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On the representations of a number

as a sum of squares.
By

T. Estermann (London).

Introduction.

If 7s(n) denotes the number of solutions of the equation
x2txt . xS =0

in integers Xy, X,, ..., Xs, and?)

(1) B = Y e (S:>>0),
then
@ (%@ =D re(mesins (3:>0),

The object of this paper is to use {2) for the evaluation of 7s{n}
in the cases s=5, 6, 7, 8 in a more elementary way than has been
done before?). Thus I hope to make the subject accessible even to those

1) Readers familiar with elliptic functions will perhaps prefer the notation ¥; (0f),
but the simpler notation & (r) is sufficient for the present purpose.

2) Hardy, Trans. American Math, Soc, 21 (1920), 255 — 284, and Proc. Nat. Acad.
of Sciences 4 (1918), 189 —193,

Mordell, Quart. J, of, Math, 48 (1917), 93— 104 and Trans, Camb, Phil. Soc. 22
{1919), 361 — 372,

Dickson, Studies in the Theory of Numbers (1930), ch, XIIL
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who know nothing of the theories of modular functions, theta functions,
and Gaussian sums.

The main result of Part 1 is this:

THEOREM 1, Let

(3) &m — ezm'/m'
(& —
d —r
@ Ak=2{~—2&2‘,§}&m ,
h 2k g=1
where h runs through all positive integers = 2k and prime io k, and
20
(5) Sm=) A
=
Then, for any positive integer 1,
1
Lt
(6) rs(n) = cn® Tsm (s=5,6, 17, 8),

where ¢ depends only on s.

In Part 2 I obtain' expressions for S(7) in the cases?) s=38
and $=5 which, when substituted in (6), lead to the following two
theorems:

THEOREM 2. Lef o, (x) denote the sum?) of the cubes of the posi-
tive divisors of x. Then, for any positive infeger 1,

74 (1) = 16 5, (1) — 32 0, (% n) + 256 5, (% n) :
THEOREM 3. Let

}_ [els]
) R()=Cz2l® Y (l) e,
m=1\M

where(---l---) is Jacobi's residue symbol®) if (m,21)=1, (”lz) ==0 otherwise,
m

Ci=80 if /=0 (mod 4) or=1 (mod 8), C;==160 if [==2 or 3 (mod 4),
and C;=112 if /=5 (mod 8). Then, for any positive integer 1,

%) Following Hardy, I have chosen these as typical, but my method can also
be applied when s is 6 or 7.
9) If x is not an integer. it has no divisors, The sum is then ‘empty’ and inter-
preted as 0,
l
%) Usually denoted by (Z) The dotted line is used here to prevent confusion
with the quotient of / and m.
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®) | rm=YR (;i) ,
q

where q runs through those positive integers whose squares are divisors
of n. ‘

It follows easily from (8) that R(l) is' the number of primitive
representations of / as a sum of 5 squares, i. e. the number of solu-
tions of the equation

X2+ X+ a2 xt =1
in integers X,, X,, X;, X;, X; with greatest common divisor 1.

None of these results are new, and for the general ideas underlying
my proof of Theorem 1 I am greatly indebted to the papers quoted,
especially the first, but I hope the publication of Part 1 is justified by
the simplifications obtained in it. The method used in Part 2 is my own.

Part 1.
1-1. Notation.
1-11. x and y are real numbers, and © is a number whose ima-
ginary part is positive.
1-12. 7 is a rational number.

1-13. In Z. r runs through all rational numbers., Similarly,

r

- A v
mZ"" Z ..., etc., 7 runs through all rational numbers satisfying
=0 0<r=2
the condition stated.
These sums are said to exist only if they are absolutely conver-

gent. It follows that, if zf(r] exists, then

=
© ;f(r] =;f(— }) ,

and if Ef(r) exists, then

0]

(10) D=2 0= > Y fr+2m.

0<rs2 m=—co

1-14, log z is the principal value of the logarithm of z, so that
—z<Jlogz=r= (250).
2° means exp (« log 2).

4. Acta Arithmetica, 11
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On this definition, the equation (2 2,)* =2,"2," is not always tru?.
it i if ¢ N d 2z, 0.
t is true if Rz; >0, Nz, =0, and 2, : .
but lll-slsr lim f[1¢)=l" means  lim f(x-iy)=1 for every x".
’ & y=o0
00 o B ‘
1-151. It easily follows that, 1fgllgloof(c]-—l, a>>0, and b is any
number, then lim flat-+8)=1.
F 100
1-16. f*(s) is an abbreviation for {f (1} }".
1-17. z=Nz—iSz (. e Z is the conjugate complex number to-2).
1
1

«2. Proot of Theorem 1.

-201, Let9 -
(1) %)= ;mt-—n”‘e""m"
and - .
(12) nEe= ., el

Then, by (1), (11), and (12),

i,
Zﬂl
(13) Y E+0=%r), ¥He+1=%0 %HE+D=e %l
1-202. We have )
i 1
(14) By () =(—i1) 9 <__ T)'
Many proofs of this formula are known, Here is the outline of one:

It is sufficient to prove (14) in the case t=1i%,% >0, when it
reduces to

> >
. e,
(15) e = 1)
mzzloo m=—co
2. . . ST R———
Now the residue of the function f(2)=e—"" cotnz at z=m is = e~
It easily follows that :
—i}oo 1 i—oco
(=]
S et [rdsty; [rais
mE=—co 2i 21

—i—00 i+00

i4oo i+00

= ff(z]dz= fﬁfng—:ﬁ——dz

e—wiz eriz
i—co i—co

% Cf. footnote to formula (1).

