264 J. Schreier.

D(f) sei eine die Menge aller stetigen Funkbionen einer reellen
Verimderlichen auf sich selbst eineindeutig abbildende und die Beziehung

D(fg) = D(f) D(g)
erfillende Operation. Dann ist D(f) von der Gestalt
dfy=9fo™
wo @ eine topologische Abbildung der Zahlengeraden auf sich ist.

Analoge Sitze gelten offenbar fiir die Unteralgebren der mef-
baren oder der differenzierbaren Funktionen.

Dagegen. bleibti folgende Frage offen: Sei T(.R,) die Gruppe
-aller topologischen Abbildungen des Euklidischen n-dimensionalen
Raumes R,. Besitzt T'(R,) nur innere Automorphismen ?
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On the derivation of additive functions of intervals
in m-dimensional space.

By
A. J. Ward (Cambridge, England).

Following on some recent work of Besicovitch?l) and the
present author?), Saks3) has proved the following theorem:
If a simply additive function of rectangles, F(R), satisfies
lim ﬁ%R)>——oo
AR50 |E|
RDO(eg)

at each point (x, y) of a set E,, then, almost everywhere in E,,

im £(8)

d(S)->0 IS |
SDny)

exists, and s equal to
tim 7B,
d{R)>0 IR]

RD(x,g)
Here R denotes any rectangle, and S any square, whose sides are
parallel to the co-ordinate axes.

The demonstration made use of a simple geometrical property
of rectangles lying in a plane, and the question naturally arose
whether the theorem held, and could be proved in the same way,
for functions of intervals in space of more than two dimensions.

At one time I thought that the necessary geometrical lemma was

1) A. 8. Besicovitch, Fund. Math. 25 (1935), 209—216.
2) A. J. Ward, Fund. Math. 26 (1936), 167—181.
3) 8. Saks, Fund. Math. 27 (1936), 72—76.
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true for m-dimensional space, but it has been shown that this ig
not so%). Now, however, I am able to give a new theorem on the
derivates of an additive function of infervals in m-dimensional space,
which includes the above theorem for the plane.

1. Let F(I) be a simply additive function of intervals in m-di-
mensional Cartesian space. We denote a point (@1, @y, ..., ) of the
space simply by @, and the interval p;<e,<<¢: (¢=1,2, ..., m), by
(D105 Py o -5 Py )y O, if there is no risk of confusion, simply
by (p,, q)- If I is any interval, we denote by I(I) the length of itg
longest side, and by s(I) that of its shortest. We write #(I) for the
ratio s(I)/I(I), so that 0<»(I)<C1 for any non-degenerate interval.

We define
‘ F*(o) =1lim )
(n-»o |
IDx -
and, for any « such that 0<a<{1,
= F(I )
F.(x
)= 1(1)—>o |I|

considering only intervals such that I Dz and also »(I ) Za.
It is clear that if 0<a;<a,<C1, then

Fo(x )<F,¥1( V<SF ().
Hence, the limit
F(»)=1im F,(x)
exists, and satisfies e

Folo) < Flo) <F*(x) (0<a<C1).
Similarly, by taking lower limits, we define the lower derivates
Fy(@), Bo(z), F(z). If 0<a<a,<<1, then
F(0)SKE (2) SBo, () <F (50) SFo(@) < Fo (o) < Flo) < F*(@).
Theorem 1, If Bz
{Bq| =0.

Suppose that, if possible, |E0|>0 Then we can find a subset

E, of E, andanumber 0>0, such that |E
>0
(I) 1, and I(I)<C$, then A0, end it oeth ID%

=00 ‘at each point of a set B,, then

(1) F(I)>o0.

%) cf. 8. Saks, loc. cit., 76, footnote 4.
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We take any point of outer density of E,, and find a cube I,
surrounding it such that I([))<<o and

{2) | By o> (1— 27 F0) 1.

Let I(I,)=l,, and suppose for simplicity that I, is the cube
{0, Tp; 0, %; ...; 0, Tp). We choose a number N>>0 such that

(3) ‘ YN>F (L) Ly|-

Given any point z of E,I,, since Fy(z)=oo, all sufficiently small
cubes containing z satisty F(I)>N-|I]. From this and from (2),
it follows that we can find a sub-set B, of E,I,, and an integer &,
such that

(4) |By|> (1— 27 F). |1,

and, if I is any cube, containing a point of K, such tha#
WI<<2 ™1, then

(5) F(I)>N-1.

