

Note on a result of Siegel.

By

H. Davenport (Manchester).

Siegel 1) has recently given a proof that, if L_1, \ldots, L_n are n real homogeneous linear forms in $y = (x_1, ..., x_n)$ with determinant 1, and c_1, \ldots, c_n are n real numbers, then there exist integral values of x_1, \ldots, x_n for which

(1)
$$\prod_{i} |L_i + c_{i+}| \leqslant \gamma_n,$$

where γ_n depends only on n^2). In this note, which I publish at Prof. Siegel's suggestion, I give a slightly different proof, using his ideas but expressing them in another form.

If $Q(x) = Q(x_1, ..., x_n)$ is a positive definite quadratic form, the successive minima S_1^2,\ldots,S_n^2 of Q are defined as follows. S_1^2 is the minimum for all (integral) $y \neq 0$, attained say for x_1 , S_2^2 is the minimum for all r not multiples of r_1 , attained say for r_2 , S_3^2 is the minimum for all r not linear integral combinations of r1, r2, and so on. It is known3) that

(2)
$$\sqrt{D} \leq S_1 \dots S_n \leq \frac{2^n \Gamma\left(1 + \frac{1}{2} n\right)}{\Gamma\left(\frac{1}{2}\right)^n} \sqrt{D}.$$

where D is the determinant of Q.

3) Minkowski, Geometrie der Zahlen (1910), 198.

Take $Q = L_1^2 + ... + L_n^2$. It is plain from the definition of S_1^2 S_n^2 that the inequality $Q < S_i^2$ implies that L_1, \ldots, L_n satisfy n-i+1independent linear conditions, the coefficients in which depend only on r_1, \ldots, r_n (which we suppose chosen once for all).

We order L_1, \ldots, L_n in the following way. In the linear condition $A_1 L_1 + \ldots + A_n L_n = 0$

$$(3) A_1 L_1 + \ldots + A_n L_n = 0$$

implied by $Q < S_n^2$. A_n is to be the largest coefficient in absolute value. In the additional linear relation implied by $Q < S_{n-1}^2$, which we can take in the form

$$(4) B_1 L_1 + \ldots + B_{n-1} L_{n-1} = 0,$$

 B_{n-1} is to be the largest coefficient in absolute value, and so on: Then, if L_1, \ldots, L_n satisfy (3), we have

$$(A_n L_n)^2 \leq (A_1^2 + \ldots + A_{n-1}^2) (L_1^2 + \ldots + L_{n-1}^2)$$

$$L_n^2 \leq (n-1)(L_1^2 + \ldots + L_{n-1}^2),$$

whence

$$L_1^2 + \ldots + L_{n-1}^2 \ge \frac{1}{n} (L_1^2 + \ldots + L_n^2).$$

If L_1, \ldots, L_n satisfy both (3) and (4), we have, similarly,

$$L_{1}^{2} + \ldots + L_{n-2}^{2} \ge \frac{1}{n-1} (L_{1}^{2} + \ldots + L_{n-1}^{2})$$

$$\ge \frac{1}{n(n-1)} (L_{1}^{2} + \ldots + L_{n}^{2}),$$

and so on generally. It follows that for any $y \neq 0$ there is an i such that

(5)
$$L_{i}^{2} + \ldots + L_{l}^{2} \ge \frac{1}{n(n-1)\ldots(l+1)} S_{i}^{2}.$$

Now consider the quadratic form

$$R = \frac{L_1^2}{S_1^2} + \dots + \frac{L_n^2}{S_n^2},$$

¹⁾ In a letter of 10 October 1937 to Prof. Mordell.

²) Minkowski conjectured that this holds with $\gamma_n = 2^{-n}$.

and denote its successive minima by T_1^2, \ldots, T_n^2 . By (5),

$$T_1^2 \ge \frac{1}{n!} .$$

Hence

(6)
$$T_1 + \ldots + T_n \leq n \ T_n \leq n \ (n!)^{\frac{n-1}{2}} T_1 \ldots T_n.$$

By (2),

(7)
$$T_1 \ldots T_n \leq \frac{2^n \Gamma\left(1+\frac{n}{2}\right)}{\Gamma\left(\frac{1}{2}\right)^n} \frac{1}{S_1 \ldots S_n},$$

since the determinant of R is $(S_1, ..., S_n)^{-2}$.

Let $r^{(j)}$ be a point at which $R = T_j^2$. Then

$$|L_i(\mathbf{r}^{(j)})| \leq S_i T_i$$
.

Let y_1, \ldots, y_n be the integers nearest to η_1, \ldots, η_n , the real solution of

$$\sum_{i} L_i(\mathbf{r}^{(j)}) \, \eta_i + c_i = 0 \qquad (i = 1, \ldots, n).$$

Then

(8)

$$\left|\sum_{j} L_{l}(\mathbf{r}^{(j)}) y_{j} + c_{l}\right| \leq \frac{1}{2} \sum_{j} \left|L_{l}(\mathbf{r}^{(j)})\right|$$

 $\leq \frac{1}{2} \left(T_1 + \ldots + T_n \right) S_t.$

Let r be defined by

$$\mathbf{r} = \sum_{i} y_{j} \, \mathbf{r}^{(j)}.$$

then x_1, \ldots, x_n are integers, and

(9)
$$L_{i}(\mathbf{r}) = \sum_{j} L_{i}(\mathbf{r}^{(j)}) y_{j}.$$

By (6), (7), (8), (9),

$$\frac{\prod_{i} |L_{i}(\mathbf{r}) + c_{i}|}{\leq} 2^{-n} \left(T_{1} + \ldots + T_{n} \right)^{n} S_{1} \ldots S_{n} \\
\leq \left\{ \frac{n 2^{n-1} \Gamma \left(1 + \frac{1}{2} n \right) (n!)^{\frac{n-1}{2}}}{\Gamma \left(\frac{1}{2} \right)^{n}} \right\}^{n} \frac{1}{(S_{1} \ldots S_{n})^{n-1}}$$

 $\leq \left\{ \frac{n \, 2^{n-1} \, \Gamma\left(1+\frac{1}{2} \, n\right) \left(n!\right)^{\frac{n-1}{2}}}{\Gamma\left(\frac{1}{2}\right)^n} \right\}^n.$

on using the first half of (2). This proves the result.

and then 1)

Other convex forms than the quadratic forms Q, R may be used in the proof, e. g. instead of Q the form

$$\operatorname{Max} (|L_1|, \ldots, |L_n|).$$

The consideration of the successive minima M_1, \ldots, M_n of this form leads to a simple proof that there exist numbers N_1, \ldots, N_n with $N_1, \ldots, N_n \ge \delta_n$, where δ_n depends only on n, such that the domain

$$|L_i| < N_i$$
 $(i = 1, \ldots, n)$

contains no lattice point other than the origin. After ordering the forms suitably one may take

$$N_i = \frac{M_i}{(n-1)(n-2)\dots i}$$

$$\delta_n = \frac{1}{1 \cdot 2^2 \cdot 3^3 \cdot \dots (n-1)^{n-1} \cdot n!}$$

(Received 11 November, 1937.)

1) $M_1 \dots M_n \ge (n!)^{-1}$ (Minkowski, loc. cit. 192).