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B, et lensemble f(E;)= ¢(B,)C ¢(£)=H. Comme l'image ho-
méomorphe d’un ensemble toujours de premiére catégorie, ’ensemble
f(E,) Vest done aussi. Or, c’est impossible, puisque f(E,), en tant que
gous-ensemble de Densemble H jouissant de la propriété L, jouit
également de cetite propriété et par suite, en tant que indénombrable,
ne jouit pas de la propriété de Baire?).

La fonction: f(r) est donc de classe <C2 et elle est discontinue
sur tout sous-ensemble indénombrable de l'ensemble E, c. q. f. d.

1) Voir p. ex. mon livre cité, p. 41.
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On continuous transformations in the plane *.
By
Tibor Radé (Columbus, Ohio).

Introduction.

The purpose of this paper is to present certain remarks which
occurred to me while studying the important papers of Schauder
and Banach on continuous transformations?!). While the methods
of Banach and Schauder are such that their results are obviously
valid in spaces of any finite number of dimensions, it might be of
interest to observe that in the two-dimensional case, which is quite
important for the applications, it is possible to obtain more complete
information. This is essentially due to the existence of transforma-
tions which are defined, in terms of complex numbers, by equations
of the form w =27, » an integer. An immediate consequence is the
simple lemma in 1.3. Roughly speaking, the lemma states that the

. image of a plane region, under a continuous transformation, is similar

in some respects to the Riemann surfaces employed in the theory of
functions of a complex variable #). The inference from the lemma is

*) Presented to the American Math. Society at the meeting in Chicago,
April 1936.

1) 8. Banach, Sur les lignes rectifiables et sur les surfaces dont Daire
est finie, Fundamenta Mathematicae, vol. 7 (1925), pp. 225—236; J. Schauder,
Uber stetige Abbildungen, Fundamenta Mathematicae, vol. 12 (1928), pp. 47—T74.

%) The reader will notice that our use of the transformation w = 2, in proving
the lemma in 1.3, corresponds to the process of local uniformization in the theory
of Riemann surfaces. The manner in which the topological index is used in 1.3 is
of course famniliar to students of the theory of functions of a complex variable, where
a similar reasoning is applied to discuss the transformation w = f(2), f(2) an ana-
lytic function, in the vicinity of a point where f(2) = 0. — An interesting appli-
cation of the transformation w = 2" to the special case of two dimensions is discussed
by 8. Saks, Sur une inégalité de la théorie des fonctions, Acta Szeged, vol. 44 (1928),
pp. 51—55, in particular corollary 2, p. 53.
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information concerning the topological index, one of the basic tools
in this line of work, which is much more precise than what Schauder

ased in the n-dimensional case. As a result, we shall obtain, in § 4, '

more efficient theorems for general continuous tra.nsfonnations: The
application of the essentially topologieal.results of '§ 4 to metrically
specialized transformations is rather obvious. As mlg!:lﬁ be ‘expected,
the theorems obtained in this manner for the two-dimensional case
are considerably more general and final in charagter than the cor-
responding results of Schauder for the n-dimenm.ona,l case. In the
way of illustration, some of these theorems are discussed in § 5.
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§ 1. On the topological index.

1.1 Suppose w = f(z) is a (complex-valued) continuous fune-
tion in some closed region R, bounded by a finite number of non-
intersecting Jordan curves Oy, Cy, ..., 0. Let C be a Jordan curve in
R, and w, a complex number such that f(z) 3w, on C. If 2 describes
C in the counter-clockwise sense, then the point w = f(z) describes,
in the w-plane, a (directed) continuous curve O*. The (continuously
varied) argument of f(z) —w, changes by a certain amount 2k,
where k is an integer (positive, negative, or zero). The integer k is
the topological index of the-point w, with respeet to the (directed)
continuous curve C*.
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1.2. Suppose that w, is a complex number such that f(z) Fw,
on Gy, Cy ..., Cn. Let k; be the topological index of w, with respect
to the image C7 of C; under the transformation w = f(2) (each of the
Jordan curves C; being described in the counter-clockwise senge).

Supposing that C; encloses C,, ..., 0,, we have the following well-
known facts.

a) If f(z) =w, in R, then k =k, + ...+ k..
b) Consequently, if % =Fk,+ ...+ k, then the equation
f() — wy = 0 has at least one root in the interior of R.

In particular, for n=1, we have the following special state-
ments. .

If f(2) is continuous in and on a Jordan curve ¢, and if f(2)=4=w,
in and on O, then the topological index %k of w, with respect to the
image of (' under the transformation w = f(z) is equal to zero. If we
only assume that f(2) 4= w, on C, and if we find that the index % is
different from zero, then the equation f(2)=w, has at least one root
in the interior of C.

