On the .combination of topologies.
. By
Garrett Birkhoff (Canfbridge. Mass.).

1. Introduction. The following paper is exclusively con-
cerned with the comparison of different topologies defined over
a fixed ,space” 8 of ,points” 2, y, 2,...

The basis of comparison is, I believe, already familiar to most
topologists. It is that the assertions that a given topology separates
points by large distances, that it admits many sets as open and
closed, and that it admits few convergent sequences, are all es-
sentially equivalent, and can he united in the single assertion that
the topology in question is ,inclusive® or ,strong®.

This directly suggests the following problems,

A) Do there exist a least inclusive topology including, and a most
inclusive topology included in, every topology of a given class?
B) If such topologies exist, how can they be constructed ?

And it is in the obtaining, under extremely general conditions,
of consistent solutions to the above problems, that the main
interest of the paper lies.

2. The combination of distance functions. First let us be
as specific as possible; let us assume that the points of § are
actually related by a numerical ,distance function“ ¢: ¢(x, y),
satisfying

M1l: o(®, ¢)=0 and oz, y)=0
M2 o(x, )+ ely, 2) = o(#, w).

Conditions M1—M2 are equivalent to the usual metric axioms
without the assumption that ¢(z, y)=0 implies v=y.
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Definition 1: The distance function ¢ is said to ,include”
a second distance function ¢, also defined over § [in symbols, ¢ De,],
if and only if o(m, y) = ¢4(x, ¥) irrespective of x and .

Clearly if ¢ Do, and ¢, Do, then ¢ e, Moreover if ¢ Do,
and ¢; Do, then ¢ and ¢, define identical distance functions. The-
refore it is legitimate to use the logic and symbolism of an ordering
relation.

Theorem 1: There exists a least inclusive distamce fumction
including any two given distance functions ¢, and g,

Set g4z, y)=max [0,(2,), 0(x, y)]. Clearly ¢, is included in any
distance function including both ¢, and ¢,. Therefore it is sufficient
to show that it satisfies M1—M2. And this can be done by the reader.

Definition 2: The function ¢, just defined is called the ,join®
of ¢, and ¢, — in symbols, g;==0,U 0,

Theorem 2: There exists a most inclusive distance function
included in any two given distance functions o, and g,.

Here the construction is less direct. However, set ¢*(z, y)=
= min [¢,(, ¥), 05(@, ¥)], and

el y)= inf ¥ o¥@y 1, wp).
X=Xy Xy R
It is then easy to show that M1—M2 are satisfied.
Moreover retracing the definition, it is clear that if any dis-
tance function ¢ satisfies ¢, )o; and ¢, D) os, then o5z, ¥) = 04(2, ¥)
identically. 'This completes the proof.

Definition 3: The function ¢, just defined is called the ,meet”
of ¢, and ¢, — in symbols, ¢,==0, @,.

Theovrem 3: ¢ Do, if and only if oM o,=0,. And we have the
operational identities

Ll: oMNey=0:Mey and @ Ue=0U¢s
L2: o;M(0sMNey)=(0:MNga) Nz and ¢ U(02ies)=(e1U €s) U 0s
L3: oN{eUe)= and o, U(0sMe1)=01

These facts are immediate consequences of the facts stated
just after Definition 1, and the definitions of meet and join; they
can also be verified independently.
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As a corollary of Theorem 3, we have by definition ).

Theorem4 The different distamce functions de}med over amy
abstract ,space”, are o lattice.

of course, one can obtain from any distance function ¢, a me-
tric geometry by the simple expedient of stating

M3: w=y if and only if o(x, ¥)=10

as a definition of equality. Reflexiveness, symmetry, and transi-
tivity then appear as consequences of M1—M2,

But this does not detach all interest from the subclass of dis-
tance functions satisfying M3 ab initio. This subclass is obviously
closed under the operation of join. That it is not closed under the
dual operation of meet, is shown by

Example 1: There exist two metries giving the line its proper
topology, whose meet identifies all points — that is, is the dege-
nerate distance function ¢: ¢(x, y)=0.

We shall merely sketch the construction. Let ¢, be defined
dyadically by induction and continuity from

P - 0,(0, 1) =
2 I zSy==z then oy w, 2)=0yx, ¥)+ oy(y, 2).

