172 A. Khinichine,

Deingegeniiber l4sst sich angesichts der neuen Fragestellung {® (0), ¢ (0, 5))
leicht beweisen, dass der normale Fall (P (¥)=>0, ¢(®, ) <--co) bei
jedem n fiir fast alle ® vorliegt.

Bei der friiheren Fragestellung bestand kein wesentlicher Unter-
schied zwischen dem ein-und dem mehrdimensionalen. Fall; bei der
neuen Fragestellung ist ein solcher bekanntlich vorhanden; indem
némlich im eindimensionalen Fall fiir alle irrationalen © ¢ (#)=~0 und
folglich ¢ (8, B)<--co gilt") (,normales” Verhalten), gibt es bei jedem
n>1 ausser den frivialen ® mit linear abhéngigen ®;, ®;,,,,, 0, auch
solche mit linear unabhingigen &, ®,,..., 8, und mit ¢ (¥)=0"%),

Endlich sei bemerkt, dass ich bei der fritheren Fragestellung als
Zusatz beweisen konnte: ist ¢ (8)==0, so ist fiir fast alle § ¢ (V,F)=co?),
Ob ein analoger Zusatz auch bei der neuen Fragestellung gilt, weiss
ich nicht; ich vermute, dass eine solche Behauptung im allgemeinen
falsch wire; auf jeden Fall scheint die hier entwickelte Methode keinen
Anhaltspunkt fiir die Begriindung eines derartigen Zusatzes zu liefern.

(Eingegangen am 14, Mai 1936.)

) K, Kap. Il Satz 24 und Kap, VI Satz L.
% K. Kap. V Satz 8,
9 K. Kap, VII Satz 2,
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An arithmetical theorem on linear forms.
By

L. J. Mordell (Manchester).

Van der Corput!) has recently stated and proved the following
exceedingly simple and general theorem:

Jst M eine im 7-dimensicnalen Raum liegende Menge vom Volumen
V>kky... ks (B, >0,..., £, > 0), und hat jedes zu M gehdrige Punk-
tepaar (%,,.,.Xs) und (y:,...ys) die Eigenschalt, dass der Punkt
(\—xi;:—_éll-, —')'Cf’}?)""f> einer gewissen Menge N angehért, dann ent-

1 9]
hilt NV ausser dem Koordinatenursprung noch mindestens einen weite-
ren Gitterpunkt”.

The proof tacitly assumes that M is a simple set of points, i. e.
that no point is reckoned more than once in calculating the volume.
If M is not a simple set, the theorem is not true as the origin may be
the only lattice point in N. It then depends upon the nature of M
whether or not the result is trivial. As an illustration, I give a result
on linear forms not included in his theorem, and so also not in Min-
kowski's famous theorem on homogeneous linear forms which it in-
cludes.

Let

) Vin der Corput. Verallgemeinerung. einer Mordellschen Beweismethode in
der Geometrie der Zahlen, Acta Arithmetica, 1. (1935), 62-66. N
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or say L{x), be 7 linear forms with real coelficients in the 7 variables

X(, Xy, ... Xu, or say X, with determinant A>>0, Let p1, py, .., pa,
Vi, Va, ... Vg Or say I, vV be two sets of 7 non negative numbers for
which
Balhy on Pufvivy oL vy = A
or say
Op A1y =4; 1)

and let ¢;, €2, .., €4, say ¢, be any set of 1 real numbers,

Then at least one of the three sets of inequalities

| Ly (%) | = 1 (r=1,2..,n),
or say
L) | = 2
LW =y, ®
L) +e| = ;-(wv)‘ @

has a solution in integers x besides the trivial solution x==0 of (2)
and (3),

A possible solution x=0 of (4) is not trivial; .and the theo-
rem moreover is not true unless x =0 1is admitted as is clear

"

from the case when the ¢'s are small, the p, v are all l/% and L(x)

is taken to be x.

It suffices to prove the theorem for integer values of the constants
a, ¢, p, v. For it then holds for rational values of a, ¢, 1, v on consi-
dering the linear forms kL (x) and constants kp, kv, k¢ where k& is the
greatest common denominator of @, ¢, p, v. This shows also that we
may assume all the |» and v to be even integers. The case of irratio-
nal @, ¢, v follows by the usual easy limiting process on replacing
a, ¢, p, v by sufficiently close rational approximations and noting that
the sets of x's thus given are infinite in number and are. bounded in
value.

The idea in the proof is of the same kind as in my recent arith-

metic proof of Minkowski's theorem?). It depends upon an old re-
sult of H. J. S. Smith stated here as follows:

¥ Minkowski's Theorem on Hemogeneous Linear Forms. Journ. London Math.
Soc., 8 (1933), 179 — 182,
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If the a's are integers, there are exactly A"! sets of residues, say
possible residues Pi, Doy .., Pu, mod 4, such that the system of con-
gruences L(X)=7p mod A admits of a solution.. Hence there are exact-
ly A" — A1 gets of residues, say impossible residues /i, i,,
mod A such that the system L(x)=={ mod A has no solution.