1.3. One of our main arguments in the sequel will be a more
precise form of the last statement. Suppose that € is a Jordan eurve
in the z-plane which contains 2=0 in its interior. Let f(z) be a fune-
tion with the following properties.

a) f(z) is continuous in and on C.
b) f0)=0, but f(z) 4 0 otherwise in and on C.
¢) The topological index k of the point w=0 with respect to

the image of (' under the transformation w = f(2) is different from
%er0.

Then there exisls @ @ >0 such that for 0<|w| <o the equation
f(z) = w has at least |k| distinct roots in the interior of C 3).

To prove this, let (' denote any Jordan curve interior to € and
enclosing 2=~0. Starting from a point 2, on (", let z describe ¢’ in the
counter-clockwise sense. By 1.2, the (continuously varied) argument
of f(z) changes then by 2kn on account of the above assumption c),

and hence f(z)' ¥, if varied continuously, returns to its initial value.

That is, we have a singlevalued continuous bramch of f(2)! ™ in and
on (!, In other words, we can write

f(z) = g(z)lH,

4) See 2).
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where g(2) is single-valued and continuous in and on (. Clearly, g(0)=0,
but g(z) =0 otherwise in and on C. Furthermore, the topological
index of w=0 with respect to the image of ¢ under the transforma-
tion w=g(¢) is +1 or —1, and hence different from zero. Conge-
quently, we have a 6> 0 such that for 0 <|w| <J the topological
index of w with respect to the same image is also different from zero,
and g(z) +w on C. Hence, by 1.2 for 0<|w|<<d the equation g(z)=w
has at least one root interior to C. Suppose now that

0 <|w| < eo=dlH,

Let wy, wy, ..., wys denote the |k|-th roots of w. Then

0 <w] <4, §=1,2, .., K.

Hence we have, for each w;, at least one 2, interior to O, such that
9(#))=wj, and consequently f(z;)=w. Since wy, ..., wy are all distinct,
and since g(z) is single-valued, these points 2y, ..., 24 are all distinct,
and the proof iy thus finished.

§ 2. The fanction Nyp(w).

2.1. The continuous transformation w = f(2). We shall
assume in the sequel that f(2) is single-valued and continuous in a
closed square §, in the z-plane. The boundary of 8, will be denoted
by By, its image in the w-plane by B§. Since [f(z)| is bounded on S,,
the image of §, is comprised in some finite circle in the w-plane. The
set of points in and on this circle will be denoted by K§. If z in 8§,
and w in K§ are related by the equation w=f(z), then w will be
called the image of z, and 2 will be called a model of w. A point w might
have several, and even infinitely many, models.

2.2. If E is a point-set in §,, then the function N p(w) is defined,
in K3, as the number of distinct models, comprised in B, of w4). Ifw
has infinitely many models in B, then Ng(w)=+occ. Since we only
assume that the transformation w = f(2) is continuous, we cannot
assert that Nr(w) is measurable whenever the set E is measurable.
However, Banach®) proved that Ngz(w) is measurable whenever E

18 a closed squate. Using his method, the reader will easily verify
that Ng(w) is measurable whenever B is an open sel,

*) ‘This function was introduced by Banach, loe, -cit.2).
5) Loc. cit. 1),
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2.3. In particular the function Ng(w) represents the total
number of models of w. This function N, (w) is measurable (see 2.2).
Thus the set of points where Ng(w)=+oco is also measurable.
This set will be denoted by ZX. Clearly

New) <<4oo
for every set E(C S,
2.4. Obviously, if

for weK§—3%

E= 2171'7,,, E,CE,C..CE.C...C8y

then
Ng, (w) > N p(w)

2.5. Obviously, if

B= 18, 85,08, DF: ..,

in K§.

then } .

2.6. Obviously, if

in K§—23&.

E=}E,, EE=0 for =7,
1

then
Np(w) = Zl,’Nb;"(w) in K3.

§ 3. The functions i(?), Ny, (w), n(w).
3.1. A point ze 8, will be called a relative of the point zye Sy,
it f(z) = f(20)-
8.2 The set I. This set is defined s consisting of all points
o€ 8, with the following properties.

a) 2, is interior to S,

b) There exists a ¢=0(%)>0, such that f(e) =i: f(z,) for
0<|#— 2| < ¢. That is: I is the set of those interior points of S
which have a neighborhood clear of relatives.

3.3 Clearly

NSQ(W) == N](’W) for ’MJGK(’)“ — (E:o + BE)
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3.4. The function i(2) will be first defined on the get I as follows ¢),
If 2,el, then we have a 0 =0(2) >0 such that f(2)=f(2,) for
0 < |2 —2,| <e. Let C be a Jordan curve, enclosing #, in the circular
ring 0 << |2 — 2,| < ¢. The image of C is then a continuous curve (*
which does not pass through the point w,= f(2). By definition,
i(2,) is then equal to the topological index of w, = f(2,) with respect
to O* (it being supposed that C itself is described in the counter-
clockwise sense). By 1.2, i(2,) is then independent of the particular
choice of the Jordan curve 0. For zeS,— I, we define i(2)=0.