©
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i+oo { o) 0
- fe—w,‘ 142 emml dzmy 42 N,
Ll
i—fzo l m=1 m=:1
where
oo
A = e—w=t—2im2) f »
—20
i—imfrtoo o0
— f o Wr—min®/y d’ll’} p— J et —=my, dw
1
f—im—o0 -

as is shown by the substitution Z=w-}im/) and a subsequent

appli-
cation of Cauchy's theorem. Hence

° 1
Am = g—=mify, e~ d @ — N .,1_ z e—=mn s
-0
where Co= je—”"dx. and we obtain
cO (=] - L o0
I e T
Mm=—00 m=1 M=—00

Since this holds, in particular, for 1=1, we have ¢,=1, which, toge-

ther with (16}, proves (15). Incidentally, we have proved the well-known
formula

[ee)
fe—“x’ dx=1,
20
1-203. We hagve
1
a7 9, ()= (—zT)’T«%(__i_) .

Proof, By (12) and (1),
[ 1. 1
_ e =i2m--1)iz . vy xinis
¥y (1) = S e = _S_ e

Pt=—00 nodd
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T
=N 3 e 1 Sy [ wilemye
— et - et =) — e
Mm=—C0

== 0O neven

—9, (i¢)~&3[¢).
4

Hence, by (14), (1), and (11),

=(—I 'r)_% ,[2 i e—rilzn)fe ——'&3 (— 1) }

l n=—oo
by e
T —rim?fs —nimtfs
=(—in) 212 e—minmfs p—wim }
l m even M=e 0O
: |
— (__ f’E]— 2 { g—wimie e—m’m‘/c ,
meven m odd
_L & . L 1
=i T Y (—trent= (17 7 9, (“ 5 )
m=—co \

1-204. Let us call a function ¢(z) the comparison function of di-
mension — ¢ or, more briefly, the c.f.—a, of f(r), if the following con-
ditions hold:

(i) = >0.

(ii) f{z) is regular for 3>0,

(iii) There is a number L and a function /(r), defined for every r
(cf. 1-12), such that

(a) ‘P(T)=L+Z L(r)(ir —ix)~= for every © (which implies the

existence of the last sum as defined in 1 - 13},
(b) lim f(t)=L, and

[roo

(c) lim I (— L'E]*“f(r——»l- ) } ={(r) for every .
\’L‘~)OO
1-205. It is obvious that any function f{) cannot have more
than one c.f.—2 (for a given a).
1-206. Let ¢(t) be the c.f.—a of f(t), and let 2 be a constant.
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Then

(i) ap(t) is the c. . —a of af(s),

(ii) ¢ (t4-1) is the c. §.—a of fz-}-1),
and

L 1 _ 1)

(iii) (— i) ""(-f«»’—:f) is the c. . —o of (—ix) “f(w 7).

It may be left to the reader to prove (i) and (ii).

Proof of (ii). We are given that there is a number Z and a func-
tion /(r) such that

{18) L= lim f(2),
(19) 1) = lim {(— P (r —i-)} ,
and N
(20) o)=L+ L) lir—i7)~
=L J1(0) [—-i':]—ﬂ+2 Ly (ir—it)=,
Putting -
21) fil)=(— i) f(— i) ,

we have to prove that there is a number L, and a function 5, {r) such
that

(22) L= lim f, (3,
@3) b0=im {19, =4
and = *
(24) (—ig—=o (_ i) L, _[_Zg (1} (ir — it)—e,
Now, by (9],
. (i
;l(r)[ r— i) Zuz(__r)( — ) ,

and hence, by (20),

SR R C R

By 1-11 and 1-14,
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it)~e _l_ N =1

(26) ( -

and

1) (—i9-e(— e (—7 + 1)_”= (- é)'“lir—if)—a (r£0),

Hence, putting

(28) L, =1(0)},

(29) L0)=L,

and L

(30) L) = (— i) (— 3-) (r #0),
s r

we have, by (25),
1y o NN
(— i) ,p( T)—Z[O}-}—L( i9 +;0z( r)( r) (ir—i7)
YOG

which implies (24).
As to (22), it follows immediately from (28), (19), and (21).
It thus remains to prove (23). Now, by (21) and (26),

(—igf, (—i) — (7 (—f;)'“f(r) 7@,

and hence, by (29) and (18),

@31) L (0= tim [(— 9=, (—i)}.
300 | <
Finally, if 70, by (21) and 1 - 14,

(32)  (—i9f, (r — i) —(—ie) (—ir + —i‘)df(—"ﬂﬂ

re—1

z(-_rc—]—l)’“f(r;fl)

- (mi)_“[-— irtc L ir) f(—»l«——u L )
r I4 rie—r

Y e
r
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where

{33}
By (19) and (33),

g@=(—r (1 —1).

r T

1(—i}= lim £ (%),

r R

and hence, by 1- 151,
(34)
By (30), (34), and (32),

[y aveoj gl =)

which, together with (31}, proves (23).
1-207. Let f(z) be such that

fl=9=F()

for every =, and let = () be the c. . — a of f(7).