We now divide I, into 2™ cubes of side §1, (by the hyperplanes
a=}1,). Each of these cubes contains a point of H,, by (4). If any
of them satisfies (5), we call it a “black cube”. If any of the cubes
is not ‘black’, we again divide it into 2" cubes of half the side. If
.one of these cubes, in its turn, contains a point of E, and satisfies (5),
then we call it a black cube; if however it contains no point of Ey;
then we call it a ‘““white cube’’ (whether it satisfies (5) or not). Now
if one of these cubes of the second subdivision is neither white nor
black, we again divide it, and classify its 2™ gub-cubes as white
or black, and so on. From the definition of E,, it is clear that, if
we reach the k,th stage, any cube which is not “white” must
satisfy (3), and so be “black”. That is, the process terminates at
.or before the kg th stage, and we have divided I, into a finite number
.of non-overlapping cubes, each of which is either “white” or “black”.
Let the white cubes be called W;, i=1,2,..,,ny, say. From (4)
we see that

3wy <27

Now each white cube arises from the subdivision of a cube, of twice
the side, which is not white, that is, which contains a point of E,.
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It follows that all the white cubes can be covered by a finite

set of cubes, say Vi, ¢=1, 2, ..., ny, say, such that

2 vi<ae™ ,2 (Wi
< '-5‘ roly

and each V; contains a point of B, and therefore satisfies (1), since

V) <KUI,)<Cé. Also any V; either contains, or does not overlap,
any of the black cubes. Let B;, i=1, 2, ..., ny, say, be those black
cubes which are not contained in any V;; then, from (6),

Z |Bi| > %Lyl

(6)

Since each B; satisfies (5), and each V;, (1), and since F(I) is add-
itive, we have

F(I,)> N-Y|B|
> NIy,

in contradiction with (3). Thus the theorem is proved.

2. Theorem 2. If F(x)>—>0 at each point of a set H,, then,
almost everywhere in By, F,(2)= B (x).

Suppose that the theorem is false. Then we can find, in sue-
cession, 7>>0, a number 4, and 6>0, such that, for each point =
of a set ECE,, such that |E|>0, we have

' ’E}f ($)>F (m) +2 3m~-1
(7) 4

7

<F, (@) <A+,
and so
(8) A+ 23" < Fy(a);
and finally, whenever I D and l(I)_gd, then
(9) F(I)> 4|1,
and if also 7(I)>>4, then
(10) F(I)>(A+2.3""p)|1].
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We shall show that, if I is any interval with the following
properties, for some integer k, 1<CThk<Km:

(a) UKo

(b) |BI>(1—3""")|I|;

(e) % of the sides of I, say hy, by, ..., by, satisfy

(11) s(I) << hy<2-s(I);
then : '
(12) F(Iy>(4+2-3" ) |1].

The demonstration is by downward induction with respect to k.
Suppose that our statement is true for a certain k=m't+1<m,
and consider an interval I satisfying the conditions (a)—(c) with
k=m'. Let us suppose for simplicity that I is the interval (0, ¢),
and that the m’ sides of I which are known to satisfy (11) do not
include the first side, of length ¢,. We can find an integer N and
a length A such that
{13) Nh =g,
and

: s(I)<<h< 2s8(1);

for example, we can take N as the integral part of ¢/s(I).
Consider the N intervals I;, namely

[(G—1 R, jh; 0, qy; 5 0y4,],

Such an interval clearly satisfies conditions (a) and (¢) with k=m'+1;
if it also satisfies (b), that is, if

i=1,2, .., N.

|BL| > (1—3™ ™)1,

we say that it is of class 4; otherwise we say that it is of class B.
Since I satisfies condition (b) with k=m’, we see that the number n'
of intervals of class B satisfies n'<<§ N
Now we can group the intervals I; together into {larger) intervals,
each of which contains e:oactly one interval of class A. Some of these,
which we will call J;, i=1,2, ..., n, say, will consist simply of one
interval of class 4. It is easv to see that the number, n, of such
intervals satisfies
n>=N—2n

(14) >iN.
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Bach of the remaining intervals, say R;, 9=1,2,...,n", say,
contains an interval I; of class A, and therefore a point of K.
Since Ry I, 1(R)< S and so R; satisfies (9); that ig

F(R) > A |R{.

On the other hand, by the inductive hypothesis, each interval of
class A satisfies (12) with k=m'+1, therefore, in particular,

FJ) > (A+2.3" n)-|J4.

