On monotonic complete covering systems
By
Leo Zippin (Princeton).

This note was inspired by a question addressed to us by Prof.
Lefschetz, which concerned the general homology theory due to
Prof. Cech. The problem at issue is gvhether, or to what extent,
one can introduce into this theory of Cech a generalisation of the
projection-sequences theory of Alexandroff. One would cerfainly
expect to abandon countable projection-sequences, but one might
be tempted to hope that for a large class of spaces, at least, there
would exist a well-ordered uncountable system of ,complexes”
which more and ,more nearly” approached the space. Formulated
in the theory of Cech, one might ask for what spaces does there
exist a well-ordered monotonic complete family of finite coverings
by open sets? The answer to this is contained in the final theorem
of the paper, of which we here signalise the following special case:

In order that o Hausdorff space S admit a monotonic complete
system of finite coverings by open sets, it is mecessary anmd sufficient
that 8 be compact metric.

The methods of this paper will be recognized as, for the greater
part, classic. It is in some parts closely related to the theory of
»developments“ studied by E. W, Chittenden and A. D. Pitcher?).

') Transactions Amer. Math. Soc. 20 (1919), pp. 213—233.
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1. T-spaces. These shall be the ordinary topologic spaces,
it being understood that we do not assume that every pair of points
belong to mutually exclusive neighborhoods. Our argument will
fall into several sections. We shall list the properties of our spaces,

for convenience of reference as well as to exhihit their different
connections with the final theorem:

1) a class of subsets is designated ag open, the class inéluding
the space, itself, and the null-set (although this will not figure in
our arguments). The sum of any number of open sets shall be open.

2) the product of any finite number of open sets is open.
3) the sum of amy finite number of points is closed.

We shall understand, now, that the usual topologic notions
of closedness, limit point, compactness, complete separability, have
all been introduced, as customarily, on the basis of the open sets
which exist in the space by definition. We shall call these spaces,
T-spaces. The final theorem will be found in 6.

A finite covering K of the space by open sets, abbreviated
f.c.0.8., is said to be contained in another f.c.o.s. K, KC K/,
if each of the open sets making up K belongs to some one of the
open sets making up K'. A system of f.c.o0.s. {K.), where e is a dis-
tinguishing ordinal number ranging over a class of ordinals (pos-
sibly very uncountable), will be said to be monotonic if Kz(C K,
whenever a=# in the sense of the well-ordering of these ordinals.
This system is called complete if, given an arbitrary f.c.o0.s. K,

there exists an ordinal « and a K,C K. These are the customary
definitions. )

2. The function N (a). Given a monotonic system (K.} we
shall define N(a), for each a such that there is a K., to be the least
integer such that there exists in the f.c.o0.s. K. a set of N(a) of
its subsets which cover the space. We may take our space to be
not empty, so that N(e)=1 and it is certainly finita (whenever
defined). Now if N(c) and N(f) are both defined and if « <8, then
N(a) < N(8). For, our system being. monotonic, Ks(C K. Since
there exist N(8) subsets of K which cover space and since each

~of these belongs to at least one get in K. by the monotonicity,

there must exist N(B8) sets (not necessarily distinct) in K, which
cover space. We shall need the following (known).
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Lemma: T a function N(e) whose values are positive integers
is defined for a certain class of ordinal numbers {a} 8o that it is
monotonic and unbounded, then the class of ordinals {@} must con-
tain a countable subsequence ¢, < @y < oo < @p <.. such that this
subsequence is confinal with the original class.

Proof. The class {&¢) contains at least one subsequence a,
guch that N(e,) is unbounded. If there existed any @ of this class,
@>a, for every m such that N(@) is defined, we should have
N(a,) = N(2). Since this contradicts the unboundedness, no such @
exists and the sequence @, is confinal with the original class by
definition of confinality.

Lemmna: If a subsystem {Kg} of a complete monotonic £. c. o. s.
system {K.} is confinal with it, then {Kg), also, is complete.

Proof. Let K be an arbitrary f.c.o0.8. of space. There exists
an ordinal @ such that K;(C K. Since the class {8} is confinal with

the containing class {«} there exists at least one ,_B_g'd. By the mono-
tonicy Ks( Kz, therefore Kz K.

8. Theorem: A compact, completely separable T'-space always
possesses a countable monotic £.c.o.s. system.

Proof. Since our space, let us call it T, is completely separable,
it possesses (by definition) a countable set U,, Uy, ..., of open subsets
such that if # is any point of 7 and U any open. get containing @
then, for some integer n, #(C U,(CU. Now, .let us observe that
any collection of the (U,) which covers T possesses a finite sub-
collection which covers T'. To prove this, let Uy, j=1, 2, ..., denote
the members of any ,covering“ collection. Then there must exist,
for each j, a point ; of T such that #,(CUn if ¢=j. The set (¥
of points so defined has at least one limit point » (by the compactness
of T) and there is at least one integer j such that @ Un;, because