! —i)= lim g(re— .

r Rigugts]

L (r)= lim

3‘7‘)2’0

(35)

Then

(36) (=t =0
Proof. By 1-204,
37) ol =L+ > L) (ir—ic),
where §
(38) L= lim f(9)
and N
(39) 1() = lim {(_ I (r — i)} .
R T

Now, by (37) and (10},
(40) PR =L DR (—ir+ i,
Also, by (38), (39), and 1-15,

(41) L= lim f(iy)
Jy=>00
and
(42) I(NN= 1l —a _L_L ‘ s
o= st 4]
so that
(43) I(—r)= 1imjy‘“f(—r+i)} .
yo0 | ¥

55

(r=0},
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Using (35) with ©t=r-ify (y >>0), we find that f (r +i/y) and f{—rify)
are conjugate complex numbers. Hence, by (42) and (43),

(44) U—n =T

Similarly, using (35) with t=1iy, we deduce from {41) that

(45) L=1

(which, of course, means that L is real). Also ir—it and —ir--i <
are conjugate complex numbers and, by 1-11, certainly not =< 0. Hence,
by 1-14, (ir—it)— and (—ir—it)~ are conjugate complex numbers.
From this and (40), (37), (45), and (44) we obtain (36).

1-208. For any integers %k, such that k>0 and (2, R)=1, let

A 13 e
W)= N80,
(k) Zk; *
where % is defined by (3). Then X (r) is defined for every r.
1-209. We have :
(47) 'x(
Proof. By (46). (3), and 1-

h 2k g}
— gh(m-+qy
2k)\( -—-qél Sk

(46)

! 1
2 B (k> 0, (hk)=1).
17,

for any integer m, and
E— 2

"

2kk(£)= i
k =i
Hence
By e 2% 2% % )
sy £) 'Y e S = ar Y e,
k | m—1 g=1 g=1 m=1

2k

Observing thatZEqu is equal to 2% or 0 according as ¢ is or is not
m=1

a multiple of &, we deduce from the last formula that

X (l‘-
k
which implies (47).

4k

| [=2p @ +apm =2k 0 <4k

On the representations of a number as a sum of squares. 57

1.210. We have

48) % () = lim .‘(—ic)*%ﬂ3(r—i)l.
z——>ool T '
Proof. Let
(49 =t k>0, (b H=1

Then, by (1) and (3),
2%k
& A
=2k
=1 m=g (mod 2k}

2k
ehg?
= Z S2k Ug,

=1

p—nim*z

(50) (—icr%.&s(,_,_1_):[_“)_%
\ T

where
1
(51) g =(—i%) 3 e—imfe
m=g (mod 2%)
e 3
N T
m=q {mod 2k} o/

<
2 3

= f 2(—i7)" 3 e W, (v)dv,
o

and ¥, (v) is the number of those integers m for which m=g (mod2%)
and m*=<wv, so that

i

(52) ¥y l(o)— %

;51.

To evaluate the integral

co

f’,—_ (— i‘t)—% e~ ]//5 dv,

8
we put ==—It2z, and replace the new path of integration (a half-line
in the half-plane M z2>>0) by the positive real axis, which does not al-

ter the value of the integral, as can be shown in a well-known way by
means of Cauchy's theorem. Thus we obtain

oo s oo
(53) fr.[—i«:)—?e"xiﬂ'fp"qjdvzfxe—lex’rz_ dz:i.
2
H
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(Readers not familiar with the T-function may deduce the last equa-
tion from the formula at the end of 1-202.) By (51), (53), and (52),

ol 3
1 PR
!’lq~ﬁ‘=‘(,fﬂ(~tcl e

%) 3 L
éfwu|‘7exp(—wir\“ES‘r}d’v=tﬂ PR
0

11;-4(1,)_.%?}(1!7;

Hence, by 115,

lim Uy =——"
R 0O 2k

From this and (50), {46), and (49) we obtain (48).
1-211, Henceforth let s=5. Then it easily follows from (47)

that
1.
D) ir—in 7

exists for any ©. Also, by (1),

(54) . lim Y (m)=1.

Put

(55) W@ =1+ 0N r—i9~ .

Then, by 1-204, (54), and (48), o, (¢) is the c. f. ~%s of B (1),
Put
1, 1
) =197~

(56) ;

% (=23 (+1),

1
Then, by 1-206, (13), and (17) (%) and () are the e.f —--s of

9,7 (r) and ¥+° (¢} respectively.
1-212. Putting

8q(x) =14 (1) 357 (1)
we have, by (13), (17), and (56),
(58) &) =gy (1)

(57) (g=0,2, 3),

On the representations of a number as a sum of squares, 59

and

(59} gz("):go(—‘%)'

Also. by 1-206, 1-211, and (13), ¢,{t+1) is the c. L. —-%S of 5 (x).
Hence, by 1:205,
(60) Pt +1)=0g,(7).
1
Similarly, by 1206, 1-211, and (14), (—i%)~ 2" %(~i)‘ is the . .
T
—%s of 9; (1), and hence, by 1 - 205,

(61) (=973 5[] =50,

By (57), (60), and (13),
(62)
By (57), (61}, and (14),

glr+1)=g(7),

(63) & (_—i) —& ().

