which in the sequel will be referred to as ,the R, h, I.H
the first place, it will be shown that by the aid of Len'nma 3 we obtain
a simple proof of the following theorem, first proved in 1919 (Cramér

[41). :
Theorem 1. If the R. h. is true, then

Popr— pn=0 (l/}}; 10gpﬂ] .

If the Riemann hypothesis is true, every complex zero p of £(s)
has the real part !/,, and thus we have

. [—;—-{—h)is -1

Y e,
>0

(27) S%F(S)EIF(S)KZ
7>0

Now, it is known that the number N(T) of zeros satisfying the ine-
quality 0<y<{T is of the form

r (logz—Tﬂ——- 1)-{—O(log )

{28) N(T) =2s

and hence we deduce for 6 —0

fee]
g 1 1
—re = N@e ™ dv co log .
(29) ; ¢ Gj © 2no g o
0
Putting ,
[30] n=':e#ﬁ2-m,

we conclude from (29)
1 .
- § 1
e N~y —
>0 4=

5) From Tchudakoff's theorem (cf footnote 3)) it follows that we can here choose
for 3 any positive number < —;..
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as t—co, and thus by (27) the relation (26) is certainly satisfied for
! T
all sufficiently large ©. Putting in Lemma 3 c=xe * it thus follows
that, from a cértain value of © on, there is at least one prime p in the
1 1 1

interval e—2hce? <p<=et2hce’ . Substituting x for e*—2Xce®
we conclude that for all sufficiently Jarge x there is at least one prime
p in the interval x<p=x-5)1yxlogx. Taking x=p,, we obtain
Theorem I,

As soon as we choose for 6=o0(t) any function of lower order
than (30), it seems very difficult to prove that (26) holds for all suffi-
ciently large values of ©. If the R, h, is assitmed we can, however, in
certain cases prove that (26) holds on the average, as will be shown
by the following Lemma 4.

Lemma 4. Lef c == (1) denofe a function tending to zero as
tends fo infinity, such that for all <~>m >0, o(c) is steadily decreasing
and safisties the inequality 0<(o (7)< 1. Then if the R. h. is true we
can find an absolute constant K such that for all t™>m

1

fo) | . ;o
f]F(:i—]—I, )1 dc(Ke} FE+D log?

—. 1 .
a(t-+1)

t
Putting e. g. 6 (t)==e—*" with%<c<1. we have
141
{Flo+it)|2d =< Kt? e,

i
and it is seen that, although in this case a(t) is of lower order than (30),

| F(s)] and thus a fortiori also |® F(s)| is small on the average for large
values of ©.

Throughout the proof we shall suppose >>m, and as before we
shall use the letter K to denote an unspecified absolute constant.—

Putting Z
f(s] = e_Txv

7=>0

we have on the R. h. for {<{=<{t-41

-

i

Fls)=2 f(s)=¢

. 1
Jally P,
2

“fis),
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| Fls)[P=e~|f () [

41 1
(1) f{ﬂwrm|2d«<e—ff1f(c+m|2dc,
t 1
Putting
o} (’0, T):Z e"T’."'

<
we have further

f(f’-l—”)=Ze—’[°+i‘)=°f¢(v, tedu,
ki
0

[fs—{—ic)]’§03(jc;<1>('u,':][e"‘“dfv)2

0 o0

=aq? fe—mdv.f‘q)(,vv,c)vg—md.v
0 0

= |® (v, %) |Ped o,
/

1 0 1
32) f]f(o—{—it)[2dx<c(t]fe‘”°(‘+‘)dvf|¢(1),1:)\ﬂdr,
I 0 t
Denoting by g(x) the function

glx)=2—|x|,

we have g(x) >0 for —2<x<(2 and g(¥)>1 for 0<Cx<{1. Thus

we have

1 2
(33) fmv.mzdc_s_fg(x)|<I>(v,t+x)|2dx
t -2

2
fg (x) et t—1 4+ d x
ISAr
P <lv -2

=2
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2 )

=<

2
fg (x) er—1ixg x ]

—2

—4 v 1—cos2(’{——'{)‘
12
== b—7)

H/\\

We have, however,

L?_&%Eugzmm(l : )

=2 (r— 1)
and hence
1—cos2(1—7)
TE=<v — T')z <
<2 M- v NN MO N
<<v -

<KY, (logr+o8E D -y lealiblo )

<<z [‘Zl - T]z
< Klogv N@w)<Kvlogiv.
Thus we obtain from (32) and (33)

1 co
f|f(s-}—iq:]tﬂdt<Kc(t)fﬂlongae*"“[’“)dfu
t 0

o (f) 3 1
<K+ e T
Finally, the truth of Lemma 4 follows from (31).