It is obvious that if p, " are two possible sets, so are p+p’,
and hence p -/ is an impossible set.. It is also clear that a set of in-
tegers X exist such that L(x) = p since the system L(x)=£kA, where
k is any given set of integers, is obviously satisfied by an integer
set X,

We may suppose that the |», v are all even, and that the inequa-

sy iﬂl

lities | L (x) | == ; P have only the solution X = 0, and that the system

ILx)4c|= —;—-v has no solution, as otherwise there is nothing to pro-

ve. The first set of inequalities shows the existence of (11 + 1} (py 4+ 1)
, | 1
voo {tin =+ 1) — 1 different sets of integers i, where — > LSis= Y PM

which are non residues of the system L(x), and hence from i p we
have A1 (H{p 1) — 1) sets of impossible residues. The second ine-
quality shows that there are no sets of integers x satisfying the inequa-
lities

—e— ty= L(x)§_-c+~;—v,
and so there exist 1l (v-]-1) sets of impossible residues, say j, for which
1 ‘o 1
—_—— e VE ]S =+, (5)
‘ 2 /= i 2

and hence A1 1l(v--1) sets of impossible residues p /.
But from (1)

Ant [” ('.L-A'— 1) — 1} _1_ Ar=1 1] (V+ 1] > AN A1 ,

and so two of these impossible sets of residues must be congruent
mod A, These two sets may arise in three different ways, i. e from
twe i's, two j's, or an i and a J.

The first gives p - {==p i, or p—p' = 1—1L
Hence ' -—i is a possible set and so there is a set of integers X for
which | L (%) | 5 p since — p5i' — 1= p. The x's cannot gll be zero
since then /—i==0 and p—p'==0 (mod 4), i. e, P=7",
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The second gives p+j=p'-+Jj or p—p'==J —j, and so the set
of possible residues j'—/ gives rise to a set of integers X for which
|L(x)|=v from (5). As before all the x's are not zero.

The third case gives p-+i=p -] or p—p'~c=j—i4c,
Hence the possible set p —p’ gives rise to a set of integers x such that

P L(x)-c |

now that the x's may all be zero when p=7p’, i=/.

This proves the theorem.

A sharper form of the theorem can be deduced by applying the
theorem with ps (5 arbitrary) replaced by s (1--¢)", 1 by pr/(14-¢),
rss,v by v/(1 -+7) and making &>>0, 1>0 tend to zero in such a
way that

. 1 o 1
<—;—p.—]—~;—v since | j4c| §~§—v, |t|'f>—§—p We note

(L) M () Ty = 41y

or
sl = (1~ (L)) 1l

= signs in (2), (3), (4) can be

We see then that if [Tp 50, all the
replaced by < signs except the ome corresponding to pe in (2) and

the corresponding ‘”;*[IL&"‘}"V.G) of (4).

On making the p—> 0, we see that if llv=A and the inequalities
[ L(x) | <v have no solutions in integers X except X=0, then there is"

for all ¢ a solution of IL[X]—-}—cigéﬂv, in integers x. There can-

not be two solutions unless for at least one s these make

L (x)—{—cs=,—|;~;~v,- respectively, for otherwise, their difference would

give a solution of | L(x)|<v. This is of course known in connection
with Minkowski's limiting case. '

(Received June 26, 1936,)

! * This is a known result, See Radd, Journal of the London Math, Soc, 10 (1935)
115 — 116; Perron, Ibid, 275 — 277,
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Universal forms ) «x+ and Waring’s problem.

By
L. E. Dickson (Chicago).

1. Introduction and summary. A form F is called universal if
every positive integer is represented by F with integral values =0 of
all the variables. Write

3t=20g--r, 0<r<2% [=20d-qg—2,

THEOREM 1. Ff n>>6 and r =2"—q — 3, every positive infeger
is a sum of I n-th powers. Technically, g (n) = I.

The inequality holds when 4 =72 400. The theorem was recently
proved by the writer.!) For #>>8, it is a corollary to the new theorem
proved here:

THEOREM 2. Let d=1 or 2 according as q is odd or even. If
9 = n = 400, every positive infeger is a sum of 4n--2—d n- th powers

and the doubles of P = —12— (2"+9—4n-F-d)—2 n-th powers. Here 41+

+2—d4-2P=1

Expressed otherwise, in the ideal Waring Theorem 1, we may
take 2 P of the powers equal in pairs. While Theorem 1 states that
X"~ ... < %/ is universal, Theorem 2 yields a universal form (with

) Amer, Jour, Math,, vol, 58 (1936), pp. 521 — 35. In case the-inequality fails
ben g (n)=1I--f or I+ f—1, according as 27 = or<= fg-+f-+g, where f=[(4/3)2],
Announced Mareh 13 in Bull. Amer, Math. Soc., 1936, p. 341,

If the inequality fails for any n>- 400, the dicimal »/27 begins with fifty figures 9,
But 157 and 163 are the only values <400 of 1 for which it begins with two figures 9

) (neither with three figures 9).

2. Acla Arithmetica, II,
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