T K

Also, by 1-206 and 1 - 211, 5, (c4-1) is the c. f. —-%s of ¥ (c - 1),

L) . 1 L)
and € T ¢, (7} is the c. L. *—;S of %™ 9,%(x). Hence, by (13) and 1.205,

64) Tl 1) =1, (1),
By (57), (64}, and (13),
(65) & (r+1)=g,().
Finally, on substituting 1 for = in (59), we obtain
(65} gz(—~1->=g« ().
T
Put -
[ Fl)=g,(0) + £ (5) + g (0.
67) { Fo(t} =g, (7) & () + g, %) &:(0)+ &, (1) g5 (v),

| FlEl=g(x) &0 g o).
Then, by {62), (65), and (58),
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(68) Fe+1)=F 9 " (g=123)
and, by (59), (66), and (63},

) R(—1)=R0 =129

- 1
1-213. The functions F, (<), F2(5), and F, (z) are regular for Tt> o

Proof. It is easily seen that any comparison function in the sense
of 1-204 is regular throughout the half-plane X+>0. Hence, by (67),
(57), and 1-211, it is sufficient to prove that

~ 1
(70) HWA40  (g=023 iw>—2»).

Suppose, then,
e 1
I > 5
Then, by (1) and (11),
=l o3t .
|90 —1] s2) feme| {23 e
m=1

m==1

SRR (q=0,3)
<2m2=1(?) - q=0,3},
and hence

$,(0) # 0 (g="03).

0
Z pri (mipm)=
=1

(<] 1
— Ll
<2dle T,

m="1

Also, by (12),
]e"i“““&z(c)—2f=z

I

so that ¥, (t) %0, and (70) is proved.
1-214. We have B L
(71) . Fo(—r)=F,(?) (9=1,2,3)

Proof. By (1), (11), and (12),
(72) Y (=) =%,0) (g=0,2,3).
Hence, by 1-207 and 1-211,

On the representations of a number as a sum of squares.

2g(—T)=19,(%)

From this and (72) and (57) we obtoin
g l—)=gq(7)
which, together with (67}, proves (71).
1-215. Let
(73) Gote) = Fy - 10g ]

Then Gy(2) is regular for 0< |z | < e—=.
This follows from (68} and 1-213.

61
(g=0, 2, 3).
{g=0,2.3),
(g=1,2,3).

1-216. Let 22>0, let Y. L(r) (ir —i%)~= exist for =1, and let (U)

be an abbreviation for

,uniformly for — < x= % ",
Then
(74) )E:;Zl(r){ir—i(x%-zfy)}—“=0
Proof. Put
(75) Z;l(r)[ ird1]~—=c,

which is permissible by 1 -13. Then

and hence, by (75),
(76) lim . [I()] |ir+1]-==o0.

00 7,

(V).

Now let = be any positive number. Then, by (76), there is an @ such

that
(7) N IO Jir41 | el 2te,

ir[>a

Let y=1 and ——%(x_S_—;. Then


GUEST


62 T. Estermann,

1 1, .
[i/'T_ix—}—ylg]ir—|—1|~_2.231”_}_11'
and hence
lir—iletiy) | == 2= [ ir1]7
so that, by (77),
(78)

S i ir—ix i) <%e.

[ri>a

Also, if | 7 | = a and ¥ >0, then
lir—ixdy|—Sy==yirt1] @41,

so that, by {75),

S i) ir—ilxtiy) )

Iri=a

gy—u(aJrnul; 1L ] ir41] -

=yla++1)c.

Hence there is a y, =1 such that

2 i =it i) = =0.
From this and (78) it follows that
1Zl(r]{ir—i(x+iy)}"“ <e (Y=

We have thus established the following result:
To every positive € there is a y, such that, for every x satisfying

—-——;—<x§% and every ¥y =y,, we have

<.

’Zl(r]{ir—i(x—l—iy)}"“

Formula (74) is, of course, only a shorter enunciation of this result.

1:217. Let
: Iim f(r)=1L,
Jerco

and let ¢ (t) be the c. . — o of f(x). Then
lim ¢p(x+iy)=L ).
Y00

On the representations of a number as a sum of squares. 63

This follows from 1-204 and 1-216.

1-218, Henceforth let S=8, so that s is now restricted to the va-
lues 5, 6, 7, and 8. Then the three functions Gg(2) defined by (73) are
regular also at the origin.

Proof. It is sufficient to prove that

lim {z G q ~:l =0,
z-0 { }
This is equlvalent to

[79) lim {ezzi (x4ix) Gq [EZzi(x—f-i_v)] } =0 (U]

y-co

Hence, by (73}, it is sufficient to prove that

(80) lim (e~ Fy(x+iy)} =0 ().
300

Now, by (11) and (1).
lim % (x+iy)=lim & (x+iy)=1  (U), .
00 o

and hence, by 1-211, 1217, and (57),

(81) Jim go(xiy)=lim g; (x+1y)=1 .
Also, by (12),
[N
(82) lim {e—'Z et ¥y (x1y) } =2 ()
Y00

and lim ¥, (s} =0, so that, by 1-211 and 1-217,

Rres]

(83) lim o, (x+iy)=0 ().
¥00

By (57), (82), and (83),

1 .
Jlim {eT e, (x+iy)}———o )}
which means that
1
ygg,o{ef“f‘"ygz(x+iy)}=o ().