3.5. We define the set I, as the subset of I on which i(e) is
equal to a given integer k. Thus zel, means that i(2)=0 and z¢l.

3.6. We proceed to show that the function (2) and the sets
N, (w) are measurable 7). Let k be any integer, and n, m any positive
integers. We define the set Hy ., . as consisting of all points z,e 8,
with the following properties.

a) 2, is interior to §,.

b) The closed ring 1/(fn+ m)
8, and contains no relatives of z,.

¢) The topological index of the point w,= f(2,) with respect
to the image of the circle |2 — z,| = 1/n is equal to %.

< |2 —2,|<<1/n is interior to

3.7. Obviously, the set Ej ,,n is open.
3.8. ObViOuSIY Bynmi1C Bhnme

3.9. Define v
By =MIZE,,,,,,,,,.
Obviously, Ey,C Erut1.
3.10. Obviously
Ip= f' By .

==l

3.11. Since Ep,n is open, it follows from 3.10, 3.9 that [, and
therefore I= 2;1,, are measurable sets. Consequently, the function

i{z) is measurable,

%) The function i(z) was introduced by Banach, loc. eit. ).

) The measurability of i(z) was already proved by Sechauder, loc. ¢it. 1),
in~ a ditferent manner.
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3.12. Since Eynm is open, the function

NEk,n,m (w)

is measurable (see 2.2). It follows then from 3.10, 3.9, 3.8, 2.4, 2.5,
that the functions N, (w) are all measurable on K§ — 3.

3.13. The function n(w)*®). For weK§-— B, the function n(w)
is defined as being equal to the topological index of the point w with
respect to the image B§ of the boundary B, of the fundamental

square S,. For w e By, we define n(w)=0. The function 'n(w) is clea.rly
meagurable.

§4. Relations between Ny, (w), Ny, (w), n(w).

4.1. Given a positive integer n, we define a set 8% in the w-plane
as follows: The point wye Ko belongs to &} if first Ng(w,) <<mn, and
second there exists a ¢=g(w,)>0, such that Ns(w)=n for
0<<|w—mwy| <o ®. Clearly, 8% is an isolated and therefore
denumerable set. The set

(o]
=26
- 1
is thus of measure zero.

4.2. Suppose w,e K§

— (B8 + 3%+ 6*). Then w, has a finite
number of models o
zl) zZ’ b | zm’

all of which are in the set I. It follows then from 1.3 that we have-
an 7= 7(w,) > 0, such that for 0 <|w — w,|<<7n the point w has
at least |i(2;)| models in the vicinity of 2, for j =1, 2, ..., m. Hence

m= 'Nso(,w )7

Now) = Xlilm)]  for 0< |w—uw,|<n.

Since all the points 2; are in I, we have

2 1i(z)| = 2| k| Nry(uwo).

%) Cf. Schauder, loc. cit.1).
%) The corresponding notion, in the theory of functlons of a complex va-
riable, would be the notion of a branch-point.
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Consequently ‘
(1) NS:»(W)%%‘lklle(wo) ' for 0<Iw_u)0| <’7"

But w, is not in 6*. Hence (1) implies that

(2) 'Nsu(wl)) g .%_J‘ |k| 'le(w(’)’

provided that the right-hand member is positive. If the right-hand
member is zero, then (2) is obvious. Thus we have the

Theorem. If we Ky —(B§+3Z%+86*), then
(3) N2 3IH Ny lw).

4.3. Supposing again that weK§— (B} + 3% -+ 6¢), all the
models
2y Zgy vy Zmy . M= Ng,(w),
are in I, and hence (see 1.2)

m

(4) n(w) = 12 i(z) = Zk, kN, (w).
From (3) and (4) we obtain, since n(w)=0 on B} and Ng(w)=oco
on 3%, the

Theorem. If weK§— &%, then |n(w)| = Ng,(w) ).

§ 5. Applications.

5.1.  Continuous transformations of bounded variation ).

We associate with the continuous transformation w = f(&) a
function of squares F(s), defined for all closed squares s in §, as
follows. FY(s) is the measure of the image s* of s (since s* is a closed
set, it is certainly measurable). According to Banach, the continuous
transformation w = f(z) is said to be of bounded variation if there
exists a finite constant M >0 such that SF(s,)<<M, for all se-
quences s, of closed squares without common interior points.