(3) ¥ a=2k/2", b=(2k+1)/2", o= (2k+ 2)/2",
then g,(a, bj=2—""¢,(a,c) and 50 [by (2)] y(b, 0)=(1—27*") ¢\(a, 0).

And let @, be defined by e,(x, ¥) = ¢y(1—z, 1—y).

Then it is easy to show that if ¢= elﬂz, then ¢(0, 1)=0,
whence o(x; y)=0.

3. The combination of sequential topologies- In a space § with
a distance function ¢, a given sequence {r,} is said to ,converge“
to a given point z if and only if Lim ¢(,, )=0. This suggests

n—»co
as a generalization

1) Ci. the author’s On the lattice theory of ideals, Bull. Am. Math. Soc. 40
(1934), 613—19. O, Ore uses the term ,structure® in exactly the same gsense,

in an article On the foundations of abstract algebm, Annals of Math. 36 (1935),
406—37,
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Definition 4: Let S be any ,space“. By a ,sequential topo-
logy“ of 8, is meant a rule z stating when & given sequence {z,} of
points of § ,converges” to a given point # of § — in symbols, when
T {n} = .

Moreover it is obvious that if ¢ D)¢’, and Lim 0(%n, #)=0, then

Lim ¢'(z,, )=
N=-po0

Definition 5: A sequential topology = on § will be said to
»include“ a second topology 7 [in symbols, z )%, if and only if
z{w,) = implies '{x,)= 2.

0. This suggests similarly.

The legitimacy of Definition 5 is shown by the fact that if
we regard ¢ simply as a relation between the class {S} of sequences
of points of § and the class 8, then ,inclusion® as defined is simply
the inverse of the usual notion of inclusion for the corresponding
relations.

Theorem 5: There exists a least inclusive sequential tbpology
including any given class of sequemiial topologies .

This is of course the sequential topology ¢ defined by the rule
f{w,,,=a' if and only if 7,{z,)== for every k. We ghall call it the
s»join“ of the 7,

Corollary: Any two sequential topologies v, and T, have a join

T=1Ty | Ty,

Theorem 6: Each of the following properties is true of the
join T of a given sel of sequential topologies T, provided it is lrue
of every t,: ‘

1 If wy=uw for every n, then w{w,)=ux.

20 t{w,=a and n() Too imply T{Zaw) = 2.

3% If to euery n(i) $ oo there ewists i(j)+ oo such that T@au )=,
then ©{z,}=1m.

4 If t{wy=2 and t{z}=y, then o= 9.

The following property is true of z;r,, provided it is true
of 7, and of 7,

50 Let v{wh=au identically in i. Then r\m,}_m 1f and only if N (i) ewists,
80 large that §(i)>N(3) implies mmjm}

In each of cases 10—4°, the proof consists simply of showing
that the hypotheses are true of every 7; [by definition of 7], hence
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[by assumption] so is the conclusion, and consequently [again by
definition of 7] that the conclusion holds for =. The proof of 5% is
very similar. . -~ .
In fact, the list 1°—5° could be considerably amplified to in-
clude all of the significant properties of convergence in metric spaces.

Theorem 7: There exists a most inclusive sequential topology
included in any given class of sequential topologies 7.

This is of course the sequential topology = defined by the rule
wiw,\=w if and only if 74w,)=x for some k. We shall call it the , meet”
of the The

Theorem 8: If either of properties 1°-—2° of Theorem 6 is Irue
of every 1, them it is true of their meet.

The proof is left to the reader.

It is interesting that the ,L-spaces“ originally!) defined by
Fréchet are simply sequential topologies satisfying conditions 1°—2°.
This and the fact that the definitions of join and meet are simply
those of the ordinary logical product and logical sum of the cor-
responding relations, enable one to state

Theoremn 9: The sequential topologics on a fived class of points
are a ,distributive lattice[that 18, they satisfy v _(t,NTg)==(1ry)(7M7,)],
of which the ,L-spaces* of Fréchet are a sublattice.

The dual of Theorem 6 is not true of properties 3°—5° Ho-
wever, if there exists one sequential topology satisfying a set ¢ of
conditions for which Theorem 6 holds, and also included in all the
topologies of a given class } of sequential topologies, then the join
of all sequential topologies satisfying o exists and satisties 6 — which
defines a restricted operation of ,meet” relative to o, and shows
that the sequential topologies satisfying ¢ and including a fixed
sequential topology satisfying o, constitute a lattice.

