

On Jordan curves possessing a tangent everywhere.

By

A. J. Ward (Cambridge, England).

M. Fréchet 1) recently raised the following question: if we know that a Jordan curve possesses a tangent everywhere, is it always possible to choose a parameter t for the curve in such a way that dx/dt, dy/dt, dz/dt exist and are not all zero (a) everywhere, (b) almost everywhere with respect to t? In this paper I give first a simple example to show that the answer to (a) is in the negative, even for rectifiable curves. In fact, there may exist a perfect set of points on the curve, at each of which it is impossible for dx/dt, dy/dt, dz/dt all to exist unless they all vanish, however we choose the parameter t. Next I give a theorem which shows that the answer to (b) is affirmative; in fact, for a suitably chosen parameter, not only is the exceptional set of values of t of measure zero, but also the corresponding set of points on the curve is of linear measure zero.

1. Suppose that we are given, in Euclidean 3-space 2), a certain Jordan arc Γ ; by saying that a given line l through a given point P_0 of Γ is the tangent at P_0 , we mean, naturally, that given any double cone with P_0 as vertex and l as axis (however small its angle), all points of the curve within a sufficiently small sphere, of centre P_0 , lie also within the cone. We now construct a certain arc possessing a tangent everywhere. (The construction actually requires only two-dimensional space; we may suppose that z=0 throughout).

Given three numbers a, b, h, b > a, h > 0, we define the arc $C_1(a, b, h)$ as being made up of the straight lines P_1P_2 , P_2P_3 , ..., P_7P_8 , where P_1, P_2, \ldots, P_8 are respectively the points (a, 0), (a+l, 0), (a+l, 2h), (a+3l, 2h), (a+3l, h), (a+2l, h), (a+2l, 0), (b, 0), where <math>4l=b-a. $C_2(a, b, h)$ is an arc obtained from $C_1(a, b, h)$ by rounding the corners by small circular arcs (the process is obvious and we do not define it in detail). $C_2(a, b, h)$ is to be the mirror-image of $C_2(a, b, h)$ — that is, to be exact, the reflection in the line x=a of the arc $C_2(2a-b, a, h)$. We now define the arc K(a, b, h) as being made up of the points (a, 0), (b, 0) and all the arcs $C_2(a+l/2^n, a+l/2^{n-1}, h/4^n)$ and $C_2(b-l/2^{n-1}, b-l/2^n, h/4^n)$, where $n=0,1,2,\ldots$, and again 4l=b-a. It is easy to see that in this way we do in fact obtain a Jordan arc (even a rectifiable curve). We note that if (ξ, η) is any point of K(a, b, h), we have

$$(1) 0 \leqslant \eta \leqslant \frac{8h \times \min(\xi - a, b - \xi)}{b - a}.$$

K(a, b, h) is itself sufficient to show that question (a) must be answered in the negative, but we proceed further. We consider the so-called 'Cantor ternary set' F in $\langle 0,1 \rangle$. For each of its complementary intervals (a,b) [(1/3,2/3),(1/9,2/9),(7/9,8/9), and so on] we construct the arc $K[a,b,(b-a)^2]$. The sum of all these arcs and of the points (x,0) where $x \in F$, forms a Jordan arc Γ , in fact a rectifiable curve. We say that the tangent exists at all points of Γ . This is obviously true for points (x,y) such that x is not in F. For all points (x,0) where x is in F, the line y=0 is the tangent to Γ . Suppose that x is in F and not an end-point of a complementary interval. Then if (ξ,η) is any point of the curve, either $\eta=0$, or ξ lies in some interval (a,b) and (ξ,η) is on $K[a,b,(b-a)^2]$. Thus

$$0 \leq \eta \leq 8 (b-a)^2 \min (\xi - a, b - \xi)/(b-a)$$
 (by (1))
$$\leq 8 (b-a) |\xi - x|.$$

Since $b-a\to 0$ as $a,b\to x$, we see that the line y=0 is the tangent. We omit the proof for the case when x is an end-point of a complementary interval; it proceeds on similar lines, using the definition of K(a,b,h).

