Relations between certain problems of Banach
by
F. ]. MURRAY ) (Princeton, U. S. A.).

In his treatise on linear transformations, S. Banacu?) lists
among others the following unsolved problems (Cf. (B), pp.
144 —145):

(8) To every closed linear manifold M of L, 1 <p £2, does
there exist, a closed linear manifold N such that every fe L may
be represented in a unique way as g+h, geM, ~heRN?

(b) To every closed linear manifold M of 7, 1 <p %2, does
there exist, a closed linear manifold 9, such that every fel may
be represented in a unique way as g+h, geM, heN?

(c) Is every infinite—dimensional closed linear manifold M
of I, isomorphic with [ ?

We will show in thls note, that the answer to (a) is the
same as the answer to (b) and indeed depends on the limit of
properties of [ asn approaches infinity. Also, that if the answer
to (b) is yes, the answer to (c) is also yes.

1. Let 4 denote a separable space with a p—norm, i.e.
4 is either L or [, or the set [ of ordered n—tuples of
real numbers {a,,..., a,} with the norm I] {a1 yeoat=al+
+|a,P)". We also let =1
~ Let M be a closed lmear manifold in 4, i. e. M is a closed
set such that fe M and geMt imply af + bge M, where a and b
are any two real numbers.

1) National Research Fellow. Some of these results were obtained while
the author was stationed at Brown University, Providence, R. I,

%) S, Banach, Théorie des opérations linéaires, Warsaw (1932). We shall
refer to this book as (B).
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Let R denote the set of real numbers 0 < a <, and let
r(a,b)=a/(1+a)—b/(1+b) (o /(1 +e0)=1). It is easy to see
that R with the metric |7 (a,8)|is a metric Hausporrr—space and
is in a one-to-one correspondence with the closed interval <0,1).

If M is a closed linear manifold in «, a limited transfor-
mation E such that E4=M, E>=E, is said to project -2 on M.

If £ is a limited transformation, we denote by |E| the
bound of E£.

Lemma 1.1. Let M be a closed linear manifold in 4. The
existence of a closed linear manifold N such that every fe A
may be represented uniquely as h+g, he M, ge N, is equivalent
to the existence of a projection E of 4 on M.

Proof. Suppose M exists. Let £ be the transformation,
which is such that Ef==h. Owing to the properties of N, this
is single-valued, linear and defined everywhere. Now let f; be
a sequence, which approaches f and such that if f=h+g,
h,eM, geN, the A, form a convergent sequence with the limit
A'. Then k' is €M, and the sequence g—f— h; also converges.
to a g'eN. By continuity we have f==Ah'+¢’. The uniqueness
of the resolution of f now implies that Ef=4A’, or that E is
closed. Theorem 7 of (B) Chap. Il, p. 41, now implies that £
is bounded. Since the range of £ is included in 9 and for
every fedt, Ef=f, we see that the range of £ is M, and

=F or E is a projection of 4 on M.

Now suppose E exists. Let 3t be the set of g's in « for
which Eg=0. Since £ is bounded and linear, 9% is a closed
linear manifold. Now if fis € «, f=Ef+ (1—E)f, where Ef is
€M, and 1 —E)f is €N, since E(Q1—E)f=(E—E*) f=0.
Now if A is €M, h=Ef for some fe.Z, and hence Eh = E*f
=FEf="h. Now if A is eM. N, O0=FEh=h, or M.NC{0} or
M.N={0}. Now let fagainbe e 4, f==h-+g=—h"+¢’, h, ke m,
&g€N. Then h—h'=g'—g. Now h—A' is ¢ M, g'—gis €N,
hence h—h'=g'—g is eM.N={0}), or h—h'=g'— g=0.
This shows that fe 4 can only be expressed in one way as.
h+g, heM, geN.

We prefer to consider problems (a) and (b) in the following
equivalent form: ' ‘ .

(a) To every closed linear manifold M- of L,1<p+F2is
there a projection of L, on M ? L
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(b) To every closed linear manifold M of [, 1<<p =2, is
there a projection of / on M ?