Since s=8, it follows that
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(84) lim {72 g, (x4iy)}=0 ().
PO

From (67), (81), and (84) we obtain (80).

1-219. Let the set A consist of the origin and those points z
for which | z| <1 and | log z | = 2=. Then it is easily seen that 4
is closed and contained in the circle | z | < e ™, that it contains the
circle |z | < e, and that its boundary consists of those points 2 for
which [z | <1 and | log 2 | = 2=,

1-220. Let z be any point on the boundary of A. Then G,(z)
is real (=1, 2, 3).

Proof. By the last part of 1:219,|2| <1 and |log z | =2%.
Hence the number

T = 2-»~_~ log 2z
satisfies 111 and .
(85) [=]=1
Also, by (73),
(86) Gg(2)=Fq(v).

Now, by’ (85), ——~ =—%, and hence, by (69) and (71), F; (x) = F, (— %)
T

—=F,;(—1)=F;(v), which implies that F,(r) is real, Hence, by (86},

Gy (2) is real

1:221., Let D, and D, be domains, let £ be a closed bounded set
contained in D; and containing D,, and let f(2) be regular in D, and real
on the boundary of E. Then f(2) is a constant.

Proof. The imaginary part of a regular function, considered in
a closed bounded set, assumes its maximum and its minimum on the
boundary of the set. Since If(2)=0 on the boundary of E, it follows
that 3f(2) =0 throughout E. Hence f(2) is real throughout the do-
main D,, and this implies the result stated. i

1-222. G,(2), G,(2), and G, (2) are constants.

Proof, We apply 1-221, taking for E the set 4 of 1-219 and
for D, and D, the circles | 2| < e and | 2 | < ¢~% respectively. Then,
by 1-215, 1-218, and 1220, G4(2) is regular in D, and real on the
boundary of E. Hence, by 1-221, G,;(2) is a constant.

1-223. g(t)=1.
Proof. It follows from (67) that g,(t) is a root of the cubic
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—F, ("]ug_}“Fz(T)u-Fa(t):O-

y (73) and 1-222, this cubic has constant coefficients. Hence g, (1)
is a constant, and it follows from (81) that this constant is 1.

1224, 9,5(c) =1, ().

T3

This follows from (57) nnd 1-223,
1-225. By (55) and (10),

1
—5s

(87) 2 (f)=1-4 Z Z Mir-2q)irdL-2ig—in)

0<r=2 g=—Co

Now it follows from (48) and (1) that % (r--2¢)=>X\(r) for any integer g.
Hence, putting

(o) i,
(88) F= >, @ig—i9 °
g=—00
we have, by (87),
(89) BE=1+ Y ¥ FE—1),
0<r=2

It easily follows from (88) that F(t) has period 2 and that
lim F(x4-iy)=0 uniformly in x. Hence
yoo0

(]
(90} Fle)=Y"b, e
where
wt2
(91) b, = _;_. f F(z) e=sins d ¢,

% being any number in the upper half-plane. Taking, in particular,
©y=i{n, we obtain from (91) and (88)

iin+4-2 o :
(92} f 2ig—1¢ /;] P e—ﬁiﬂ‘r dr
q;oo
iin4-2
1 -1,
2ig—ic) 2 ' e—sint—29)
T4,

5. Acta Arithmetica, II.
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{8 i{n—2q-+2 L, .
==\ (—iz) % e=indz

9=—C0 o _2q

|nt00 1 1
1 — 5 N - s—1
=— (—iz) ? e"nrdz=cn®
fin—00
where
oo .
(93) c= —;— f [_. l'l@)]- 2 e—riw dw
By (89), (90), and (92),
co 1
(04) ) =14c 3 0 a7 et
0<r=2 n=1
oo 1 .
=1 _{_ ¢ Z n? 1 e,—_m‘: 2 S [I’] e—inr,

n=1 0<r=2

(The inversion of the order of the summations is justified by ({47), since
$=5), From (2), (94), and 1:224 we obtain, on equating the coefficients
Of exl'm:’

1
(95) () =cn? ot 2 (r) ewinr

<=2

1-226. By 1:13 and (3),

2 £ (r) e—winr = § Z K

0<r=2 k=1h

(rn=1,2,...).

ﬁ a-wnh

A
where % runs through the same values as in (4). From this and (46),
(4), and (5) it follows that

As (f] e wEnr — S (ﬂ)v

0<r=2

which, together with (95), proves (6).
Theorem 1 is thus established.

Part 2.

21, Evaluation of 2 (r),
2-11. We have
(96) X0)=1, 2 (1)=0,
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(07) 1 +2)=2 (),
and
o 1 . s
08) 2= =G0 e

(96) and (97) follow immediately from (46) and (3).
Proof of (98). By (48) and 1-151,

N e ek

Hence, by (14) and (48),

(ir)7122(r)=_lim |

Jes00 lT;‘f & (’b_fl—-%)’
— lim { r (—'i”)_lf}a‘-’(_':'{_r}l

XescoleFr\ectr re |/
= lim J(—ig19y2 (_L_.L»:p(_L)'
3:4}03[ \ r T 7

q. e d.