Now let t be any parameter for the curve Γ such that, as t varies from 0 to 1, Γ is described steadily 3) in the direction from

¹⁾ Fund. Math. 26 (1936), 334.

 $^{^{2})}$ The arguments used throughout this paper apply equally to n-dimensional space.

 $^{^{3}}$) The argument applies even if the curve is not described steadily as t increases.

(0,0) to (1,0). Let t_0 be a value of the parameter such that $x_0 = x(t_0)$ lies in F. We say that if dx/dt, dy/dt both exist at t_0 , they must both vanish. We give the proof for the case when x_0 is not an end-point of a complementary interval of F, and leave the other case to the reader. We can find a sequence of complementary intervals (a_n, b_n) , such that

- (i) $a_n > x_0$, $a_n \to x_0$ as $n \to \infty$, and so $b_n a_n \to 0$;
- (ii) all complementary intervals of F between x and a_n have length less than b_n-a_n .

Let $l_n=(b_n-a_n)/4$, $h_n=(b_n-a_n)^2$. Consider the following points $(x_1^{(n)},y_1^{(n)})$ and $(x_2^{(n)},y_2^{(n)})$ of $C_2(a_n+l_n,a_n+2l_n,h_n)$, namely $(a_n+7l_n/4,3h_n/2)$, $(a_n+3l_n/2,h_n/2)$. Let $t_1^{(n)},t_2^{(n)}$ respectively be their parameters as points of Γ , then we can see from the definition of $C_2(a,b,h)$ that

$$(2) t_2^{(n)} > t_1^{(n)}.$$

On the other hand, it follows from (ii) that $a_n-x_0<4l_n$, and so

(3)
$$x_2^{(n)} - x_0 < 22 (x_1^{(n)} - x_0)/23.$$

Since $t_2^{(n)}$, $t_1^{(n)}$ must tend to t_0 as $n \to \infty$, we see from (2) and (3) that if dx/dt exists at t_0 , it must vanish. Again, using (1), we have as before, for all points (x, y) of Γ (replacing b-a by its greatest value)

$$0 \le y \le 8 |x - x_0|/3$$
.

Hence if dx/dt=0 at t_0 , dy/dt=0 also.

2. We now suppose that we are given a Jordan arc Γ (in three-dimensional space), expressed by given continuous functions x(t), y(t), z(t) of a variable t, $0 \le t \le 1$, in such a way that to each point of Γ corresponds a unique value of t. We denote any point of space by P, and any direction by λ , the opposite direction being denoted by $-\lambda$. By $S(P_0, \lambda, \eta)$ we mean the set of points P, other than P_0 , such that the line P_0P , in that sense, makes an angle less than η with the direction λ (that is, an open single cone). For convenience we write f(t) for the point with co-ordinates x(t), y(t), z(t). Γ is represented by P = f(t). If dx/dt, dy/dt, dz/dt all exist at t_0 , we say that df/dt exists there; if they are all zero we say that df/dt is zero. If H is a set of points in $\langle 0,1 \rangle$, f(H) is the set of points f(t) on Γ such that $t \in H$; conversely if H is a set of points on Γ , $f^{-1}(H)$ is the set of values of t such that $f(t) \in H$.

Lemma 4). If at each point t of a set e, of finite outer measure, all the derivates of x(t), y(t), z(t) are less than k in modulus, then 5) $L^*[f(e)] \leq K\sqrt{3} m_e(e)$.