Let 4,..., 4, n=1,2,..., 0 (f n==c0, omit 4), be
a set of spaces. Let (£ X 4,X...4) (if n=00, omit <) de-
note the space of ordered sets of elements {f},f,,..., 7} (f

n==0c0, omit f,), f,€-4,, such that 2f.F< o, with-a norm de-

=1
fined by the equation
; 3 py\lp
i({f1!f2!).f"}“_:(zufc.hp) .
=1
>, is to mean that there exists a one-to-one isometric
mapping of 4, on ;. ‘

Lemma 1.2. (a) (lp,m1>< lp,mzx X Zp,mn)p =1 . for

n

. T
n=1,2,...,0, m=1,2,...,0, if 2 m=nm.
a==1

P (blz (A, X Ay X '“/“(,,),az Lp for n=1,2,...,0 l:f‘/jusz>
or eac o,

Proof. (a) is obvious. To show (b), it is only necessary
to divide the interval (0,1) into n intervals (if n=co, ¥, inter-
vals) and in each interval set up a one-to-one isometric mapping
in the obvious manner between the functions, defined on this
interval, measurable and with the p’th power summable and L, .
When this has been done, a function on the interval (0,1) cor-
responds to an element of (£ X .4,X...4) , and it is easily
seen that this sets up a one-to-one isometric correspondence of
L, and (44X 4,X.. .4,),.

2. Let M be a closed linear manifold in 4. We define
a function C(IM), which takes on values in R as follows. If
there exists no projection of 4 on M, then C(M) = co. Other-
wise C(@) = gr. L b. (|E|, E4= M, E’< E). Similarly we
define the function C(«4) as L. u. b, (C(M), M C ).

Lemma 2.1. Let <, and 4, be such that < is isometric-
ally isomorphic with a closed linear manifold M of A,. Let M
be such that there exists a projection E of . on M with |E|=1,
RN the set of f's €,, for which Ef==0. Let P be any closed
linear manifold of A, such that if feB, f=h+g, heP. M,
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geP.N. Let P, in 4 be the manifold which corresponds to
B.M. Then C(P,) < CB)-

Proof. If C(P)=10, our statement is true. Suppose C ()
<. Let F be any projection of Z, on B. Then EF is a pro-
jection on P.M. For if £, is e4,, f=Ff=h+g, heP.M,
geP.N, and EFf=~h or the range of EF is included in P.IN.
Also for every he .M, we have EFh= Eh==h. This with our
previous statement shows that (EF)= EF and that the range of
EF is exactly §8.91. '

Let (EF) be EF considered only on 9. Obviously (EF)
projects M on P.M. Let G be the corresponding transforma-
tion on 4. Then C(P,) <|G|'=|(EFY | < |EF| < |E|-|F|=|F|
or C(P)<|F|. Since F was any projection on P, we have
CAY<C).

~ Lemma 22, Jf 4, and 4, are as in Lemma 2.1, C(4,)
< C(4y). In particular if A= (A X 4, ) C4)<C ().

Proof. Let P, be any closed linear manifold of 4, B the -

corresponding set of elements in M. P is a closed linear mani-
fold satisfying the conditions given in Lemma 2.1, since LM
=P, P.N={0}. Lemma 2.1 now implies that C(P,) < C(P)
< C(4,). But P; was any closed linear manifold in «,, hence
C(4) < Ca). 1

To show the second statement, we take MC(4, X 4) ,
as thé set of elements {0, f} of («, X 4,),, E as the transforma-
tion of (4, X 4,),, such that E{f,g} ={0,g}. One readily sees
that M is isometrically isomorphic with 4, and that £ projects

.42. on M and [E’'[=1. We may now apply the first part of
this lemma to obtain the desired result. °

Lemma 2.3. If A~ (d X dyX ... 4) and k is the least
upper bound of those numbers k, for which there are an infinite
number of the &’s with C(4,)>k,, then there exists a manifold
P C A, such that C(P) > k. (Note k& may be ).

Proof. It follows from the definition of k, that if & is > 0
then there exists an infinite number of the @’s for which r(C () k)’
2>—¢. Hence if {¢} is a sequence of numbers >0, and as;xch
that &— 0, then we can find a sequence of integers ‘{a.} such
that @, < a,,;, for which r(C(4,), B> —5,/2. '
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Now. since r(é(da), ky> —¢,/2, we can find a P, in 4,
such that »(C(®,), k)> —¢,. Let B be the closed linear mani-

fold consisting of those elements {f,,f,,fs,-.-} €, such that
f=0, if g is not ¢{a} and £, ¢P, . As we saw in the proof
of Lemma 2.2, 4, and A are as 4 and , in Lemma 2.1 and
it is easily seen that 9 satisfies the conditions given im Lemma 2.1
also. Thus Lemma 2.1 now implies that C() is > C (QBRK,) hence
r(C(P), k) > —e, for every i. This implies that » (C(R), k) >0,
CR) > k.

