Completely alternating transformations.
: By
G. T. Whyburn (Virginia),

1. In an earlier paper?) a continuous transformations 7(4)=B
between two sets in a metric space has been called non-alternating
provided that for no two distinet points « and y of B does T—(y)
separate T—'(z) in A. In contrast to this, we shall call a continuous
transformation T(4) =B completely alternating provided T is not
(1—1) and if # and y are any two points of B and x, and z, any two
points of T-%(z), then T—(y) separates x, and x, in A4, i. e., there exists
a_separation A — T-!(y)= A, + A, where 4, D&, A, Dz, and
Apd,= A,-4,=0. For example, the transformation w = 22 of the
the circle |¢|=1 into the circle |w|=1 is completely alternating.
A radial projection of the continuum 4 congisting of the circle ¢=1
together with the spiral (¢—1)0 =1, 6> x, onto the circle o=1
is a second example. In this second example, 4 i3 not locally connected.
It 7(4)= B is completely alternating, obviously each of the sets
T-'(x), z¢B, must be totally disconnected.

A transformation 7(4)= B will be said to be topologically
equivalent or simply equivalent to a transformation W(A')= B’
provided we can write T(A) = H, W H, (A) = B where Hy(Ad)y=A’
and Hy(B')= B are homeomorphisms. For example, any transfor-
mation T(4)= B mapping a simple arc A into a simple closed curve
by merely drawing the endpoints of 4 together is equivalent to the
transformation z=cog !, y=sint on the interval 0<t<<1. Clearly
also any two homeomorphisms between two sets A and B are equi-

valent. It is easily verified that equivalence as here defined is an
equable relation.

1} See my paper Non-alternating transformations, Amer. Jour. Math., 56
(1934), pp. 204302
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2. Theorem. If A is q compact continuum and T(A)=B is
completely alternating, then A is atriodic %) and B is a simple closed
curve. :

Proof. We shall prove first that B is a simple closed curve.
Since T' is not (1 — 1), there exists a point yeB such that T—(y) is
non-degenerate. We shall prove if zeB—y, then B— (w+ ¢) is
disconnected. Let Y—=7-! (y). Clearly there exists a separation
Y=Y, + Y, where Y, and Y, are closed and disjoint. Let N be
a continuum in 4 irreducible between Y, and ¥, and let N.¥, = H,
N.Y,= K. Then N —(H+ K)=Q is connected and since T is
completely alternating it follows that T-Yz)-@ = «', a single point.
Clearly we have a separation N — g’ = Nv+ Ny NwDH, N:DE.
[For if A—T-!(x)=A+ Ay is a separation between hyeH and keK,
we have only to take N,=N-4;, N=N -A4]). Let Q=Q-N)=N,—H,
Q=@ Ny=N;,— K. Finally let B, = T(@,), By= T(Q,). Then
since each set T-!(b), beB —y, must intersect Q@ in exactly one
point, it follows that B,+ B,= —(z+4y) and B;-B,=0.
Furthermore E-B2=0. For suppose bgeﬁl-Bz. Let xieB,, and @;->b,.
Then by continuity we have '

L = lim sup [T—(z,)]C T-1(by).

But this is impossible since T—(b,). N is a single point q:€Q,, Whereas
each of the sets 7-'(x;) intersects the set @, and Q;-Q,=0. Similarly
B;-By=0. Thus B — (#+y) is disconnected for every z¢B —y.

Now let zeB—(x + y). Then either @, or Q,, say @,, contains
exactly one point 2" of T—!(2). Furthermore we have the separation
N —2' = Nyp+ Ni and if we lot Q@ = NipQ;, Q= Niy+ N and
By = T(Qu), By= T(Q:;) we have By + By;=B—(z+2); and
just as above it follows that B,, and B,, are separated.

Therefore we have shown that any pair of points whatever in
B disconnects B so that B is a simple closed curve.

Now to show that A is atriodic, we first prove

(i) If t=o0a+ ob+ oc is any triod in A, then for some zeB
we must have that ¢ T—'(z) contains more than one point.