Given $\varepsilon > 0$, let e_n be the set of points t of e such that, if $|h| \le 1/n$,

$$|x(t+h)-x(t)| \leq (k+\varepsilon)|h|,$$

and the similar inequalities hold for y(t), z(t). Since $e_n \subset e_{n+1}$ and $\sum e_n = e$, we can find n so large that $L^*[f(e_n)] > L^*[f(e)] - \varepsilon$. Given any $\varrho > 0$, we can cover e_n by intervals I_s , s = 1, 2, ..., such that $mI_s < \min[\varrho, 1/n]$, all s, and also $\sum mI_s < m_e(e) + \varepsilon$. Then if t_1, t_2 are two points of $e_n I_s$ we have

$$|x(t_1)-x(t_2)| \leqslant (k+\varepsilon)|t_1-t_2|,$$

and similar inequalities for y, z. Hence

$$\dim [f(e_n I_s)] \leq \sqrt{3} (k+\varepsilon) m I_s \leq \sqrt{3} (k+\varepsilon) \varrho,$$

and

$$\sum_{s} \operatorname{diam} [f(e_{n} I_{s})] \leq \sqrt{3} (k+\varepsilon) [m_{e}(e)+\varepsilon].$$

Since ϱ is arbitrary small,

$$L^*[f(e)] < L^*[f(e_n)] + \varepsilon \leq \sqrt{3} (k+\varepsilon) [m_e(e) + \varepsilon] + \varepsilon.$$

Since ε is arbitrary small, we have the result.

Corollary 1. If df/dt=0 at each point of e, and $m_e(e)<\infty$, then L[f(e)]=0.

Corollary 2. If the derivates of x(t), y(t), z(t) are all finite at each point of e, and m(e) = 0, then L[f(e)] = 0.

⁴⁾ The principle of this lemma is well known; see S. Saks, Théorie de l'Intégrale, Monografie Matematyczne, Warszawa 1933, 156, 174. However, it seems advisable to give the proof here, since we are now concerned with linear measure on a curve.

⁵⁾ L* denotes Carathéodory outer linear measure. C. Carathéodory, Göttinger Nachrichten (Math. Phys.), 1914, 404—426.

3. Theorem. Suppose that with each point $P_0 = f(t_0)$ of a certain set \mathcal{E} on Γ , such that $L(\Gamma - \mathcal{E}) = 0$, is associated a direction λ and an angle $\eta < \frac{1}{2}\pi$, such that all points of Γ sufficiently near to P_0 lie in one of the cones $S(P_0, \lambda, \eta)$, $S(P_0, -\lambda, \eta)$. Then we can express the curve in terms of a new parameter as

$$P = F(v) [x = X(v), y = Y(v), z = Z(v)],$$

in such a way that dF/dv exists and is not zero, except at the points of a set N such that m(N)=L[F(N)]=0.

Further, the co-ordinates can be expressed as Perron-Stieltjes integrals?):

$$X(\nu_1) = X(0) + (PS) \int_0^{\nu_1} \{g(\nu) dX(\nu) + (dX/d\nu)_{E-N} d\nu\},$$

where g(v)=0 for v in $E=F^{-1}(\mathcal{E})$ and g(v)=1 elsewhere, and $(dX/dv)_{E-N}=dX/dv$ for v in E-N and $(dX/dv)_{E-N}=0$ elsewhere. Similar expressions hold for Y(v), Z(v).

Corollary. If the tangent exists at all points of Γ , then we can express Γ by P = F(v) in such a way that dF/dv exists, and is not zero, except at the points of a set N such that m(N) = L[F(N) = 0. The co-ordinates can be expressed by (ordinary) Perron integrals such as

$$X(v_1) = X(0) + \int_0^{v_1} (dX/dv) dv,$$

where dX/dv is to be replaced by zero at those points where it does not exist.

We say first that x(t), y(t), z(t) are $VBG^{*\ 8}$) on the set $e=f^{-1}(\mathcal{E})$. We observe that if $P_0=f(t_0)$ is in \mathcal{E} , then all points with $t-t_0$ sufficiently small and positive must fall into only one of the cones $S(P_0,\lambda,\eta),\ S(P_0,-\lambda,\eta),\$ since the curve passes through P_0 only

once. On the other hand, it is impossible 9) for f(t) to fall into one cone $S(P_0, \lambda, \eta)$ for all sufficiently small $t-t_0$, of either sign, except for an enumerable set, say e_0 , of values of t_0 . Thus, in general, f(t) must fall into one cone for small positive $t-t_0$, and in the other for small negative $t-t_0$. Let $\lambda_1, \lambda_2, ..., \lambda_n, ...$, be an enumerable everywhere dense set of directions (for example, the set of directions whose direction-ratios can be expressed rationally).

