

Les ensembles

$$G = \mathbb{E}_{x} \left[|f| < \frac{\mu}{2} \right]$$
 et $\Gamma = \mathbb{E}_{x} \left[|f| > \frac{\mu}{2} \right]$

sont ouverts, disjoints et on a: $F \subset G$ et $\Phi \subset \Gamma$. Donc R est normal. Le fait que dans l'espace R tout ensemble ouvert est un F_{σ} se démontre comme tout à l'heure.

Enfin, pour les espaces bicompacts, on a l'énoncé suivant:

Pour qu'à tout ensemble fermé F d'un espace de Hausdorff bicompact corresponde une fonction continue f(x) telle que l'on ait

$$F = \mathop{\mathbf{E}}_{x} [f = 0],$$

il faut et il suffit que tout ensemble ouvert de R soit un Fo.

Sur le plongement des espaces dans les rétractes absolus.

Par

Karol Borsuk (Warszawa).

M. C. Kuratowski a démontré 1) qu'étant donnée une fonction continue y=f(x) définie dans un sous-ensemble fermé A d'un espace métrique séparable X, on peut prolonger cette fonction d'une manière continue sur l'espace X tout entier, en ajoutant à l'espace Y (espace des Y) un polytope infini 2) P (satisfaisant en outre à la condition dim $P \leq \dim(X-A)$). Dans cet ordre d'idées, je vais démontrer dans cette Note que dans le cas où l'espace Y est compact, il existe un polytope infini P tel que l'ensemble Y+P est un rétracte absolu. Par conséquent, l'existence du prolongement mentionné est assurée pour tous les A, X et f simultanément.

Lemme. A_1 et A_2 étant des sous-polyèdres disjoints d'un polyèdre A et L designant l'intervalle $\alpha \leqslant t \leqslant \beta$, il existe une fonction f(x,t) de la forme $f(x,t)=(x,\theta(x,t))$ qui rétracte le polyèdre $A\times L^3$) en sous-polyèdre de façon qu'on ait:

$$f(x_0, t) = (x_0, 0) \qquad pour \ tout \quad x_0 \in A_1,$$

$$f(x_0, t) = (x_0, t) \qquad pour \ tout \quad x_0 \in A_2.$$

¹⁾ Fund. Math. 24 (1935), p. 259.

²⁾ Un polytope infini est un ensemble P qui admet une décomposition simpliciale, c. à d. une décomposition de la forme $P = \sum_{l=1}^{\infty} \Delta_l$ où Δ_l sont des simplexes géométriques assujettis aux conditions: 1) $\Delta_l \cdot \Delta_l$ est une face (de dimension ≥ -1) de Δ_l et Δ_l ; 2) aucun point de P n'est un point d'accumulation d'une suite de points appartenant à des différents termes de la suite $\{\Delta_l\}$. Comp. C. Kuratowski, l. c., p. 258.

³⁾ $A \times L$ désigne le produit cartésien des espaces A et L.

Démonstration. Admettons que le polyèdre A est donné sous la forme d'un complexe géométrique 4) K dont A_1 et A_2 sont des sous-complexes. Pour obtenir la fonction demandée, il suffit de définir $f(x, t_0)$, pour tout $t_0 \in L$, comme une transformation simpliciale 5) du complexe K en polyèdre $A \times L$ de manière que pour tout sommet x_0 de K l'on ait $f(x_0, t) = (x_0, 0)$, lorsque $x_0 \in A_1$, et $f(x_0, t) = (x_0, t)$, lorsque $x_0 \in A_1$.

Théorème 1. Y étant un ensemble compact, il existe un polytope infini P tel que Y+P est un rétracte absolu.

Démonstration. Admettons que Y est un sous-ensemble du cube fondamental Q_{ω} de l'espace de Hilbert. Posons $r_n(x_1, x_2, ..., x_n, x_{n+1}, ...) = (x_1, x_2, ..., x_n, 0, ...)$ pour tout $(x_1, x_2, ..., x_n, x_{n+1}, ...) \in Q_{\omega}$. L'ensemble $r_n(Y)$ constitue alors un sous-ensemble fermé du polyèdre n-dimensionnel $Q_n = r_n(Q_{\omega})$. Faisons correspondre à chaque n = 1, 2, ... un polyèdre A_n constituant un entourage de $r_n(Y)$ (dans Q_n), de manière que les entourages $T_n = \mathbb{E}\left[r_n(p) \in A_n\right]$ de Y dans Q_{ω} satisfassent aux conditions:

(1) $T_1 = Q_{\omega}$ et T_{n+1} est contenu dans l'intérieur de T_n ,

En vertu de (1), les polyèdres $r_n(T_{n+1})$ et $r_n(\overline{Q_\omega-T_n}) = \overline{Q_n-A_n}$ sont disjoints. On conclut donc du lemme précédent qu'il existe une fonction $\theta_n(x_1, x_2, ..., x_n, x_{n+1})$ telle que la fonction $f_n(x_1, x_2, ..., x_n, x_{n+1}, 0, ...) = (x_1, x_2, ..., x_n, \theta_n(x_1, x_2, ..., x_n, x_{n+1}), 0, ...)$ constitue une rétraction du polyèdre $Q_{n+1} = Q_n \times \left\langle 0, \frac{1}{n+1} \right\rangle$ en un sous-polyèdre et satisfait à la condition:

 $f_n(p)=r_n(p)$, lorsque $r_n(p)\epsilon \overline{Q_n-A_n}$ et $f_n(p)=p$, lorsque $r_n(p)\epsilon r_n(T_{n+1})$.

En vertu de (1) et (2), l'ensemble Q_{ω} — Y est somme des ensembles compacts $B_n = \overline{T_n - T_{n+1}}$ satisfaisant aux conditions:

(3)
$$B_n \cdot B_{n+k} = 0$$
 pour tout $n=1, 2, ...$ et $k > 1$.

$$(4) B_n \cdot B_{n+1} = T_{n+1} \cdot \overline{Q_{\omega} - T_{n+1}} \text{pour tout } n=1, 2, ...,$$

(5) Ls
$$B_n \subset Y$$
 7).

L'égalité (4) entraîne que l'on a pour $p \in B_n \cdot B_{n+1}$:

$$r_n(p) = r_n r_{n+1}(p) \epsilon r_n(T_{n+1})$$

 \mathbf{et}

$$r_{n+1}(p) = r_{n+1}r_{n+2}(p) \epsilon r_{n+1}(\overline{Q_{\omega} - T_{n+1}}) = \overline{Q_{n+1} - A_{n+1}}$$

Il en résulte d'après la définition de f_n et f_{n+1} que $f_n r_{n+1}(p) = r_{n+1}(p)$ et aussi $f_{n+1} r_{n+2}(p) = r_{n+1} r_{n+2}(p) = r_{n+1}(p)$. Ceci montre en vertu de (1), (3) et (5) qu'on obtient une fonction bien définie sur l'ensemble Q_{ω} tout entier, en posant:

(6)
$$f(p)=f_n r_{n+1}(p), \quad \text{lorsque} \quad p \in B_n,$$

(7)
$$f(p)=p$$
, lorsque $p \in Y$.

Ainsi définie, la fonction f est d'après (3) et (5) continue dans l'ensemble Q_{ω} —Y. D'autre part, pour tout point $p=(x_1, x_2, ..., x_n, ...) \in B_n$, on a

$$f(p) = f_n r_{n+1}(p) = f_n(x_1, x_2, ..., x_n, x_{n+1}, 0, ...) = (x_1, x_2, ..., x_n, \theta_n(x_1, x_2, ..., x_n, x_{n+1}), 0, ...).$$

d'où

$$\varrho(p, f(p)) \leqslant \sqrt{\sum_{k=n+1}^{\infty} \frac{1}{k}}.$$

En rapprochant cette inégalité de (5) et (7), on conclut que f est continue aussi aux points de Y.

En vertu de (6) et (7), l'ensemble $f(Q_{\omega})$ est la somme de Y et des ensembles $f(B_n) = f_n(r_{n+1}(B_n)) \subset B_n$, qui constituent d'après (5) un polytope infini. Pour achever la démonstration du théorème 1, il ne reste donc qu'à prouver que f(p) = p pour tout $p \in f(Q_{\omega})$. Or, cela résulte de (7) pour $p \in Y$ et de (6) — d'après la définition de la fonction f_n — pour $p \in f(B_n)$.

⁴⁾ c. à d. décomposé simplicialement.

⁵⁾ c. à d. une transformation affine dans chacun des simplexes de K.

^{°)} Q_{ω} désigne le sous-ensemble compact de l'espace de Hilbert composé des points $\{x_i\}$ où $0 \leqslant x_i \leqslant \frac{1}{i}$ pour tout i=1,2,... D'après le théorème connu d'Urysohn, chaque espace séparable est topologiquement contenu dans Q_{ω} .

⁷⁾ Ls B_n désigne la limite supérieure (topologique) de la suite $\{B_n\}$, c. à d. l'ensemble de tous les points d'accumulation des suites de points appartenant à des différents termes de la suite $\{B_n\}$.