We are now in a position to prove a theorem which gives an
upper limit for the frequency of certain exceptionally large ,prime
intervals® (Pn, Pat+1). We shall first introduce some new notations.
Let @ and B be constants such that

(34) 0§a§—;—. =0,
Putting
(35) h=h(x)=x*loghx,

we denote by S,.;(x) the sum
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(36) See= 2o (Payi—pa)
=

which is equal to the fofal length of all prime intervals (pu, Pnia) such
that p, = x and

[37] pu+1""pn>h(pn)-

Further, we denote by N, ; (%) the number of primes p, == X satisfying (37),
so that
(38) Negt)= > L

=3

L4 n—{—l"P ll>h 2 n)

"It is then trivial that we have

Sap (%) =0 (],

and hence it can be simply deduced that we have
X
Nyp(x)=0{—)-
b (5 ( h)
If the R. h. is true, these results can ‘be considefably improved, as

shown by the following Theorem IL

Theorem Il If the R. h. is true, the functions S, (%) and N,z (x)
defined by (36) and (38) satisfy the relations

1

(392) Sa,g(x)'———O(xh—ll‘:’%Z{). for 0§m<;, B==0,
andifor d:—;-.0§ﬁ§1,

(39b)  Sws(d=O(1) for a=—;~, B>,

and

(402) Na,g[x]=0(%§;%) for 0§a<—;~, B0,

(40b) N, s(x)=O (log>2Fx) for "':‘;" 0sp=1,
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(40c)  N,g(x)=0(1) for u=%, E>1.

As soon as % (X) increases for large values of x at least as rapialy
as log*x, (39) and (40) give better results than the trivial relations
given above, Putting €. g. in (39a) Z(x) =log®x, we get the result

So3(x) = Z (Pat1 —pu) =0 ( * )

pZx log log x,
pn+14[,n>1°g’pn

stated in the Introduction.
Putting on the other hand /z(x]:\/:_c log x, it follows from (40b)
that the number of primes p, = x, satisfying the inequality

Prir—Pn >Vpalog pu,

is at. most of the form O(logx). If the second member of the last
inequality is replaced by CVp. logp., it follows from Theorem I that .
the constant C may be so determined that the modified inequality is
not satisfied by any prime number p,.

In the case « =0, 0 =(F=2, (39a) and (40a) are trivial. (39b} and
(40c) follow immediately from Theorem I. Thus it remains to prove (39a),
(40a) and (40b) in the following cases:

(41a) - a=0, E>2
(41b) 0<Call, B0
(410) a=%, 0=B=1.

We now proceed to the proof of (39) and (40) in these cases. For a
later purpose we shall, however, in the case a=1% until further notice
consider also values of B >1.

We put in Lemmas 3 and 4

f—1ela=1) (g.¢ + (B — 1) log ).

1
(42) 0-G(¢]—~24}\

Bearing in mind that in the case a=0 we have f>>2, it is then seen
that for all sufficiently large values of 1, say for 1>/, the conditions
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of Lemmas 3 and 4 are both satisfied. (It is even seen that if B has
a fixed value >>2, the value of M can be chosen independently of
o« for 0==a=4%, This remark will be used in the proof of the following
Theorem IIL.),

Let us now consider the interval t<t<£--1, where ¢ > /M.
Putting

=e,

x=¢é,

we establish a one-to-one correspondence between the intervals (£, £4-1)
and (%, ex). Let (pu, Pari) be a prime interval on the é-axis such that

43) * < pn<prp<EX,  Pnpr—Pn>h(pn).

h(x) being defined by (35). The number of intervals (pn, pny1) satisfying
(43) is obviously greater than

(44) Nep(2%)— Nep (%)

as soon as M is sufficiently large.
For the length of the corresponding interval (log pn,log pni1) on
. the t-axis, we have the inequality

R(px
(45) log pry1— log pn > klps) ‘!‘Pn“"—1 log! pn
2P 2
> e ptery
2e

if M is sufficiently large.
Further, we have in the notation of Lemma 3

1
Aax 547 €« (@4 (8 —1) log)

" tflogs wot(B—1)loge+log (at - (B—1)log 9 — log (247)

Thus as soon as M is sufficiently large we have by (45)

1
(46) AL o et L logp,i, —logp,),
24 4
From (46) it follows that for every value of © between the limits
(47) logpris+-logpn | log pups —log pr
2 - 4 '

the interval (tr—A4, ¢4 A) falls entirely in the interior of the interval
(fogpr, log prts). Thus for every © between the limits (47) we have

icm
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= (evH8) — = (4] =0,

and so obtain from Lemma 3

(48) RF(s)=

1
3
The distance between the limits (47) is according to (45) greater than

i. {8 pla—1)t
12

The number of different intervals (logp., log prts) satisfying (43) being
greater than the quantity (44), we have by (48) for all £ >M

jan]

f(ﬂ% Flot 19y s> L et (N, (25) — Ny (),

t

(49)