Let e_{mn} be the set of points t_0 with the property:

$$f(t)$$
 lies in $S[f(t_0), \lambda_m, \frac{1}{2}\pi - 1/n]$ if $0 < t - t_0 \le 1/n$,

$$f(t)$$
 lies in $S[f(t_0), -\lambda_m, \frac{1}{2}\pi - 1/n]$ if $0 > t - t_0 \ge -1/n$.

It is clear that $\sum_{m,n} e_{mn}$ covers $e-e_0$. We shall show that x(t) is VB^* on each of the sets $e_{mnp}=e_{mn}[p/n \leqslant t \leqslant (p+1)/n]$, and since e_0 is enumerable this will show that x(t) is VBG^* on e. The proof for y(t), z(t) is exactly the same. Let $t_1, t_2, t_1 < t_2$, be any two points of e_{mnp} . Since $0 < t_2 - t_1 \leqslant 1/n$, $f(t_2)$ lies in $S[f(t_1), \lambda_m, \frac{1}{2}\pi - 1/n]$. For $t_1 < t < t_2$, f(t) lies in $S[f(t_1), \lambda_m, \frac{1}{2}\pi - 1/n]$ and also in $S[f(t_2), -\lambda_m, \frac{1}{2}\pi - 1/n]$. Let d(t, t') be the length of the straight line from f(t) to f(t'), and $d_m(t, t')$ its projection on the direction λ_m (with regard to sense). Then the remark just made shows that, for $t_1 < t < t_2$, $d_m(t_1, t)$ and $d_m(t, t_2)$ are positive and at least equal to $d(t_1, t) \sin(1/n)$, $d(t, t_2) \sin(1/n)$ respectively. Hence

$$d(t_1, t) \leq d_m(t_1, t) \operatorname{cosec} (1/n)$$

 $\leq \{d_m(t_1, t) + d_m(t, t_2)\} \operatorname{cosec} (1/n)$
 $= d_m(t_1, t_2) \operatorname{cosec} (1/n),$

and so we see that $\omega[x(t), \langle t_1, t_2 \rangle]$ [the oscillation of x(t)] is at most $2d_m(t_1, t_2)$ cosec (1/n).

Now let $t_0 < t_1 < ... < t_N$ be any finite set of points of e_{mnp} . Then we have

$$\sum_{i=1}^{N} \omega[x(t), \langle t_{i-1}, t_i \rangle] \leq \sum_{i=1}^{N} 2d_m(t_{i-1}, t_i) \operatorname{cosec} (1/n)$$

$$= 2d_m(t_0, t_N) \operatorname{cosec} (1/n)$$

which is bounded. That is, x(t) is VB^* on e_{mnp} .

⁶⁾ According to a recent result of Roger (Comptes rendus, 200 (1935), 2050, see also S. Saks, Fund. Math. 27 (1936), 151—152), it follows at once that the tangent exists except in a set of linear measure zero. We do not use Roger's theorem in our proof.

⁷⁾ A. J. Ward, Math. Zeitschrift 41 (1936), 578-604.

⁸⁾ Saks, loc. cit., 158 ff.

⁹⁾ G. Durand, Acta Math. 56 (1931), 363-369.

On Jordan curves ...

287

Since x(t), y(t), z(t) are continuous and VBG^* on e, we can find a strictly increasing function $\chi(t)$ such that

$$\underbrace{\lim_{t \to t_0} \left| \frac{x(t) - x(t_0)}{\chi(t) - \chi(t_0)} \right|}_{t \to t_0} < \infty$$

[and similarly for y(t), z(t)] at each point of e^{-10}).

Define the function $P=\varphi(\tau)$, $[x=\xi(\tau), y=\eta(\tau), z=\zeta(\tau)]$, by the equation

 $\varphi(\tau) = f(t)$ if $\chi(t-0) \leqslant \tau \leqslant \chi(t+0)$.