%) A set N is called a triod provided N is the sum of three cor}tinua, oa, o.b, oc
each pair of which have just the point o in common. A set M is said to be atriodic
provided M contains no triod. See R. L. Moore, Proc. Nt. Acad. Se. 14 (1928), p. 85.
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For otherwise ¢ maps into T'(t) topologically, which impossible
ginee by the above proof B is a simple cloged curve and hence ig
atriodic.

Now suppose, contrary to What we wish to show, that 4 cont-
aing a triod ¢ = oa + ob + oc. Let xe T(t) — T(0). Them T—(x) does
not contain o. Let R be the component of t—t-T—*(x) containing o.
Now clearly E contains a sub-triod ¢=oa’ 4 0b’ 4 oc¢’ of t. By (i)
there exists a y e B such that t'-T—'(y) contains at least two points
4, and y,. Butsince y,+y,CR and R is connected and R.T-(x)=0,
T-(x) cannot separate y, and y, in A contrary to hypothesis. Thus
A is atriodic.

(2.1). Corollary. If A is a compact locally connected continuum
and T(A)= B is completely alternating, then A is either a simple are
or & stmple closed curve and B is a simple closed curve.

This results at once from (2) since the simple arc and the simple
closed curve are the only atriodic locally eonnected compact continua.

8. Theorem. If A is a simple dlosed curve and T(A)=B is
completely alternating, T is equivalent to the tramsformation »'=cos kt,
y'=sin kt (k an integer) on the circle x=cost, y=sint, 0<t< 2n
(or, in other words to the transformation w=z* on the circle |z| = 1)3).

Proof. Since 4 is a simple closed curve it follows that for each
beB, T-!(b) contains a finite number £>1 of points and % is the
same for every bEBk' Nowlet oeB and let T1(0)=0,+0y+...40;

Then A — T—!(0)= %‘ ;, where o; is an open arc with end points o,
and 0.1, where o,13=0,. Furthermore if b¢B —o, then gince T

is completely alternating it follows that 7-(p)=p,+ ... + ps
where p;ee;. Now let A’ denote the circle

¢ = cos i, 0t 2m.
Let o} denote the arc of 4’ given by 0 <t <C 27/k. Let h be a ho-
meomorphism mapping @, into @) so that h(o,) is the point (t=0).
We now define H,(4)= A’ as follows. Let pedA. If peay, let
Hy(p) = Mp). If p = o; for some 4, let H;(0,) be the point on A4’ given

y = §in ¢,

®) Although in this case the transformation is more simply described by -

means of the complex variable, we shall use the language of the real parameter
tsince is definitely more advantageous in the case of an arc 4. as treated below in § 4.
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by t=(t — 1)2n/k. Finally if pea;, lot p,=T-[T(p)]-¢, and let ¢,
be the value of ¢ corresponding to h(p,); we then define H,(p) to be
the point on A’ given by

t=2n(i—1)/k+1,.
Clearly H, iz a homeomorphism.

Now let W denote the tra.nﬂformatlon send.mg (w, y)ed’ mto
(@', y') e B" where

o' = cos kt, y' = sin ki, 0<t<2n.

Tor convenience we shall regard B’ as a different eircle from A’.
Since for each b’ = («', y') e B’, there correspond % values of ¢

expressible in the form &, t,+27n/k, ..., t,4-2(k—1)n/k, it follows

from the definition of H; and of W that Hy ‘"W '(b’)=T""(b) for some

beB. Thus if for each b’ e¢B’ we define ‘

Hy(b')= THT'W ('),

we have H,(B’)= B and it is readily seen that H, is a homeomor-
phism.
Now H,—=TH;'W' gives T=H,WH,, by applying W and H,

successively on the right; and thus 7 is equivalent to W.