) This lmitation for |n(w)| seems to be essentially new. N otice that no
assumption is made concerning the transformation beyond mere continuity.
1) These transformations were studied by Banach, loc. cit Y)
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5.2. According to Banach 12), the continuous transformation
w = f(2) is of bounded variation if and only if the function Ng, (w)
is summable. If this condition is satistied, then the set 3% is of mea-
gure zero. Since the set 6* is of measure zero anyhow, and since
n(w) = 0 on B§, we infer from 4.3 the '

Theorem. If the continuous transformation w=f(2) is of bounded
variation, then the index-function n(w) is summable. More ewactly,
In(w)| is dominated, almost everywhere in K&, by the summable function
Ns,(w) ). »

5.3. Supposing dgain that the continuous transformation
w = f(2) is of bounded variation, it follows from (3), (4) in 4.2, 4.3
that the absolute values of the partial sums of the series

n(w) = %’ k N, (w)

are dominated, almost everywhere on the set K& — Bj, by the sum-
mable function Ng (w). Hence, by a well-known theorem of Lebesgue,
we can integrate term by term, which gives the formula

[ [rw)=3%[ [¥s,).

KE—BY * xE By

5.4. Let 2 be a point of §,, and ¢ a closed square containing 2
and contained in 8, If, for [¢|—> 0, the quotient 19’(.5:)/!.9]| approaches
a definite finite limit, then this limit will be called the area-derivative
D(z) at the point 2. According to Banach4) for continuous trans-
formations of bounded variation D(z) exists and is finite almost
everywhere in S, and is summable in S,.

5.5.  Absolutely continuous transformations w = f(z) 15).
A continuous transformation w = f(z) is according to Banach
abgolutely continuous, if it is of bounded variation and if it carries
sets of meagure zero into sets of measure zero. According to Banach,
loc. cit. '), we have for such transformations the formula

[ 1= [ ot

Sy K(','

13) Loc. cit.1).

) I was unable to find in the literature any theorem of comparable gene-
rality. .
) Loe. oit.1).

1) Studied by Banach and subsequently by Schauder, loc. cit.?).
Fundamenta Mathematicae. T. XXVII. 14
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According to Schauder?), we have more generally

ffD(z)=/fNE(w)
E

K
for all measurable sets E in S,.

5.6. For an absolutely continuous transformation, the set
B} is of measure zero. Hence, by 5.3 and 5.5, we can write

[[nw)=3%[[De)=3 [ [ iz) D) = [ [ i(e) D(z), *7)
k¥ B LIS Y
since, by definition, i(z) =k on I, Since by definition i(2) =0 on
S,— I, we obtain finally the ‘
Theorem, If the transformation w=/f(z) i8 absolutely continuous,

ffn(w):f/i(z) D(#).
* S,

Ko

then

Schauder!®) proved this formula under the additional as-
sumption that 4(z) is bounded. Our argument shows that this res-
trietion is superfluous.

5.7. As a last application we shall give a (very incomplete)
discussion of those points 2z for which the index-function i(z) is
different from +1. Let I§ be the image of I,, and consider a point

w e Kf — (BS + 3&+6"+I§).

We have then
Ns,(w) = Ny, (w).
k=0
since all the models of w are in I and none of them is in I,. On the
other hand, we have (see 4.2)
Ns,(w) = :’ || Nz, (w).

1%) Loc. cit. ). :
17) The last step is justified by, the remark that the partial sums of the series

. =V — ¥
_k§j Q liz)] D(z) %[k] {I{D(z) 3 ija [ Ny, (w)

are dominated, on account of the theorem in 4.2, by the finite constant [[Ng,(w).
kg

18) Loc. cit. ).
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It follows that
* 3 (1— [k]) N, () = 0.
£F0

Hence we must have

Nr(w)=0 for [k|>1,  weKf— (Bf+3ht6*1IF).

Hence the following

Theorem. If w=f(z) is a continuous transformation, then for
|| > 1 the image I} of the set I, is a subset of the set BF + 3% +-6*+I¥.

5.8. In particular, if the transformation is absolutely continuous,
the sets B, 3%, 65 are of measure zero. Hence we have, as an im-
mediate corollary of 5.7, the

Theorem. If an absolutely continuous tramsformation is such
that the set of points where i(z) = 0 is carried into a set of measure zero,
then the set of poinis where i(2)==+1 is also carried into a set of measure
zero.

5.9. If the transformation w = f(z) is absolutely continuous,
then a measurable set E in §; is carried into a set of measure zero if
and only if D(2)=0 almost everywhere on the set®). Combined
with the theorem in 5.8, this leads to the

Theorem. Suppose that the absolutely continuous transformation
w={f(2) is such that the area-derivative D(2) 18 positive almost everywhere
in the square 8, Suppose also that the index-function i(2) is different
from zero almost everywhere in 8,. Then i(z)=+1 almost everywhere
in S,

1) Schauder, loc. cit.1).

The Ohio State University,
February 1936.
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