3. Lemma 3.1. C(L)>C(, )

Proof. In (B) Theorem 9, Chap. XII, p. 206, it is shown

that the manifold M CL,, determined by the functions y; is iso-
metrically isomorphic with [, when .

g, &) =2" for 1/2°< <1277, g,() =0 otherwise.

Now if z(#) is €L, let

Ez()= ;: f 29 ds g D)

0

Then by a direct calculation one can verify that |[E|[=1 and

that if z is €M (i. e. z=2w,1aiyl., 2l <o) Ez=2z. Hence
i=1 i=1

E projects L, on M and we may apply Lemma 2.2 so that it
yields C(L)>C (). ,

Lemma 3.2. There exists a linear manifold MCL,, such
that C(@)=C(L).

.Proof. This follows from Lemma 1.2 (b) (with n=o) and
Lemma 2.3, for k is in this case C(L).

Lemma 3.3. There exists a linear manifold MC Loy such
that C(@)=C(l, ,)-

Proof. In Lemma 1.2 (a) let n,=o for every @. Then
apply Lemma 2.3.

Lemma 34. C( Y>> C(,,) if n>m.
Proof. This follows from Lemma 1.2 and Lemma 2.2.
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Theorem I. C(M) and C(A4) are to be as in § 2. There
exists an M in L, and an N in L, o> such that C(M) =C (LP),
and C () = C(lplw). Furthermore v

1=C(,)<C)<...<C )< C(L).
The Lemmas of this section imply this Theorem.

4. Lemma 4.1. Let fisfyse-or [y be n linearly independent
elements of L, n<. There exists a constant C depending
only on the set f,f,,...,f,, such that if

”j;aifi“:l: (@)

then || < C. =

Proof. Since the f’s are linearly independent, to each
{ there exists a linear functional F, with a norm k,> 0, such that
F.(f)=1, F,(f)=0 for i< (Cf. (B) Chap. IV, lemma p. 57).
Then for any set of numbers Byy+ees B, such that #,=0, we
have

k= F i+ S0k <1+ 201
Hence |yf+ Xys fi> |y ik,

Thus in (@), {e,|/k,<1, or |¢| < k,. To complete the proof
let C=maxk,.

Lemma 4.2. Let f,,...,f, be n linearly independent ele-
ments of L , n<eco. Then lo every >0, there exists an integer
m, and n fanctions hy,..., h_ , which are constant in each inter-
val (p/m, (p+1)/m), p==0,...,m—1 and such that if ()
holds (Lemma 4.1), then

| Dbl <o ®.

Proof. The hypothesis of Lemma 4.1 holds and we may
apply it to obtain the C. Now to each f; we can find a conti-
nuous function g;, such that ||f—g|<2Cn. The g/'s are con-
tinuous and hence they are uniformly continuous. Thus there
exists a d, such that if |x,—x,| < J, then

lg:(x) — &) | <#2Cn, i=1,2,...,n .
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Now let m be any integer such that 1/m <d. Let A, be the

step — function such that if p/m <x < (p+1)/m, p=0,1,..., m—1,

h,(x) = g.(p|m),. B, (1) = g,(1). I follows from () that Ih—gl

<x §/2Cn and since |f—g,| < ¢/2Cn, we obtain || f— &[] <¢|Cn.
Now if (¢) holds,

n n

1 S0l < Sl hl < D) elCn < Dlefn=e.

=1 i i=1

Lemma 4.3. Let f;, ..., f,s Bys.--s by, €, beasin Lemma 4.2.
If ¢ <1, the h, are linearly independent.

Proof. Let g,...,f, be a set of numbers such that §=0
for a fixed i, then (Cf. proof of Lemma 4.1)

| it Basi>k
for a k,>0 and independen]t*of the g/s, or
Ik R GI=t>1
where £ now depends on tJh; B's, so we obtain
k) fi+ 2 6l fi=1
Hence by (§) (Lemma 4.2) ]
[kt o+ 2@l b1 —
; T
. |1hi+j:@hjll>kiti(1~a)_>ki(1——e).
=

Hence if ¢ <1; the A, are linearly independent.