our collection covers T. The set of points é’w; is closed (by con-
1

dition 3 on T,1). Then there is an open set U Dw, U Da; if
=1, 2, ...,j, by definition. The intersection U-U,.j is open (by
condition 2) and contains x, therefore at least one point »., say,

of (z;) by definition of limit point. But now m>j contrary to our
choise of .
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. We observe that in virtue of our first condition on T (see 1)
there is at least one covering of T by open gets, namely T. It fol-
lows that our fundamental sequence (U.,) of open sets also covers 7.
For if we have any covering of T, each point belongs to some open
set of this covering, by definition, and therefore to at least one Uh.
From what we proved above, it follows that the fundamental se-
quence contains finite coverings of T. Since there are only a countable
number of different finite combinations of the U, n=1, 2, ...,
there cannot be more than a countable system of finite coverings
of T' by these sets. Let H,, H,, ..., represent the distinct f. e. o.s.
which we obtain in this way, arranged in some convenient order.
For a moment only, suppose that U and U’ are open sets
chosen at random from among those making up an arbitraryf. c. 0. 8. H
and f.c.o.8. H', respectively. The set U”=U-U’' is open, by
condition 2) of 1. As U and U’ varyin H and H' we obtain a finite
set of the U", and we shall denote the collection of them by H'’.
We may express this symbolically: H"=H.H'. It is clear from
the definition of H' that it is an f.c.0.s. and that H”CH, CH'
Let K, denote T. Let K,=K, H,, K,=K,-H,, and generally,
Knt1=Kn-Hpyr. It is obvious, from the remark above, that {K,}
is a monotonic f.c.o.s. system. We shall have proved our theorem
when we show that it is complete. To this and, let K denote an
arbitrary f.c.o.s. We have already observed that there must exist
2 collection of our original U, n=1,2,.., which cover T and
each of them contained in some set of K. We proved, further, that
any such covering contained at least one f.c¢.o.s. which we may
denote by K*. It is clear that K*(C K. But there must be some
integer » such that K*=H,, by the definition of the system {H,}.
Finally, by construction, K,CH,=K*(CK and the system {K,}
is complete.

So far we have proved the sufficiently part only of our final
theorem. We heve used all of the conditions on T which we enum-
erated in the first section. We now address ourselves to consider-
ations of necessity. '

4. Lemma: If a T-space possesses an m. c.-system (read ,,mono-
tonic complete f.c.o0.s. system*) (K.} and if for some integer
8> 0 it containg a set of s distinct points w,, @, ..., #; such that
every subset of X =, is closed, then there exists an ordinal
a such that N(a)=s.
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Proof. Since, for every 1=¢=s,X—=x 1is closed, there
must exist an open set U; such that U, Da; if and only if i=j,
Furthermore, U,=T—X . is open. It is clear that the collection
of sets (U, Uy, ..., Us) which we may denote by K is an f.c.o.s.
Therefore, for some ordinal o, K,C K. Now if N(c)<s, there
must exist at least two points #; and w;, ¢ j, which belong to
the same open set in K., therefore to some one open set in K. Thig

~ contradicts the construction of K.

Corollary: If a T-space containg infinitely many points
such that every finite subset of them is closed and if it possesses
an m.c.-8ystem, then it possesses a countable m.c.-system.

For, by the lemma ahove, the function N (z) must be un-
bounded. By the two lemmas of 2, the given m.c.-system must
contain a countable complete subsystem, necessarily monotonic.

Theorem: If a T-space possesses an m.c.-system, it ig com-
pletely separable. ‘

Proof. It T consist of a finite set of points it has an at most
finite number of subsets and therefore at most a finite number
of open sets. Then it is certainly "completely separable, since it
contains at least one open subset (by property 1) of 1).

It T contains infinitely many distinet points, than we shall
now invoke property 3) of a T-space and apply the corollary above.
That the countable set of open sets contained in a countable m.ec.-
-system is a fundamental set™for the space is obviously the case,
whenever each individual point » is closed; i. e., whenever 7T—u
is open for every z.

8. Theorem: If a T-space possesses an m. c.-8ystem, it must
be compact.

This theorem is essentially -set-theoretic and uses only the
first property of a T-space. '

The proof will proceed by contradiction. Suppose that 7' is
not compact. Then it contains, by definition, an infinite countable
fset of distinet points a, @,,..., such that every subset of X = X,
18 closed. Therefore, by the preceding corollary, it possesses a count-
able m.c.-system which we shall denote by {K}}, j=1, 2, ....
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With each f.c.o.s, K; we shall associate a certain partition
of X as follows. We fix on a definite ordering of the open sets in K;.
Let N, denote the number of them. We assign to each point of X
a coordinate with N; ordered components, where the s-th component,
1=8=N,, is one if the point belongs to the s-th set and zero if
it does not. There are at most a finite number of different coordinates.
We shall say that two points of X belong to the same class if and
only if they have the same coordinate. In this way we obtain a se-
paration of the points of X into a finite number of mutually exclusive
classes such that if two points of X belong to the same class then every
subset of K; contains both or meither of them. We shall designate this
partition by P