La question suivante reste ouverte:

Un espace compact de dimension <n se laisse-t-il plonger toujours dans un rétracte absolu de dimension n?

Théorème 2. Y étant un ensemble compact, il existe un polytope infini P_n de dimension $\leq n$ tel que l'ensemble $Y+P_n$ est compact et péanien 8) en dimensions < n.

Démonstration. Soit P un polytope infini tel que Y+P est un rétracte absolu. Envisageons une décomposition simpliciale Λ de P pour laquelle le diamètre des simplexes tend vers 0 et posons P_n égal à la somme de tous les simplexes de Λ de dimensions $\leq n$. L'ensemble P_n ainsi défini est évidemment un polytope infini de dimension $\leq n$. Il ne reste donc qu'à prouver que $Y+P_n$ est péanien en dimensions $\leq n$.

 $Y+P_n$ étant, bien entendu, localement connexe en toutes les dimensions 8) dans chaque point $p \in P_n$, il ne reste qu'à prouver que, pour tout k < n et pour toute fonction φ transformant la surface S_k d'une sphère euclidienne (k+1)-dimensionnelle H_{k+1} en un sous-ensemble de $Y+P_n$, il existe un prolongement continu sur H_{k+1} avec $\varphi(H_{k+1}) \subset Y+P_n$, et que, dans le cas où $\varphi(S_k)$ est un sous-ensemble d'un entourage suffisamment petit d'un point $p \in Y$, ce prolongement peut être choisi de façon que le diamètre de $\varphi(H_{k+1})$ soit arbitrairement petit.

L'ensemble Y+P étant un rétracte absolu, il existe un prolongement φ avec $\varphi(H_{k+1}) \subset Y+P$ qui remplit toutes les conditions en question, sauf l'inclusion $\varphi(H_{k+1}) \subset Y+P_n$. Pour obtenir le prolongement demandé, on n'a qu'à appliquer le procédé bien connu de M. P. Alexandroff 9), permettant de remplacer φ par une fonction continue φ_0 dont les valeurs appartiennent à $Y+P_n$ et qui satisfait aux conditions: 1. si $\varphi(p) \subset Y+P_n$, on a $\varphi_0(p) = \varphi(p)$;

2. si $\varphi(p) \in P - P_n$, les deux points $\varphi_0(p)$ et $\varphi(p)$ appartiennent au même simplexe de la décomposition Λ .

Il est enfin à remarquer que le théorème 2 contient comme cas particulier le théorème démontré par M. Eilenberg 10), d'après lequel chaque espace compact Y se laisse plonger, pour tout n>0, dans un continu Y_0 localement connexe, acyclique en dimensions (n-1) et tel que dim $(Y_0-Y)=n$.

s) Un espace E est dit localement connexe en dimension k au point p, lorsqu'à chaque entourage U de p correspond un entourage V de p tel que chaque fonction continue φ transformant la surface S_k d'une sphère euclidienne (k+1)-dimensionnelle H_{k+1} en un sous-ensemble de V admet un prolongement continu transformant H_{k+1} en un sous-ensemble de U. L'espace E localement connexe en toutes les dimensions k < n dans chacun de ses points et tel que toute fonction continue φ transformant S_k en un sous-ensemble de E admet un prolongement continu sur la sphère H_{k+1} , s'appelle — d'après M. Kuratowski — péanien en dimensions < n.

⁹⁾ Voir p. ex. P. Alexandroff, Math. Ann. 106 (1932), p. 170.

¹⁰⁾ Voir S. Eilenberg, Fund. Math. 24 (1935), p. 65-71.

¹¹⁾ Un espace compact E est dit acyclique en dimension k, lorsque chaque vrai cycle k-dimensionnel dans E y est homologue à 0. Tout espace compact E qui est péanien en dimensions < n est, bien entendu, acyclique en dimensions < n. Ce fait élémentaire, démontré par M. C. Kuratowski, l. c., à l'aide du théorème cité de M. S. Eilenberg, se laisse aussi obtenir immédiatement du fait que E est un rétracte pour tout espace $M \supset E$ tel que dim $(M-E) \le n$. En effet, chaque vrai cycle $\mathbb{C} = \{C_l\}$ de E de dimension < n est homologue à 0 dans l'espace qui s'obtient, en ajoutant à E une infinité dénombrable de réalisations géométriques des complexes K_l de dimension $\le n$ dont les frontières sont les cycles C_l . L'existence d'une rétraction de l'ensemble $E + \sum_{l=1}^{\infty} K_l$ en E implique que le vrai cycle \mathbb{C} est homologue à 0 dans E.