5. Lemma 5.1. Let M and M, be two n— dimensional
manifolds in 4, 1< n<w. Let us suppose that there exists n
linearly independent elements f,..., f,, f;¢M, and n linearly
independent elements g,,...,g,, .My, such that if ’

| Se =1,

then | X', (f—g) | <, with (/(1— ) C(@M) <1, e <1.
i=1
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Then
C ) < C@MY) [+ (2/(1 — £)) C@N/(1 — (5/(1 — &)) CM)].

Proof. Under our hypotheses, if 12 egl<1—e, th;n
=1 .

]f‘z/:wi(f,.—— g)l <e. For let us suppose that ]|2aigi” L1—e, and
i— = T

Li=

l!_,_il’ ¢,(f—g)| =k. Then
1 efi <] Zagi+l Setmnl<1—et

or| 3/ /(1— e +) | <1. Honoe | 2@ [(1—¢ +B) (fmg)]| <
f== =1
or ) . .
k= Yo (g <et—e+ ),

:f:tc}; iz;:l‘ies that k(1 —¢) < £(1—¢&) and since & < 1, this yields
Now if H.Zl'aigiﬂ=t¢ 0, or [ XA — &)ty a,q,| <1 — e,
i= i=1

then | X', (1— 0 (g— )] <, or
| D e <Cla—a) Seg .
i=1 i=1

If Hiél'aigiH:O, then igl'aigizo and =0 for every i and we
see that (£) holds in general. .
:Let 7 be any number > 0, and such that
| CERY+m) El(1—a) <1.
We can find a projection E, of 4 on M, such that | Byl < C(@Ny)

+n. Hence if fe, then f=g + h, where g= 2'c.g and
i=1 ’

lel<(C D) +mlfl. Now we define a transformation 7' by the
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equation T'( X'e, g+ k) =2'a.fi+h. Then T is easily seen to
i==1 i=1
be linear and to have domain .

Furthemore by (&)
17— 1= S g )< (0= )| Zeis]

< /(1 — ) (COM) +D £

Thus | T <ITF— A+ 1A < @+ /A —2) (C@) £ |f| and
ITF IS | fl—1f — TFI> (0 — (61— ) (C @) + If]. Since
(s/(1 — &) (C@M) + ) <1, this last equation implies that 77!
exists and |77 <11 — /(1 — ) (COM) + M)

Now since E, is a projection on M, TEOT'_1 is a projec-
tion on M. For the domain of T~ ' is «, since the range of T
is /4, as may be seen as follows. Let ¢, and k= (¢/(1 + &) cmy)
+7) then k is <1. We first show that if g=7Tg/, is in the
range of T and |f—g| < C, then there exists an element g in
the range of T such that |f— g | <kC. For
f—T@—f+l=lf—T¢ —T(f—l=If—g—T{— 2|

< k|f—gl<k|C].

Since |f — Tf| < k|f|, applying the above process n—1 times
yields that there exists a g, in the range of 7 such that If—g.l
<k |f| for every n. Since k is <1, this shows that the range
of T is everywhere dense. Thus the domain of T~ 'is every-
where dense. T is closed, hence T ' is closed. Thus T 1is
closed bounded and has domain everywhere dense. Hence its
domain is 4. So we see that TEOT_IA=TE0/1=TEUIO= m
and (TE,T~=TE,Tv" ' TE,T *=TE,E,T ~'=TE,T . Thus
TE,T™"is a projection on M. S :
> | el — 9) (C )
-1 14 (E/(1—¢ o) 1)
COm<ITET < CO)+D TG C@y+ 0

Since 7 may be taken arbitrarily small, we obtain

o 11— ) C@y)
C By <C@) 7= (i//(l — a:s))) C((%;o) ’

6. Let 4 be m—dimensional -and let n<{m. We define
C (A)==1u.b. (C(M), MC <, M n—dimensional). '
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Lemma 6.1. CTH(LP)<1. u b-(é,,(l,,,m)i m <), for n <oo
Proof. Let L. u. b. (C'—n(lp,m), m<®)=k . Nowif k :oo