Since F is additive, we obtain, from these last two inequalities,

F(I)> AT +2.8™ 5 3 |Jil5
! =1
that is, by (13) and (14),
C P> (A42.3" nn/N)-|1]
> (A—|—2.3'"l_-‘1 7)-1I}.
Thus we have proved our statement for k=m’. Now it is true
for k=m, as we see from the relation (10); it follows that it is true

for all k, 1<Ck<<{m. But any interval whatever satisfies con-
dition (¢) with k=1; so we have proved that if I(I)<<é and

|BI|>(1—37"*")-|1|, then
F(I) > (A+2n)-|1).
It follows that if # is any point of outer density of F (in the strong

sense), then _ »
‘ F,(2) = A+2n.
Since almost every point of F is such a point of outer density,
we have a contradiction with (7), and so the theorem is proved.

8. Lemma. If I is any interval, and o a fized number such
that 0<a<l, we can divide I .into a finile set of non-overlapping

‘intervals I, such that, for each m, ,
r(l,)Za and s(In) 2z (1—a)-s(I).

Let I be the interval (p,, ¢,), and let ¢,—p,=h,, i=1, 2, ..., m.
Define the integers a; such that ,

€15) a,(1—a)-s(1)< h,<(a,+1) (1—a)-s(I).
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Since h;zzs(I), we have, for all i=1,2,...,m, from (15),
@i+ 1>1/(1—a) and so a;/(a+1)>a. Hence, from (15),
(16) (I—a)-s(D)<hifa <a ' (1—a)-s(I).

We can divide I into aa,...a, equal intervals of sides h/a,,
and it follows from (16) that each of these satisfies the required
conditions.

Theorem 3. If 0<a<l, 0<f<1, and Fu(x)>—oo af each
point of a set By, then, almost everywhere in E, '

Fy(#) = Fu(2). v
Suppose that the theorem is false. We write for convenience
(17) .. K=

We can find, in succession, >0, a number 4, and §>0, such
that, for each point & of a set EC E,, such that |E|>0, we have

Fy(a) > Feo(2)+ K,

—m p—m 5dm-+3
a " g 2,

(18)
‘ A < Fo(z)<< A+,
and so -
(19) | A4Ry<Fya@);
and finally, whenever I Dx and
(20) W)<<é and r(I)Z=a
then
(21) F(I)>A-[1].

We shall show that if I is any interval satisfying (20), and
such that ‘

(22) |BI| > (1—27®"2).|1],
then _ _
F(I)=> (A-+27)-]I].
It will follow that, at any point of outer density of E,
Fo(o)=> A+ 2. |

Since almost every point of F is.a point of outer density of &,
we shall have a contradiction with (18), and the theorem will
be proved.
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We consider any one fixed interval I, satisfying (20) and (22),
and we may suppose for convenience, by a trivial change of co-ord-
ina-tes, that I, is the interval (0, k), i=1,2,..,m. Let s(I;)=s,
U(Io)=

Let E, be the set of points of E interior to I; where F has
outer density 1. Then

(23) By = |BI,| > (1—2" "), |,

Let #' be any point of E,. By (19) and the definition of K,

we can find an interval I, containing 2', as small as we please, such that
(24) (1) 2= B,

(25) ‘ F(I,) > (A+Kn) L],

and also, if I is any interval containing &', such that

UDH)<<16 - 1(1),
then

(26) \BI| > (1—e)- |1,

where e=a'" (1__(1)111 ﬁm 2—4m'
Let I, be the interval (p;, ¢;), and let  s(I;)=s,, ()=
Define the integers k and a;, i=1, 2, ..., m, such that

(27 g~ <1, <o "y,
(28) a2 h o < (a+-1)-27F D gy,

We remark also that

(29) pZE—l, <zt
: Let
ai="1tw it @ is even,
a; =} (ai+1) it a; is odd.
Consider the interval I,=(c;, d;), say, namely
(30) {(ai—1)-27"hy, (ai+-1)-27"hy).

By taking I, sufficiently small, we may suppose that I(I,)<<é
We see from (27), (28) and (29), since h;=>s,, for all 1, that

(31) Pi=ci+ gk o
(32) ¢ <d,—2 "

b

0
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Now we can divide I,—I; into the 2m. non-overlapping intervals:

(6 P13 Oy oy v v v v o i Cpyd )y
(qyy @3 Gy By o v o v v v 5 G @),
(P &5 G Doy Gy lys - - -5 0 d,)
(Dys €43 Gy B3+ - - BRI c.n.),

........ R ]

(pp Qn s pnr—i’ qm -1; qm’ dm)_',
Hach of these, by (24), (27), (31), and (32), satisfies
s(I) = min [27% 5, 1]
> B2 ¢,

Using the lemma, we see that these intervals can be further divided
into a finite set of non-overlapping intervals, say Ri ¢=1,2, ..., N,
such that, for each ¢,

r (R/) ,2 a,y

s(R)=>(1—a) p-27“s,

But )
Ty = 27" ||
< 2—111(11—1) l:)"

(33) S 2~tn(k—-1) a—-m Slony
since r(ly))=a

Hence

|R| =1s(B)]"
> (l-—- )m ﬁm 2—"!(k+3) S[l)ll

(34) ; am (l_a)m ﬁm 2——4111_ IIzl .