4. The combination of closure topologies. In a space § with
a distance function ¢, a set X is called ,closed” if and only if
co: In; o(w, y)=0 implies e X.

') M. Fréchet, Les dimensions d'un ensemble absirait, Math. Ann. 68 (1910),
145—68,
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And X is called ,open” if and only if its complement X’ is closed.
Again, it is true that '

U1: The sum of any two, and the product of any number of
closed sets is closed.

This suggests as a convenient generalization

Definition 6: By a ,.closure topology“ defined over a space S,
is meant a system I' of closed sets satisfying C1. A set X of X is
called ,,open* under I' if and only if its complement X’ is in I".

Moreover it is obvious that if ¢ and ¢’ are any two distance
functions defined over the space 8, then ¢ ¢’ implies that the class

of sets closed under ¢ contains as a subeclass all the subsets closed
under ¢’. This suggests

Definition 7: A closure topology I' will. be said to include®
a second closure topology I", if and only if I" contains all the sets of I".
This terminology is obviously legitimate. Furthermore

Theorem 10: There exists a most inclusive closure topology

included in any class of closure topologies I'

This is namely the set-theoretical intersection of the I';, which
can easily he shown to satisfy C1. We shall call it the ,, meet of the I';.

Theorem 11: There exists a least inclusive closure topology
including any two given closure topologies I'y amd I, :

This topology, the ,join*“ I'\UI, of I'; and I',, could be defined
descriptively (using Theorem 10) as the meet of all closure topolo-
gies including 7, and I',. But it is more satisfactory to define it
constructively — the proof will be omitted 1) — as the aggregate I
of all subsets of § which can he expressed as the intersection [:] (XY

of an unrestricted set of sums (X;+Y;) of a subset X;e I’ and:
a subset Y;e I, ;

Corollary: The closure topologies on any given set are a lattice.

1) Iy is evidently the class of all subsets which can be obtained fr.om
the subsets of [, and [, by finite sums, unrestricted products, and iteration.
The equivalence of this with the aggregate I' is the substance of §16 of the
author’s On the combination of subalgebras, Proc. Camb. Phil. Soc. 29. (1933),
441-—64.

Fuandamenta Mathematicae. T. XXVL i 11


GUEST


162 G. Birkhoff:

Theorem 12: If T' DIV, and one of the follmeing conditions
is true of T", then it is true of I

02: & is closed, and any set consisting of a single point i closed.

03: Given ze8 and yeB, there erist disjoint open sets containing x

and y respectively,

The proof is trivial. ‘
A closure topology satisfying C2 will be called a ,Riesz”
topology, and one satisfying €3, a ,Hausdorff“ topology.

Corollary: The join of any two Riesz topologies is8 a Riesz
topology; the join of amy two Hausdorff topologies is a Hausdorff
topology.

In a Riesz topology, the ,closure“ X of any set X in S is
defined as the product of all closed sets which contain X, and from
this it is easy to deduce the usuall) definition of an abstract closure
topology.

It should be remarked that from ('3 it can be proved that
the intersection of all closed sets containing a given point @ contains
only #, and also that an empty set iz open — whence § is closed.
Therefore any Hausdorff topology is a fortiori a Riesz topology.

It is also known [cf. Hausdorff, loc. oit.] that to be a ,Haus-
dorff topology“ is equivalent to being a Hausdorff space in the
usual sense.

Finally, we have the trivial

Theorem 13: The meet of any class of Riesz topologies i3 a Riesz
topology.

Corollary: The Riese topologies over amy space are a sublattice
of the lattice of closure topologies.

Definition 7: By a ,basis“ of a Hausdorff topology I, is
meant a special class of open sets, of which any set open under I’
is the sum of a subclass. A Hausdorff topology is called »Separable®
if and only if it has a countable basis.

- 1) As stated, for example, in Kuratowski's Topologie I, p. 18, and due
originally to F. Riesz. ¥. Hausdorft, Mengenlehre, Berlin 1927, pp. 227—8,

gives the definition by 01—02 and the proof of the equivalence with the usual
definition.
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The significance of the notion of bagis derives in large part
from the fact that the sets of any basis of a Hausdorff topology
again satisfy Hausdorff’s [but not our] axioms.

Theorem 14: The join of any two separable Hausdorff topo-
logies is again separable.