the Lemma is obviously true. So we may ‘suppose that £ i
<o. Now let ¢ be any number such that 0 <e<1 ;n;
(¢/(1—9) k,<1. Let M be any manifold of n dimensions in 7
I:et fis++sf, be n linearly independent elements of M. Now
since £¢<1, applying Lemmas 4.2 and 4.3 to fis-ooof, and (¢
yields the existence of an integer m and n linearlynindepen:
dent step — functions A,..., h, with the properties enumerated ir
Lemma 4.2. Let M, be the manifold determined by hyoooh
. We now show that C(M) <k . Let y, i=1,....m l:e
defined as follows: ¥,(t) =m"?, for (z'——-l)/m\<'z‘ <ilm, y,zt)———(]
o.therwise. I._.et N be the closed linear manifold consis:ting of
hnea'r combinations of the y; (D). N is readily seen to be iso-
me>trz)cally isomorphic with Lyms also MCRN. Hence given an
] » we can find a projection £, of
,EJ,\<CR(ZP’M)+U\<]€H+§]‘1 0 N on M such that
Now for any Jel,, let

rf Zél’ f Oy @ dty,.

By a simple calculation one ma i

: y verify that |F|=1, and that
1*:' projects L on 9. Consider E,F. The range of E,F is sma
since the range of 7 is 9% and the range of £, on N is smo,
Furthermore since My is CR, if fem,, EFf=Ejf=f anod.
her;(; fgip;ojectrsnfp o}r: My. Thus C@M) is < | E, F| <|E, || F|
=& <k A7, is holds tt i
- o no matter how small 7 is taken,

Since 7 was chosen in such a manner that &, (¢/(1—&)) <1,

¢ have that C (M) (¢/(1 — €)) <1. Hence we m
N ly L
to Sﬁ, M, and 7, and obtain that oV appy émma 5.1

A+CDY) (/1—e) k (A+k (s/(1—
CE <C@ ARG Cl)
) @) 1—C@y) (5/(1—¢)) < 1—£k (5/(1—¢))

Inasmuch as this holds no matter how small ¢ is taken, we may

conclude that C@) <k . But M > .
sional manifold in L, hence C (L ):résk n arbitrary n—dimen-
n 22 = n-* .
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7. Lemma 7.1. C(L) <L u.b.(C(, ), n<w).
Proof. Let L u.b. (é(lp,n); n<w)==%k, If k=0, the

statement is obvious. Hence we may assume that k is < oo. Let
k, be as in Lemma 6.1. Then k, < k. )

Let M be a closed linear manifold in L . Since L, is sepa-
rable, 9 is separable. Hence there exists a sequence {/,} which
is everywhere dense in M. Now if f, is linearly dependent on
fise-vs fomys we drop it from the sequence. If the result is a finite
sequence, I has a finite dimensionality and Lemma 6.1 implies
that C(M) <k, < k. We may therefore confine our attention to
infinite — dimensional M, i. e. those for which a sequence {f}
exists with each f, linearly independent of the preceding n—1,
and such that the linear combinations of the f, are everywhere
dense in M.

Let 90, be the closed linear manifold determined by £,...,f,.
It follows that 9, CM,C...CD C.... Furthermore, by the na-
ture of the sequence {f.}, given an f¢M, and an ¢>0, we can
find an n such that if m > n, there exists' a geM , with
If— gl <e.

Let 1 be any number > 0. By Lemma 6.1, C (M) <k, < k.
Thus we can find a projection of L, on M, E_, such that |E |
L k+mn. Since the sequence {£ } is uniformly bounded, we can
find a subsequence {En,} with lim n,== o, which is weakly con-

vergent to a transformation E with |E|<k+7.

Now if feM, we show that E f—f For given an £> 0,
we can find an n such that if m> n, there exists a g, eM,
such that |f—g | < ¢/2(k+n). Now f=g,+ (f—g,), E, f=E, ¢
+E . (f—g)=g.+ E,(f—g,). Hence |[f—E f|=|f—g,
+E, (f—g)<If— gl +|E,f—eg)|<e2(k+ ) + (k+n)
If— g, | <e2(k+n) +¢2<¢e. Thus E f— f strongly, which im-
plies that Enif—ﬁf strongly and hence weakly and Ef—=f. Thus
if feM, Ef=f and so EAOM.

Next, we show that E4CIM. For if A is not €M, there
exists a linear functional F'(f) on L, such that Fh) =1, F(f)=0,
feM (Cf. (B), Chap. IV, Lemma p. 57). Let g be any element
of L,. Then £ g is ¢, and F(E g)=0. Hence by the defi-
nition of weak convergence F (Eg) = 0, which implies that Eg == .
This is true for every g, hence A is not € E.4 and EA4CM.