212, Let = be an aggregale of rational numbers, containing ihe
numbers 0 and 1, and such thal, to every r which it contains, il also con-

1
tains the numbers r -2 and r—2 and, if r 0, ithe number —-—7 Then o

coniains all rational numbers.

Proof. Let k(r) and %2(r) be the numerator and the denominator
of 7 when expressed as a fraction in its lowest terms, the denominator
being taken positive, so that

r=h{k(@). (£(r), R{r))=1, k{r)>0.

Define an aggregate § of positive integers as follows:
The number 7 is to be in 3 if and only if there is an r, nrof in «,
such that | 2(r) | +2&k{(r)=n
Suppose = does not contain all rational numbers. Then § is not
empty, and so 3 has a least member #,, say. There is an r,, not in «,
such that
| () | F2k(r) =1,

Now 0,1, and —1 are in 2, so that |7,| is neither 0 nor 1. Put
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ro—2if ry > 1,

to-2 if rp<l—1,
l——i/r0 ifo<|r | <<l
m= | hir) | +240r)

Then r, is not in ¢, and hence n, is in §. On the other hand, 7, is less
than 7,, the least member of B. This is a contradiction.

2-13, Let two functionis fu(r)(m=1,2) be defined for every r and
have the following properties:

and

(99) f1 (0]=f2 (0)4 f1 (1]—.—:f,~, (1),

(100) Julr+2)=fulr),

and

(o) fn (— l} ——r 2 fulr) (r#0).
r

Then

(102) A=/

for every r.
This follows from 2°12 on taking for « the aggregate of those
numbers 7 for which (102) holds.
2-14. We have
0 2thN R
103 M) =
1103} i {k_’(f)(—~ 1= (2 | 2 (r)E(r)).

This follows from 2 - 13 on taking for f; () and f;(7) the two sides
of (103), and applying 2 - 11.

2 -2, Evaluation of S(n) for s=8.

2-21. Henceforth #,k1,m,n, qu and v denote positive integers,
and £, x, and y denote integers.

¢y (%) denotes the sum of the X-th powers of the primitive z-th
roots of unity (Ramanujan's sum).

It follows that

is the sum of the x-th powers of all -th roots of unity, so that
v (vl x)
(104) Xc =]
& b wta

It # is odd, and p,, ps,.... pm are the primitive #- th roots of unity,

©
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it is easily seen that —g;, —far..+.
roots of unity.

Hence

(105) Cou (X) = (— 1) €u(X) (2ta).

2-22. Let (k,k)=1. Then, by (103},

—pm are the primitive 2u-th

se kN _ [0 2thE)
(106) "8( )"lk—* @1 k).
Also, by (4) and (46),
(107) Ap= ) 8 (i) ()"
h==2k k
(h,R)=1

It follows from (106), (107), and (3) that
(Ftam  @th

108 Ap=
o8 Tl @A
Let
o2
(109} S, = u—tcy, (n), u—tc,(n), S;= u*‘4cu (n).

Then, by (5) and (108),
(110} S{n)=3S,1+16S,.
Also, by (109) and (105),
S5 —8— 8= Z vte, (n) = Z(Zu)*4 Cau ( 1) S Sy

7=2(mod4) uodd

and hence, by (110),

(111) Sn)=16S,~1585, — [—1)" S;.
2-23. It remains to evaluate S; and S,.
Let
(112} i:) 4
a=) vt
=1
Then
(113) Yot=a § (22)
g — u)~
zodd i1
By (109), (112), and (104),
0o
(114) a&zZ(m—*cu(n)=2q—42cum)
2,7 g= uiq
= 2 g3 =n"3gq, (n).

qin
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Similarly, by (109), (113), and (104),

(115) 'aS —Z g 3= Zq"3 Z g3=n"30y(n)—n3g,

godd qeven
gin

2
Nk
Now, if n is odd, then o4 (% >=0. Hence, by (111), (114), and (115),

(21 n)
2] n.

oy (n)

{—cg(n]+1603(—;*ﬂ)

#y are all those positive divisors of%n

15

116 —anSn)=
(116} 6 (n)

If nis even, and 41, 45,...,

which do not divide-}{n, then 21y, 21Uy, ,..,2U, are all those positive

divisors of # which do not divide %n, Hence

21n,
and hence, by (116},

(117) %anw( J=o (1) —2 o4

1 1
— 160, (— 12},
(3o e (y7)
From this and (6) we obtain

(118) re (n) = ay {53 () —2a, (-;— zz) +16 g, (—147 n)} .

where 2; is a constant. Substituting 1 for # in this formula, we obtain
a,=16, which, together with (118), proves Theorem 2.
2-3. Evaluation of S(n) for s =5.

2-301. U & is odd, then, by (4), (46), (103}, and (3),
2m\ 1 &N amigie
119 A= M = N ggptem
(119) =3 ( - )%; i
(m. k)=t
3 ( ) k
=k3 70T — k3N g (g2 —n),
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in the notation introduced in 2-21,

Let .
(120) dy (%) = Z e lg>—x)
g==1
and
(121) v{m, t)= Z 1

q=m
g*==f{modm)

(which means that v{m, ) is the number of solutions of the congruence
x2=1(modm)). Then, by (119) and (120),

(122) Ar=Fk2d;(n) (214).
Similarly
(123) Ar=—Fk2dy(n) (2| ).