The proof is a direct consequence of the fact that if I' has
a basis B, and I'; a basis B,, then the class of all products X;- Y;
[XieB, Y;eB,] is a bagis for the Hausdorff topology I''J I';.

A similar relation can be proved for local separability; the
questions of the preservation of regularity and normality are how-
ever more difficult. '

b. Sequential vs. neighborhood topologies. I am much indebted
to a letter from R. Baer, for the definitions and results of the
present section. '

In a metric space, it iy well-known that

D1: A sequence {w,} converges to a point x if and only if every
open set containing # contains almost every point of (.} 2).

D2: A set X ig open if and only if it containg almost all the terms
of any sequence converging to one of its points.

Theorem 15: Condition D1 and any ,primitive” closure topo-
logy I' determine a ,derivative” sequential topology t(I') satisfying
1020, Similarly condition D2 and amy ,primitive” sequeniial topo-
logy © determime a ,derivative” closure topology I'(z).

The only conceivable question is as to the validiﬁy of 10—20
and of condition O1. And these can be verified almost by inspection 2).

Theorem 16: If I'HIy; then «I) Do(Ty), and if 77,
then I'(z) DI(1y).

1y It is evident that D1 determines the same sequential topology from
any basis for the open sets of a closure topology, that it does from the class of
all open sets. ' ) .

%) It is interesting that if = satisties 2°, then D2 is equivalent to saying that

D2: X is closed if and only if {wn}C X and z{wn}=2 imply »e X.

For it X is closed under D2, then it is clearly closed under D2'. While
if X is not closed under D2, then n(i) too exists such that {wa(} CX, by 2° o{2u()}=a,
and yet by assumption wnoneX, whence X is mot closed under D2,
. 11*
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The proof involves only substitution in the definitions, and
use of a fortiori reasoning.

Theorem 17: Let I'y and 1, be any primitive topologies. Then
I(«(I')) DTy and (I'(11))C 5.

For if X is open under I, then by D1 X contains almost all
the points of any sequence {w,; converging under 2(7";) to any of
its points, and hence by D2 X is open under /(1(I'})). The proof
that #(I'(,))C 7, is similar.

Definition 8: A sequential topology 7, and a closure topology I,
are called ,equivalent” [in symbols, 7,~1I')] if and only if 7(I'))=1,
and I'(z))=T,. '

Theorem 18: Any derivative sequential topology I'y s equi-
valent with the closure topology which 1t determines.

‘Let I'y=1I(z,). Then 1(I';) Cz, by Theorem 17, whence («(ry))Cr,
by Theorem 16. But by Theorem 17, I'(+(I';)) D I'y; hence I'(»(I';))=TIT,
proving the theorem.

It would be very interesting to know the exact class of pairs
of equivalent sequential and closure topologies. Theorem 18 shows
that it contains the class of derivative topologies. One can also prove

Theorem 19: Any Hausdorff topology I' satisfying the first
countability awiom is equivalent with its derivative sequential topology.

By Theorem 17, it is sufficient to show that X e I'(w(1')) implies
that XeI'. But suppose Xnonel’— that is, that the complement X’
of X is not the sum of those sets open under I' which it contains.
Then X' will contain some point # having no neighborhood totally
in X. And by the first countability axiom one can find {m,)

entirely in X, completing the proof.

6. The consistency of the definitions of join and meet.
Theorem 16 shows that the two extensions of the notion of
inclusiveness stated in Definitions 5 and 7 are congistent for
»equivalent” topologies. The present section will be devoted to

studying the extent of the consistency of the extensions of the ope-
-rations of join and meet,.

fr-
having almost every point in every neighborhood of #, and lying’
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An hnport@nt fact is

Theorem 20: If two sequential or closure topologies correspond
to distance functions ¢, and g, then their join corresponds to ¢yU @y
It is a corollary that the join of any two metrizible topologies is iiself
metrizible.

The proof is trivial. :

Example 1 of § 2 shows that the corresponding theorem for
the operation of meet is false. Nevertheless '

Theoremn 21: I'(rNy)=I'(2)NI(v,), irrespective of the primitive
sequential topologies © and 1,.

For Xel'(rMry) if and only if every sequence converging
under 7 or 7, to a point in the complement X’ of X, has almost all
its points in X'. But that is to say, if and only if X is in I'(s) and
in I'(r;) — and hence, by definition, in I'(z) N I'(1,)..

Theorem 22: +(I'YI'))=1(T")yt(TY), irrespective of the primi-
tive closure topologies I' and I',.