4. Theorem. If A is a simple arc ab, then is T equivalent to the
transformation @ = cos ki, y = sin ki, (k an integer), or to the trams-
formation x=cos(k+1/2)t, y=sin(k+1/2)t on the circle w=sint,
y=sint, 0<1t<2n, according as T(a)=T(b) or T(a)F T(b)

Proof. (i) Suppose T(a) = T(b)=o. Let k+1 be the number
of points in 7—'(o) and let T-'(0)=04+0;+....+0x Where o,= a,
or=>b and o precedens 0.1 on the arc ab in the order -a, b. Now

A —T Yo Z a;, where a; is the open arc o,—; o; on ab. Further-

more if p e B—o, then T-!(p)= ;’pi, where p;ea;. Now lot A’ be

the interval (0, 2n) and let » be a homeomorphism mapping &; on
to the interval (0, 2n/k) so that h(a)= 0, h(o,) = 2n/k. Now define
H,(A)=A’ as follows: if peay, let Hy(p)=h(p); if p=o; for some i,
let H,(p) = 2nifk; if peay, lot p, = T[T(p)]-, and define

H, (p) = 2n (i —1)[k + Hy(p,)-
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Clearly H, is a homeomorphism. Now if we let W be the transformation
o=coskt, y=sinkt, 0<<t< 27, sending the interval A’ = (0, 2x)
into the circle B', and define Hy(b')=THi W '(b'), b’ ¢ B', it follows
just as in the preceeding proof that H, is a homeomorphism and that
T=H, W H, so that T is equivalent to W. '

(i) Suppose T'(a) = a’, T(b) ="b’', o' 5=b’. Since there exist at
least one peB such that T-'(p) is non degenerate and since T is com-
pletely alternating it follows that both T—'(a’) and T-(b’) are non
degenerate. Let %1 be the number (clearly finite) of points in 7—(a’)
and write T-'(a')=ay+ay+....+ar, where g,=a and a; precedes
a:+1 on ab in the order a,b. Then T—!(b') contains just k-1 points
and we can write T—!(b')=by+b,+...+by where by=>b and b, (2 <k)
lies on the open are a;a.4. Let 4’ be the interval (0,27) and
let k be a homeomorphism mapping the arc a,a, into the interval
[0, 27/(k + 1/2)] so that h(ap)=0 and h(b,) = 7/(k + 1/2).

Let us now define H,(A4)=A' as follows. Let peAd. if p=a; for
some 1, let
Hy(p) = 2mi(k + 1/2).
If not, let a; be the first point of T—'(a’) on the arc pa in the order p,
a and let p,=T"'[T(p)}-a,a,; then define

Hy(p) = 2ni/(k + 1/2) + R(py).

Clearly H, is a homeomorphism.

Now let W denote transformation

w=cos (k4 1/2)t, y=yin(k+1/2)t, 0<tI< 27,

sending the interval A’'=(0, 27) into the unit circle B’. Then if we
define H,(2)=TH; 1W_l(z), zeB’, it follows just as in the proceeding
proofs that H, is a homeomorphism and that T=H,WH,, 8o that T
is equivalent to W.

Note. In case (ii) clearly the fraction 1/2 could be replaced by
any fraction 6, 0 <6 <1.

5. Componentwise alternating transformations.

A continuous transformation T(4)=B which is not monotone 4)
will be said to be completely compomentwise alternating provided
that if #, yeB and X, and X, are components of 7-!(z), then
T-(y) separates X; and X, in A.

1) T' is said to be monotone provided that for each beB, T '(b) is con-
nected. See C. B. Morrey, Amer. Jour. Math., 57 (1935), pp. 17—50.
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Now it is known ®) that if 4 is compact, then any continuous
transformation T(A)= B can be factored into the form 7,7T,(4),
where T; is monotone and T, has the property that for each ze¢B,

T5 () is of dimension 0. We proceed to prove the following:

Theorem. If A is a compact continuum and T(A)=B is com-
pletely componentwise alternating and if T be factored into the form
T,T, as above, then T, is completely alternating (amd consequently B
18 a simple closed curve and Ty(A) is atriodic). Conversely, if T(A)=A'
i8 monotone and T,T\(A)= T,A')=B is completely alternating,
then T(A)= T,T,(A)= B 18 completely componentwise alternating.

To prove the first statement, let @, yeB, @, zyeTs (),
X;= T7 (), (i=1, 2), Then since X, and X, are components of
T—(w), there exists a separation

(i) A—TVy)=A4,+ 4, where 4, DX; (i=1,2)
Applying T, to this and letting Ty(4)= A’ we get

() A" — T7'(y) = Ty(4) + To(4y).
Now since T, is monotone, it follows that

(i) T7'Ty(d)=4; (i=1,2)

For if not, there exist a peTy(4,), say, so that Ti'(p)-T(y) % 0,
gince T'(p) is connected. Then if ge T7(p)-T'(y) and red,-T1 (),
we have T,(q)=Ty(r)=p. Whence T,T;(q)=T,Ty(r)=T(q)=T(r)=y
since geT—!(y); and this is impossible since red,C 4 — T Yy).