Now ¢ (¢> — x), considered as a function of ¢, has period £ Hence
it follows from (120) that, if % | m, then
1 m
— Cr ({f —_

dp (x) =

and hence, by (104) and (121),

(124) zdk ()= Z Denlg?—x)
q——l Rim
= Z 1=v(m,x).
g=m
migi—x
2-302. Let k& be odd. Then
(125) dy {x) =0,
Proof. It has been observed that ¢;{g®>— x), considered as a func-

tion of ¢, has period 2 From this, (120), (105), and the identity

2k %
Y@= r@-+sig+n}
we obtain = =

2k

2k dy (x) = Z cr{g® —x) = Z — 1)7=* ¢z (4 —x)

=1

(=1 Z e (g — ) {(— )7+ (— 1)},

=


GUEST


12 T. Estermann.

and
(— 1)¢ - (— 1)@+ =0
since & is odd.
2-303. We have
1
(126) | dulr) | =207 .

Proof, It follows from (4), (46), and (47) that
3
127 | | =2k 2.

From this and (122) we obtain (126) immediately if # is odd, If 4| u
it follows from (123) that
1 \2
du(B)=—(—u}A1 ,
e (2 ) T
which, together with (127), again proves (126). Finally, if #=2(mod4),
it follows from 2302 that d,(n)=0, Thus (126) holds in all cases,

2:304. Let
cO
[128) '34 == ud, (n), SS = u?d, [ﬂ].

These sums are absolutely convergent by (126), and it follows from
2-302 that

(129) S, — 8= u2dy(n)=" (22)2dw(n).
;u ZZ“; .
By (5), (122), (123), (128), and (129),
(130) S)=358;,—4(5,—S;)=585,—43S,.
Let
(131) a =§7}"2
o=l
Then
(132) v2=0,—) Qu)?= —3~—a2 .

By (128), (131), and (124),
(133) 8y S,= )" ()2 dy (n) = f m=2 3" du(n)
[o,0]

nr=1 ulm

= Z m=2v(m, n),
m=1

icm

©
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Similarly, by (128), (132}, and (124},

(134) ias S, :Z m=%v(m, n}.
4 modd

2+ 305. A function f(#) is said to be multiplicative i f(uv)=f(u)f(v)
whenever {#,7)=1. This notion will be used several times in the
remainder of this paper.

Use will also be made of the following elementary lemmas:

(i) If fi(w) and f,(u) are multiplicative, and

L= Y filg)f(o)
v

then f, (1) is multiplicative. =
(ii) If (u,v)=1, and f(x) has period uv, then

o

S =YY faxrtoy).

g=1 x=1y=1
(iii) If (@,v)=1. and f(x) has period u, then
Z'f(q)=2f(qfv).
g=1 g=1
{iv) If f(x) has period m, then
km m
Y=ty f@).
g=1 g=1
2-306. Let (u,v)=1., Then
(135) vigo, t)=v (g t)v(v,1).
In other words: v(x,?) is a multiplicative function of u.

Proof. Define the auxiliary function g(x,¢,m) as 1 if x2=="¢(mod m)
and 0 otherwise. Then, by (121),

(136) vim )= glg,t,m).
=]
Hence, by lemma (ii) of 2- 305,
(137) v(uv,t}:Z Zg[ux+ruy,t,uv].
a=1 y=1

Now it follows from the definition of g (x,¢ m) that
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(138) glux+vy, tuv)=glvy tu)guxt),

and from lemma (iii) of 2- 305 and (136) that

(139) Ny ta)= glg.t.)=>u1)
y=t g=1

and similarly
(140) D glux.t,0)=v(o,1).
x=1

From (137) —(140) we obtain (135).
2-307. We have

(141) v{wim,utt)=unv(m,i),
Proof. By (136),

wm

(142) v mw) = glg it um).

g=1

Now g(g,u4%t,u*m) =0 unless g is a multiple of #, Hence

utm um
(143) Yglgwtem= ) gluv,ut,u m)
g=1 7=1

and it follows from the definition of g (x,?, m} that
(144) gluvut,u*m=g(v,tm,
By (142), (143), (144), and lemma (iv) of 2- 305,

v(uzm,uzt)=2g[fa, t,m) = uEg(v, t,m,
v=1

v=i
which, together with (136), proves (141).
2-308. An integer is said to be square-free (quadratfrei) if it is
not divisible by any square other than 1. Let us define the auxiliary

function %(m) as 1 or 0 according as 7 is or is not square-free. This
function is obviously multiplicative. Hence, if we put

(145) Vi (m, t) = ((m, ) v (m,1),
the inner pair of brackets in %((m, )} belonging to the symbol for the

greatest common divisor, it follows from 2306 that v (m.£) is a multi-
plicative function of m. Also

icm

©

On the representations of a number as a sum of squares 5
(146) v(mm= D, ¢¥ @)
q.u. v
X gu=m
g*v=n

In fact, the sum on the right, in spite of its three variables of summa-
tion, has only one possibly non-vanishing term, namely that in which ¢
is the greatest integer whose square divides m and 7, and it follows
from (145) and (141) that this term is equal to v(m, 7).