Now let F' denote an arbitrary proper subset of X, and let
F'=X—F. BSince both F and F' are closed subsets of 7, it is clear
that T—F and T—F"' define a f.c.0.8. of 7. Therefore there
is at least one j such that K;is contained in this f.c.o0.s. We see
at once that each class in P; must belong entirely to F' or entirely
to F'. We ghall say that the disjunction (F, F') of X contains the
partition P;: symbolically (F,F’) D P;, We have proved that every
(¥, F') disjunction of X contains a partition P;

We shall now show tbat a fived partition P; cannot be con-
tained in more than a finite number of distinet (¥, F') disjunctions.
In fact, if the number of classes in P; is N, then the number of
distinct disjunctions which can contain it is precisely 2¥— 2. This
is trivail. For if we arrange the classes in P; into two sets, call them
R and L for the moment, such that each of these contains at least
one class and no class belongs to both, then the totality, F, of points
of X which fall into R in this division form a proper subset. The
sot of points in L is precisely its complement X—F=F'. Hach
arrangement, R and L, determines the corresponding (¥, F’) dis-
junetion uniquely. '

Now this implies at once that the number of distinet (F,F")
digjunctions is countable, since each of them contains some Py
and. at most a finite number can contain the same one. On the,
other hand, the number of these is precisely the ,number® of proper
subsets of X. Since X is infinite, this number cannot be countable,
by the Cantor Theorem. The contradiction completes our proof.
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6. It should be clear that we have already proved this final

Theorem: In order that a 7T-space possess a monotonie,
complete, finite-covering-by-open-sets-system, it is necessary and
sufficient that it be completely separable and compact.

We shall conclude with the following remarks. It is well-known
that a completely separable and compact T-space need not be,
metrizable, but if it is mot then it must also fail to be regular.

Further, in a completely separable, compact T'-space, regularity
is implied by the weaker separation property (Hausdorff) that
to each pair of points x and y there exist mutually exclusive open
sets U, and U, containing » and y respectively. Therefore, if a
T-gpace posseses an m.c.-system and is 'not metrizable, it must contain
at least one pair of points which cannot belong to mutually ex-
clugive open sets. Therefore, the theorem with we opened this paper
is a special case of our final one.

For completeness sake, it is perhaps worth while to give the
argument upon which our last remarks are based. Suppose that X
is a closed subset of a T-space, and y a point of that space. Sup-
pose, further, to to each point » of X we may associate a pair of
mutually exclusive mneighborhoods U. and Uy, UxDwa, Uy Dy.
Now, if our T-space is completely separable and compact, then,
first of all, we may suppose that the open sets are drawn from
a countable fundamental set and, secondly, we may apply the
Heine-Borel theorem which we proved for these spaces, in 3.
It will be clear that our proof applies to closed subsets of the space,
also. Then we conclude that there exists a finite set of open sets
Uepi=1,2,.., N, whose sum covers X. The product of the open
sets Uy, i=1,.., N, is an open set containing y, which has no
point in common with that sum. This is regularity.

Institute for Advanced Study
Princeton, New Jersey.
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Symmetrical Cut Sets.
By
Wayne Dancer (Ann Arbor).

I. Introduction.

After a survey of characterizations of the simple closed curve
and simple closed surface!) it has occurred to us that the principle
of symmetry, which has been used to only a limited extent in anal- -
ysis gitus ?), might be advantageous in forming such characteri-
zations. :

To this end we shall say that a set § is a symmetrical cut set
of a set M if M—S8 can be expressed as the sum of two mutually
separated sets M; and M, which are such that there exists a con-
tinuous (1—1) correspondance 4 having the properties that,
A(M,+8)=M,+8, and 4(8)=S. If § consists of a finite number
of points it will be called a permutable symmetrical cut set provided
that A(P))=Pi1 (i=1,2,..,n—1), and A(P,)=P,. The set &
will be called a strong symmetrical cut set of M if, in addition to
being a symmetrical cut set of M as defined above, 4(P)=P, for
every point P of S. Hereafter the sets M, and M, defined above,
will be referred to as symmetric separates of M with respect to .

It is easy to see that every pair of distinct points of a simple
closed curve is a symmetrical cut set of the curve; likewise it hasg
been shown that every simple closed curve of a simple clogsed surface
is a strong symmetrical cut set of the latter 3). On the other hand,

1) A simple closed surface is the homeomorph of the unit sphere 22+ y24 28=1
in cartesian 3-space.

?) H. M. Gehman, Oenters of symmeiry in analysis situs, Amer. Jour,
Math, 52 (1930), pp. 543—547. ‘

3) A. Schoenflies, Beitrige zur Theorie der Punktmengen, III, Math.
Ann. 62 (1906), p. 8324, and J. R. Kline, A new proof of a theorem due to S8choen-
flies, Proc. Nat. Acad. Se., 6 (1920), pp. 529—531.
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