Again,

UI,) =2 *t,
< ool 8 .
<1607, by (27).

Tt follows that I, satisfies (26); therefore, by (34), each E; con-
tains a point of F, and so, since WR) < UI,)<<o and 'r( ) == a,
satisties (21). Using (25), we obtain by addition

F(I,) > A-|Le|+En-|L.

Fundamenta Mathematicae, T. XXVIII

18


GUEST


icm

274 A. J. Ward:

But, by (24), (27), and (33),

[Ill > 3?1 ? ﬁlll li))
> 2—m(k+3) ﬂm 331

> 2-47)1 am ﬂm \Izl .
Hence, by (17),

(35) F(I) > (442" p) |}

Since the interval I, can be as small as we like, it follows
that we can find a decreasing sequence of intervals, containing ',
of the form (30), satisfying (26) and (35), whose diameters tend
to zero. This is true for each o' of E,. We now apply Vitali’s theorem,
remembering (23). We obtain a finite set of non-overlapping intervals,
say J;, %=1, 2,...,n, such that

each of which satisfies (26) and (85) and is of the form (30). Now
if we divide each J; into 2" similar intervals of half the side, by
hyperplanes through its middle point, then each of these, by (26)
. containg a point of B, and at least one (for each J;) must satisfy (35).
Hence there exists a finite set of non-overlapping intervals, say
8, j=1,2,...,m, each of which is of the form

’

(36) (0027 iy (b4-1) 27 1),
satisfies
(37) F(8) > (A+2™ )18,

and contains a point of F; and

n

21’1 |Sj| > 2—(m+1)'lIo|'

Now we take I, and divide it up into similar intervals of the
form (36), just as we divided the cube in Theorem 1. The “black
intervals” are those which coincide with an interval 8;, and the
‘“white intervals” are those which do not contain or overlap any
black interval. Just as before, the process, in a finite number of
steps, divides I, into non-overlapping black and white intervals.
Let W; be those white intervals which contain no point of &,
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Then, by (23),
3 Wi <27,

Just as before, we can cover all the W; by a finite number of sim-
ilar intervals V;, j==1, 2, ..., n,, say, satisfying

S <23 Wi<2 "I,

such that each V; contains a point of E, and therefore, since
r(V))=r(I,) >a, satisties (21). I,— X'V; will consist of a certain
number of white intervals each containing a point of ¥ and satis-
fying (21), say W;, j=1,2,..,n, and a certain number of black
intervals, say Bj, j=1,2,..,n3, say. We have

JIBl = Y8 —X [V
7 7 7
> o7 )

Since each V; or W; satisfies (21) and each B; satisfies (37),
we obtain by addition

P(Iy) > A-|I|+2" -3 |Bj
> (A+2n)-|Ly,

which is the required inequality. Thus the theorem is proved.

4. For each of the theorems 1-—3, there exists a symmetrical
theorem in which upper and lower derivates are interchanged, and
the signs of infinities and of inequalities are reversed. Now suppose
that, for some fixed a, 0<a<<1, Fo(#)>—oo at each point of a set K.
Neglecting sets of measure zero, we have the following results at
each point of E.

By theorem 1, F,(z)<<oco, a fortiort E,dm)<o_o.

By theorem3, Fi(2)=Fq(), all n, and 50 F(z)=Fu(2)=Fu(z) <o,

By the theorem symmetrical to theorem 3, since #u(x)<<co,
Fyn(@)=F.(z), all n, and so

F(w) = Fa(z) = F (2).

Hence, remembering theorem 2, we easily derive the final result.
18*%
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Theorem 4. If F(I) is any additive function of intervals, then,
at almost all points, the derivates satisfy one of the following conditions:
(i) F*x)=F(x)=F(2)=F,(2), finite;

(i) F*@)=+oo, F(o)=F(a)=F,(a), finite;
(i) F*@)=F(2)=F(z), finite;
(iv) F*a)=+oo, F(z)=F(v), finite; F,(z)=—oo;

Fy(@) = — oo

(v) For all a<l, Fu(z)=TF*»)=-4o00, F.(x)=F,(r)=— oo.