Since χ is strictly increasing, $\xi(\tau)$, $\eta(\tau)$, $\zeta(\tau)$ are one-valued continuous functions. By (4), their derivates are all finite at each point of the set H (say) $=\varphi^{-1}(\mathcal{E})$, except at for most an enumerable set, D. As τ varies from $\chi(0)$ to $\chi(1)$, $\varphi(\tau)$ describes Γ "steadily in the wide sense"; that is, we may have $\varphi(\tau_1)=\varphi(\tau_2)$ for $\tau_1<\tau_2$, but if so, then $\varphi(\tau)=\varphi(\tau_1)$ whenever $\tau_1\leqslant \tau\leqslant \tau_2$.

Let H_1 be a measurable set including H and of the same outer measure; then as the derivates of $\xi(\tau)$, $\eta(\tau)$, $\xi(\tau)$ are finite for τ in H-D, and are measurable functions, they are finite for almost all τ in H_1 . By a well-known theorem, it follows that $d\xi/d\tau$, $d\eta/d\tau$, $d\xi/d\tau$ all exist almost everywhere in H_1 . Let H_2 be the sub-set of H_1 for which $d\varphi/d\tau$ is zero, and H_3 the subset of H_1 for which $d\varphi/d\tau$ exists but is not zero. Define the function $v(\tau)$ by

$$\nu(\tau_1) = m \left\langle H_3[\chi(0) \leqslant \tau \leqslant \tau_1] \right\rangle = m \left\langle [H_1 - H_2][\chi(0) \leqslant \tau \leqslant \tau_1] \right\rangle.$$

 $\nu(\tau)$ will be an increasing function, but not in general a strictly increasing function, of τ . Suppose that $\nu(\tau_1) = \nu(\tau_2)$, $\tau_1 < \tau_2$. The points of the interval $\langle \tau_1, \tau_2 \rangle$ may be divided into three sets as follows.

- (i) The set $\langle \tau_1, \tau_2 \rangle H$. Since $\varphi(\langle \tau_1, \tau_2 \rangle H) \subset \Gamma E$, we have $L[\varphi(\langle \tau_1, \tau_2 \rangle H)] = 0$, and so $m[\xi(\langle \tau_1, \tau_2 \rangle H)] = 0$.
- (ii) The set $HH_2\langle \tau_1, \tau_2 \rangle$. Since $d\xi/d\tau = 0$ for each point of the set, $m[\xi(HH_2\langle \tau_1, \tau_2 \rangle)] = 0$ 11).
- (iii) The set $(H-H_2)\langle \tau_1, \tau_2 \rangle$. Since the derivates of $\xi(\tau)$ are finite on H-D, and $m[(H-H_2)\langle \tau_1, \tau_2 \rangle] = 0$ since $\nu(\tau_1) = \nu(\tau_2)$, we see that $m[\xi((H-H_2)\langle \tau_1, \tau_2 \rangle)] = 0$.

These three results show that $m[\xi(\langle \tau_1, \tau_2 \rangle)] = 0$. Since $\xi(\tau)$ is continuous, this means that $\xi(\tau_1) = \xi(\tau_2)$. Similarly $\eta(\tau_1) = \eta(\tau_2)$, $\xi(\tau_1) = \xi(\tau_2)$; that is, $\varphi(\tau_1) = \varphi(\tau_2)$. Conversely, if $\varphi(\tau_1) = \varphi(\tau_2)$, then $\varphi(\tau)$ is constant in the interval $\langle \tau_1, \tau_2 \rangle$, and therefore $v(\tau)$ is constant. Thus we see that $v(\tau)$ is constant in exactly those intervals where $\varphi(\tau)$ is constant. Thus if we define

$$F(\nu) = \varphi(\tau)$$
 if $\nu = \nu(\tau)$,

we have a one-valued function F(v), and further, F(v) uniquely defines v. The representation of Γ by P = F(v) (say x = X(v), y = Y(v), z = Z(v)) is the required parametrisation. Since $v(\tau)$ is an increasing function of τ , not constant except where $\varphi(\tau)$ is constant, it follows that X(v), Y(v), Z(v) are continuous functions of v. Now $dv/d\tau = 1$ for almost all τ in H_3 , say for all τ in a set $H_4 \subset H_3$. Since $d\varphi/d\tau$ exists and is not zero for τ in H_3 , dF/dv must exist, and be not zero, for all v in $v(H_4)$.