2-309. By (133} and (146),

{oe]
(147) 5,S=Y Y gty (@)
e
g*v=n
=Y cevmn= ), i),
g, u, v q.v
gro=n go=n
where
co
(148) T (@)=Y 02V (2,2),
u=1
Similarly, by (134) and (146),
(149) Sas= 3 nE.
q'ngd
qro=n
where
(150) T, (@)= Y. &Y (1,9).
uodd
By (149),
(151) 1‘3{' @y Sy=S8;—S:,
where
(152) S= LI, Si= ), ¢ T.0.
q, v 9,7
gr=n g even

qu=n

Substituting 2m for ¢ and—f{l for 7 in the last sum, we obtain

53  Si= Y. @m- Tz(—il)=%z m= Ti,({;z),

m, m, i
411 mil=n
ml=n

where 7, (w)=0 if @ is not an integer.
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By (130) and (151),
6a,S(n)=—24a,5,+405;,—40S;.

Hence, putting

(154) T, ()=— 24T, ()40 T,()—5 T, (—iz> ,
we have, by (147), (152), and (153),
(155) 60, S()= Y. ¢ T,().
Giien

2:310. Let p be a prime, Then
(156) v (pm =1 +(~;—) (ptt, p>2)
(157) Vip, ) =1 (pl2y,
and
(158) v (p™, 1) ==0 (pl ¢, m> 1),

Proof. If ptt and p™>2, it is known that v (p™ £) (as defined in
2-301) is 2 or 0 according as ? is or isnot a quadratic residue mod p,
and we have (p™ {)=1, so that % ((p™ #))=1. From this and (145) we
obtain (156),

If plt, we have, by (121),

Vo)=Y 1=1,

_9=p
¢*=0 {mod p)

and #((p,#))=#(p)=1. From these formulae and (145) we obtain (157).

If pit and m>1, we consider the cases p*|¢ and p?t ¢ separately,
In the former, (p™f) is divisible by p? and therefore not square-free,
so that = ((p™ £))=0. In the latter, by (121),

vipr= Y 1=0,
="
g*==f{mod pm)

sinE:e the condition ¢*=7 {mod p™) now implies that p|g® and p*t¢%
which is impossible, so that the sum is empty. Thus it follows from (145)
that {158) holds in either case.

2-311. We have
(159) V{1, =V (2 t)=1,

icm

©
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2 (=1 (mod 4))

160 V(4 0)=

(160) 0 (otherwise) .

and
4 (=1 (mod 8), m=3)

161 V(2™ t)=

(161) 0 (=1 (mod 8), m=3).

(159) and (160) follow easily from (145) and (121). If 7 is odd, (161)
can be established by an argument similar to the proof of (156). If £ is
even, (161) is implied in (158).

2-312. Let p be an odd prime. Then
t t
(162) o ()= (;”‘> N (pm_l) '
This follows easily from 2-310.
2-313. We have

7
(163) vz, ﬂzﬁi‘;(ﬂm] @+,

Proot. It follows from 2308 and lemma (i) of 2305 that both
sides of (163) are multiplicative functions of #, and the equation is
obviously true for #=1. Hence it is suificient to prove that (163)
holds if # is a power of an odd prime, and this follows from (162).

2-314. Let
(164) ay= ), vn(o).
v odd
Then, by (150) and (163),
(165) L= > 4o —2(—) # (0)
 odd q%‘—_?u \ q
0 &
=) q—Z(—)rz-A(w):a,Z(»)rz,
godd v odd q g=1

I
since (—l—>=0 if g is even.
q

Since V' (, I) is a multiplicative function of #, it follows from (148)
and (150) that
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D18

(166) ;)= @ uy=2v' (25, )V (u, )
zodd x=0
= dl T2 (l] ’
where
co
(167) di= Y 27V (2%,1).
x=0

Since T:(w) has been defined as 0 if @ is not an integer, it
follows from (165) that

: T.() @y
(168) n@®=
4 0 (412,
By (154), (166), and (168),
(169) T, ()=eT,()),
where

{ —24d,+35 (4]0
(170) =

—24d;4-40 (41D

2-315, By (167) and 2- 311,

30 (5£1 (mod 4))
24d;=1 35 (=1 (mod 8))
33 {{=>5 (mod 8§)).
Hence, by (170),
5 41

10 ({=2or3(mod4))
o= 5 (=1 (mod?8))
7 ({=5(mod 8)).

From this and the definition of C; (in the enunciation of Theorem 3)
it follows that

(171) Ci=16e,,
By (169), (171), (165), and (7),

On the representations of a number as a sum of squares.

3
I T,()=a.R(1),

where @, is a constant. . Hence, by (6) and (155),

(172) r5[n)~—cn Sm)=(6a) ¢ 2 l2
q*l—n
—a 3 R=a, ZR( ")
g, ! qin
gl=n

where a, is a constant. In particular
rs(1)=a;R(1).
Now r; (1= 10, and it follows from (7) that

R(1)=80=" Y m2=10.

m udd

Hence a,=1, which, together with (172), proves Theorem 3.

University College, London.
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