Introducing the expression (42) for o into Lemma 4 we obtain, however,

1
le(c+z«1 |2de <K

t

A

(50 fre(ait (—1)logh)

if M is sufficiently large, K being always an absolute constant. From
(49) and (50) we obtain, since in the case =0 we have 3 >2,

AN
Nyg 2x)— Nyg () < Keoreo————,
¢ (2x) 2 ()<< Ferr ot L plogh)
Substituting x for €/, we obtain
3
(51) N (2 — Nop () < K 1%
R2logh

for all x >e#, if M is sufficiently large.

(It will be seen without difficulty that, during all the calculations
leading up to (51), the remark made above with respect to the value
of M for a fixed B>>2 holds true.)

From (51) we deduce
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xlog®x

(52) Sap2x)— o gh

Sop (X)L K——7—

So far, we have disregarded the condition B=1 in the case (41c}.
Henceforth we shall suppose @ and B so chosen that one of the cases
{41a}) — (41c) is present.

x x
. Substituting in (51) and (52) successively —, — ..., *
o i . 2 28 long
21082
for X and adding the results, we obtain (39a), (40a) and (40b). Thus

Theorem II is proved. .
We shall now consider the convergence problem for the series

- (e} _
(53) Prts —Pn
& pulogpa
and
(54) ' 2 [pn—!—l —‘pn) ,

Dn log*pn

Theorem Ill. a) The series (53) is divergent for \=1 and conver-
gent for A >1. — b) The series (54) is divergent for .<2. If the R. h
is true, (54} is convergent for A >4,

a) and the first part of b) are almost obvious. We need only ob-
serve that p,ii—p, is on the average of the order log p., and that

the series
Z :
Pnloghpr

is divergent for 2 =0, convergent for 2 >0.

Thus it only remains to prove the convergence of (54} for »™>4.
‘For a fixed § such that 2<{8<(3, it follows from the remark made

above in connection with the relation (51) that we have for 0=(a =< RS

and for all X >eM, where M may depend on B but not on ¢,

Q (e, x);ng (2%) — Nap (x) < K x1—20 — 20k

Ctlogx—}—ﬁloglogx

K being an absolute constant.
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We have further for x>eM

(55) 3 (Prrs—pal <K~ loglh x =K xlogh 1 x
<o log x
s
I’n+1’17n§1°gaﬂn
and
L
(56)

(s — o2 <K f (= log? 22 d (— Q (%, %))
x<pp=2x S
Prtt—Pn™ logfp,
1

2

<KQ(O,x)1og25x+Klog“+‘xfx2ﬂQ(u,x]doc
0
1

2
xlog x gx [—E%
<K log lo gx+XI° xfm' Blgglogx
0 log x

< Kxlog®xloglogx.

From (55) and (56) we obtain, since §>2,
(57) (Prys —pa) <K xlogh—' x

2P, <2x
for all sufficiently large Xx. Hence we obtain
(Pns1—n)? K )
x<pp=2x pnloglpu (Iogx)l—’—)‘”zp

Substituting here 2x, 2?x,... for x, it follows that (54) is convergent
for »>>28. Since § may be taken as near to 2 as we please, (54)
converges for all >4, and Theorem III is proved.

From (57) we can also obtain other similar relations, as e. g.

3 (paps—pal = O (xlog*+* %)

=r
P=

and

Put1—Pn —”")2 — O(xlogHtt x)
p=x\ log pn

for every >0, which hold if the Riemann hypothesis is true.
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On the representations of a number

as a sum of squares.
By

T. Estermann (London).

Introduction.

If 7s(n) denotes the number of solutions of the equation
x2txt . xS =0

in integers Xy, X,, ..., Xs, and?)

(1) B = Y e (S:>>0),
then
@ (%@ =D re(mesins (3:>0),

The object of this paper is to use {2) for the evaluation of 7s{n}
in the cases s=5, 6, 7, 8 in a more elementary way than has been
done before?). Thus I hope to make the subject accessible even to those

1) Readers familiar with elliptic functions will perhaps prefer the notation ¥; (0f),
but the simpler notation & (r) is sufficient for the present purpose.

2) Hardy, Trans. American Math, Soc, 21 (1920), 255 — 284, and Proc. Nat. Acad.
of Sciences 4 (1918), 189 —193,

Mordell, Quart. J, of, Math, 48 (1917), 93— 104 and Trans, Camb, Phil. Soc. 22
{1919), 361 — 372,

Dickson, Studies in the Theory of Numbers (1930), ch, XIIL
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