The values of Fy(z), Fy(z), in the last case, are not yet determined.

5. There is, however, at least one case in which the above
theorem holds also for a=1; namely, when m=2 and F(I) is con-
tinuous. This follows as a particular case of a theorem which we
will now prove.

Theorem 5. If F(R) is an additive function of rectangles and,
at each point (z,y) of a set B,

Fi(z,y) < oo,

and also, for some fived o such that 3<Ta<l,

RD(x,p)
r(R)=e

then, almost everywhere in B,

Folw,y) < oo.

If the theorem is not true, we can find N>0 so large, and §,>0
8o small, that, at each point (z,y) of a set E, |E|>0, we have

(38) L F(R) S N-|E]
Whgnever r(B) =1, I(R)<{é,, and R contains (z,y); further,
(39) lim F(R) =0,

1(R)->0

RD(x,p)

R)zq

but
(40) Fa(w, y) =00,
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Let (z,, y,) be a point of outer density of E. We can choose dy,
0<6,<{ 4y, such that, if R D(xy, y,) and {R)<<d, then
(41) |ER| > [1— s{ga(1—a)]|R].

Now let I be any interval containing (z,, ¥,), such that 1(I)< 4,
and r(I)ZZa>>3%. We say that there exists an interval J containing
(g, ¥o), such that

(42) rJ) = a,
(43) W) < §s(I)
and F(J)—N|J|=FI)—N-[I|.

Suppose that I is the interval (xy— hy, Zo+hs; Yo— K1y Yo+ Fa),
and write for convenience

hy+hy=h, by ko=, s(I)=s.

Since r(I)Z2=§, we have s<<h<<$s. We shall suppose?®), for
definiteness, that hy=h,, k =%, S0 that .

h2<%h<%87
and similarly
: k<< $%s.
Since k=5, we can find an integer n; such that -

(44) L A —ds<kn<f(l—a)s. =

“We define the integer p, such that

h—p kjn, <EFs <h—(p,—1) k/n,.

Since hz=s, p,>0. Write h—pk/n,=h'. It follows at once from
(44) that )
-2l —a)s <,
‘whence
(45) Tas <k <}s,
and also R
hy<3s<<I.

4) It will be easily seen that this supposition does not essentially affect
the argument.

i
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Again, since h'>%s, we can find an integer n, such that
(46) Tl —a)s<Shin, <3 (l—a)s.
We define the integer p,>0 such that
b—po b ny <F8 <k —(py—1) b'[my,
and write k—p,h'/m,=Fk. Just as before, we have
(47) Fas <k < g8

and also
Ty << K.
Hence the following interval, which we define as the interval J,

namely

(@o+ho—N'y my+ho;  Yo+-Ra— k', Yo+ks)
contains (g, ¥,). By (45) and (47), it satisfies (42) and (43). Now I —J
can be divided into n,p, squares of side k/n,, namely

(s—1)k

sk
Yo—ky+ T, Yo—Foy+ ‘n—] ,
1

(r—1)k
m
ISr<sKp, 1Ss<ny, and n,p, squares of side 7'/n, -namely

(r—1)k’ (s—)n’
’l’bz ,n'2

[-’”o"‘ hy+ y Bo—h+ %3

, L '
[wo—}—h2—h+ y Zotha—h +n_25 Yokt ) ?/0“‘7‘71'1'%“]’
2
I<rscn,, 1sKs<Kp,. By (41), (44), and (46), each of these squares
contains a point of F (since s>>>a-|I|), and therefore satisfies (38).
Hence, if we enumerate all these squares as §;, i=1,2,..,n, say,
we have, since F is additive,

FU)=F(I)— 3 F(S)

i=1
>B(I)— N 38|
i=1
=FI)—N-
. =) — N-{I+3)],
F(J) — N-|J| > F(I) — N-|I.

Now by (40) we can find an interval I,, containing (w,, ¥,),
such that F(I,)=a, I(I)<d, and

that is F(h) =281, *
it ]
(L) — N-|I| > N |L.
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By applying the result we have just proved, we obtain from I,
a sequence of intervals I, containing (x,, y,), n=1,2,.., such
that, for each =,
l(In-H) < ’g‘ $ (In):
r(La) Zay
(L) — N-|L| Z N-|.

This clearly contradicts (39), and so our theorem is proved.

Warszawa, October 1936.
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