Now from (iii) it follows that Ty(4,) and Ty(4,) are disjoint
and separated since [See (1.1) of my -paper eited in ref. 1] if

peTy(4,)-Ty(A4,) we would have a point geT7 ' (p) CA, belonging to 4,
which is impossible. Thus since Ty(4)DT(X)=a (i=1,2),
(ii) gives the required separation of A'—T: () »between 2, and ,.
Accordingly T, is completely alternating.

- We proceed now to prove the converse statement. It results
at once from the definition that any completely alternating transfo¥-
mation W(X)= Y has the property that for each ye Y, W"‘(y). is
of dimension 0. Thus T, has this property and since the factorization

5) See my paper, loc. cit.; also see S. Eilenberg, Fund. Math. 22 (1934),
pp. 202—296. .
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T=T,T, where T, is monotone and T, has th_i{s same property, is
unique ¢), it follows that for any peTy(4), T1 (p) i8 & component

of T—'T,(p). .
Now let @,yeB and let X; and X, be distinct components of

T-Y(z). Let o= Ty(X;), #,= Ty(X,). By what we have just shown,
#, and , are distinet points of T% (2). Thus if we let 4’ = T,(4) we
have a separation

A — T (y)=Ai+ A;, where @ CA; (i=1,2).

Applying 77" to this we get
A—T7'(y)="Tr"(43)+ T (43), since

and this must be a separation since T is continuous. Finally,
T7Y(A) DX; so that T is completely componentwise alternating.

T‘I—l T;-l — T-—l;

8) To prove this it suffices to show that if T'= T, T, is any such factori-
zation, then for any peT,(4), T—!(p) is a component of T—'T,(p). Now since
T=T, T,, we must have Ti (p)CT—'T4(p). Also, since T, is monotone, T (p)
is connected. Thus T;(p) is contained in some gingle component X of T-1T,(p).
Tt remains to show that 7T, (X)=p. If not, then 7'(X) is a non-degenerate, con-
tinuum; but then since T, maps only O-dimensional sets into single points, it
would follow that T, T;(X)= T (X) could not reduce to a single point, contrary
to the fact that T'(X)=u.

The University of Virginia.
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Sur les fonctions de deux variables réelles,
l Par
Vojtéch Jarnik (Praha).

Le but de cetite note est de montrer que 1’on peut, 4 Paide d*un
léger changement de la méthode de démonstration, remplacer quelques
résultats de M. Blumberg?) et de Mlle Schmeiser %) par des ré-
sultats plus précis. Pour ne pas compliquer inutilement la note ac-
tuelle, nous n’envisagerons que le théordme 22 de Mlle Schmeiser,
auquel nous allons donner une forme plus précise que voici:

Théoréme. Soitm le plan euclidien; soit s une droite de ce plam;
soit f(x,y)=f(P) une fonction réelle®) définie dans m. P dtant un point
quelcongue de & et d élant une direction quelconque de P, désignons par

-—>
Pd la demidroite issue du point P dans la direction d (le point P étant

regardé comme n’appartenant pas & 1_’5).

Enfin, désignons par E(P,d) Vensemble de tous les mombres &
jowissant de la propriété suivante: il ewiste une suite de points Py, P,, ...
telle que

. =
P, Pd, f(Pn)—> &

Alors il existe un ensemble dénombrable Des jouissant de la propridé
suivante: dy, d, élant deuw directions quelconques, situdes d’un méme
coté de la droite 8, on a

1) E(P, &) E(P,d;) % 0

pour chaque Pes—D.

P,— P, pour mn—»oo %),

1) Fund. Math. 18 (1930), p. 17—24.
1) Fund. Math. 22 (1934), p. 70—76.
%) La démonstration s’applique d'ailleurs aussi- dans le cas d’une fonction
complexe de deux variables réelles.
4) On admet aussi les valeurs §=z:co.
10*
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