Studia Mathematica. T. VI 14
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Thus E.4=9 and since if f is ¢M, Ef=f, E*~E. Fur-.

thermore, since |E| <Ck+7, CON) < k+1n. This last equation
holds for any #7>0, hence C(IM) < k. Since this is true for
any MCL, C'_(Lp)\<k.

Theorem I and Lemma 7.1 yield

Theorem II. 5(Lp)=5(/p) =L u b. (C_(lp'n), n<w).

Theorems I and Il imply that the:answer to (a) is the same
as that of (b) and also to the question “Is I, u. b. (CT(ZP,H), n<w)
<0?“ For if the answer to the last question is yes, then by
Theorem II and the definitions of C(«) and C(M) the answer

to (a) and (b) is yes. If on the other hand the answer is no, .

then C (Lp)zC_ (Ip)zoo, and since by Theorem I there exists
a closed linear manifold M, such that C (M) = C (), /l:Lp,
or [, the definition of C(9M) yields that the answer to both (a)
and (b) is no.

8. We will show in this section that if the answer to prob-
lem (b) is yes, that of (c) is also yes. Let kp-—— E’(Zp), by hypo-
thesis &£, is <co. Let M be any closed linear manifold of L.

We use a result given in (B) Chap. XII, pp. 194—197,
that there exists constants B, and C, such that to every infinite — di-
mensional manifold M C 7, there exists an M, CNM, and a trans-
formation 7’ with range M, such that, for every fe L,

BIAZIT'fI=C,If].

Let E be a projection of ./ on M. Let N be the set of
fel, such that Ef=0. Let P be the smallest closed linear ma-
nifold which contains N, 779, 7*N,... which fact we denote
by $={R, 7'R, 7”R,...}. Obviously 7"P ={T" N, T°%,..)
and since |E| <o, T'P=P.M=P.M. Let F be a projec-
tion of [ on T'$. ’ '

Now Fi=1— E+ FE is a projection on R. For F;)z:__ (1—E)
+ FE) (1—E) + FE) = (1—E)’+ (1—E) FE + FE(1—E) + FEFE.
Since EF = F, we have (1—E) FE — (1—E) EFE=(E—E* FE=0,
FE(—E)=F(E—E" =0, FEFE = FFE — FE and hence
Fo=Q1—Ey +FE=1—FE+ FE— Fy. Furthermore the range
of Fyis {M, TP} = P. ‘ :

Let T=T"F+ (1 —F,). Since POT'P, T"Fy=F,T'F, and
hence T==FT'F+ (1—F). '
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The range of 7 is M. For if ~h is €M, h=(1—F)h
+Fh(1 = F)h+((1—E) + FE)h. Since Eh="1, h=(1.——— 9)11
+ (1 —E)Eh+4+ Fh=(1-F)h+ Fh. Since the range of Fis T'q,
Fh=T'g=T'F,g for some gePB. Also since gis P, (1—F)g
=0. Hence h=(1—F)h+T'Fg=Q0—F)(1—F)h+g)
L TF (A —F)h+g — (A —Fy + T'F) (L — F) h + g)
=T((l—F)h+g), or his in the range of 7. Hence the range
of T includes M. But if 2 is in the range of T, A=Tg for
some g and since 1 —F=(1—(1—E)+ FE))=FE—FE and
El—F)=E(FE —FE)y=FE—EFE=FE—FE=1-—F,, Eh
=ETg=E('F+ (1—F)g=ET'Fg+ EQA—F)g=T"Fy
+(1—F)g=Tg=nh, i. e. h==FEh. Hence h is ¢, and the
range of 7 is also included in M. This with our previous result
shows that the range of T is .

T 77 exists. For Tf=0 implies (1— F)f+ FT'Ff=0,
hence (1—F)f=0 and FT'F f=0=T'F,f. But T’ has an
nverse hence Fjf==0. Thus f=00—F)f+F,f=0 or Tf=0
mplies f==0. We have also shown in the preceding' paragraph
‘hat for every A in 9 which is the range of 7, IzTTf, where
‘=(1—F)h+g=0—F)h+T"""Fh. Thus 77 '=(1—F,)

F 7’7 'F defined on M.

Since Fy, F, T’, 7' are all bounded, 7 and T~' are
oth bounded. Since the range of T is 9, we see that M is
omorphic with /. Since MM was arbitrary, we have shown that
1 affirmative answer to (b) implies an affirmative answer to (c).

(Recu par la Rédaction le 23. 7. 1936).

14