For ‘.;\-'Dn} converges to & under ¢(I'Ul',) if and only if every

_intersection X - X, of a set X open under I"and a set X 1 open under I’

contains: almost every term of |x,). But this is true if and only if
every X and X, contains almost every term of {x,) — which is to
say, if and only if {x,} converges to # under 7(I') and under 7(I',).

- It is a corollary that if z~I" and 7,~I'), then «(I'U TI';))=1Us,

“and I'(zNe)=I'NT,. However it should be cautioned that unless

the closure topology obeys Hausdorff’s first countability axiom —
it is usually true that rhore sets are open under I'(zJr,) than un-
der I'UI';. And it is almost invariably true that more sequences
converge under 7(I'NI";) than under Mz,

7. The combination of topologies in linear spaces. Because
of their importance in applications, linear spaces deserve special
treatment. In faet, it is in connection with the different defi-
nitions of convergence over a fixed class of functions that the
most interesting instances of the above theory arise.
Accordingly, let L be any system of elements z,y, 2,... in
which the operations of vector addition and scalar multiplication
are defined, with the usuall) symbolism and restrictions. A se-

1) For these, cf. 8. Banach, Théorie des opérations linéaires, Warsaw 1932,
p. 26.
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quential topology 7 defined on L will be called ,continuous* if and
only if it is continuous in the operations of the system — that is,
(1) 7l@ny=2 and w(y,j=y imply 2.+ ?/nr"'w“{”% and (2) if {4,) is any
sequence of real numbers converging to 4, and #a,|=®, then ©{1, 2,}=ax.
It is clear that if 4, = implies 7{@,}=w®, then {w,}=w if and only
if viw,—a)=6. This will be assumed throughout § 7.

Theorem 16: The join of any number of continuous sequential
topologies is ilself continuous.

The proof is that sketched for Theorem 6.

Theorein 1 The most inclusive continuous sequential topology «”
included in each of two given continuous sequential topologies v and +'
ewists. and 1is given by the rule v'{w,)=0 if and only if (y.) and {2}
exist, satisfying @, =Ynt+2n and (Y ) =7 {2y} =

The only real question is as to whether this rule defines a con-
- tinuous sequential topology; if it does, v’ (C = and ="+ are obvious,
and is also obvious that any continuous sequential topology inclu-
ding 7 and < must include 7’. Further, ” and homogeneity evi-
dently define a unique sequential topology.

Now suppose 7"{w,) = and ¢"{z}}=2". Then we can find {y,),
{2uly iynt and 2} such that y,+ 2, =x—, Yo+ 2=, —2,

o \ et . N ’ P ,
Yn) =120} =7 {y0) =7{2,} = 6. Hence TWn+Yn) =1 {2n 42} = 8, by

definition . ‘
€,,<(¢’,+w;')_(w+m,)} = T Yn+Yn)+(2a42,) =0

and ©"{@,+p}=x+'. The proof that 1,—>/2 and z"‘w,,,—_.cv 1mpheb

"4, &yy=Ax follows similar lines.

Society of Fellows Harvard University.
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On the differentiation of additive functions
of rectangles.

By
.A. J. Ward (Cambridge).

It has recently been shown that if f(», ¥) is a summable fune-
tion of two variables, it is not in general true that

Lim = d
d(}zl)riloﬂRff/dw Y = 1(%q, Yo)

- almost everywhere, where R is any rectangle containing the point
" {%0y Yo)

1)2), Saks raised the question whether it is possible for the
upper and lower limits, as h, k— 0, of

Xoth gytk
ik f f(@,y) dz dy
xo—h yo—k

to be finite and not identical at the points of a set of positive mea-
sure?). Besicovitch has solved a slightly different but closely

" related problem by showmg that

L Xyth gotk

L ff(w,y)dwd/y

P&mf
Xo I/

is equal, at almost all points, either to f(x,, ¥,) or to +oq 4.

1) H. Busemann and'W. Feller, Fund. Math., 22 (1934), 226—256;

. 8. Saks, ibid., 267—261.

%) Here, as throughout this paper, B denotes a closed rectangle with sides

3 parallel to the co-ordinate axes, d(R) its diameter, and p Lebesgue plane measure.

3) Saks, loo. cit., 260.
) A. 8. Besmowtch Fund. Math 25 (1935), 209—218.
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