We wish to show that the complement of $v(H_4)$ (in the interval $<0, v[\chi(1)]>$), say E_5 , satisfies $mE_5=0$, $LF(E_5)=0$. Now $E_5\subset v(\operatorname{comp} H_3)+v(H_3-H_4)$. Now $dv/d\tau=0$ almost everywhere in $(\operatorname{comp} H_3)$, and the derivates of $v(\tau)$ all lie between 0 and 1 everywhere. Hence, by the same argument as before, we see that $mE_5=0$. Again

$$\begin{split} F(E_5) = & \Gamma - F[\nu(H_4)] = \Gamma - \varphi(H_4) \\ & \subset \Gamma - \varphi(H) + \varphi(HH_2) + \varphi(H - H_2 - H_3) + \varphi[H(H_3 - H_4)]. \end{split}$$

Now we know that $L(\Gamma-\varphi(H))=L(\Gamma-\varepsilon)=0$. Also $d\varphi/d\tau=0$ on HH_2 , and all the derivates of $\xi(\tau)$, $\eta(\tau)$, $\zeta(\tau)$ are finite at each point of H-D. Finally, $m(H-H_2-H_3)=m[H(H_3-H_4)]=0$. By the corollaries to our lemma, this shows that $L[F(E_5)]=0$. If we write N for the set of all points where dF/dv does not exist, or exists and vanishes, then $N \subset E_5$ and so m(N)=L[F(N)]=0.

Since $dX/d\nu$ exists on E-N, we have, for all ν_1 ,

$$X(\nu_1) = X(0) + (PS) \int_0^{\nu_1} \{g_1(\nu) dX(\nu) + (dX/d\nu)_{E-N} d\nu\},$$

where $g_1(\nu)=0$ for ν in E-N and $g_1(\nu)=1$ elsewhere 12). To prove

¹⁰) Ward, loc. cit. lemma 6. Since x(t) is continuous, it is easily seen that we can do away with the enumerable set of exceptional points in that lemma. By taking functions χ_1, χ_2, χ_3 as in the lemma for x(t), y(t), z(t) respectively, we obtain by addition our required function $\chi(t)$.

¹¹⁾ We are using an obvious analogue of the corollaries to our lemma.

¹²⁾ Ward, loc. cit., Theorem 14.

the required formula we have only to show that $\int_{0}^{\nu_{1}} \{g_{1}(\nu) - g(\nu)\} dX(\nu)$

vanishes for all ν_1 . This is true ¹³), since $g_1(\nu) - g(\nu)$ vanishes except on the set EN, of measure zero, and $X(\nu)$ is VBG^* on $E \supseteq EN$. (For ν , t are different parameters for the same curve Γ , and x(t) is VBG^* on $e=f^{-1}[F(E)]$.)

The corollary follows at once. E reduces to the whole interval, so that g(v) vanishes, and the PS-integral reduces to an ordinary Perron integral.

Warszawa, 1936.

Ultraconvergence et espace fonctionnel.

Par

Stefan Mazurkiewicz (Warszawa).

- 1. Cette note contient un théorème général sur l'existence de séries de puissances ultraconvergentes 1), basé sur l'étude d'un espace fonctionnel.
- 2. Désignons par R_2 le plan de la variable complexe z. G étant un domaine simplement connexe, désignons par $\mathfrak{A}(G)$ l'ensemble de toutes les fonctions holomorphes dans G. Nous définirons dans $\mathfrak{A}(G)$, considéré comme un espace fonctionnel, une distance par une méthode due en principe à M. Fréchet. Choisissons dans G un point arbitraire z', posons $\lambda' = \varrho(z', R_2 G)$, enfin désignons pour $0 < \lambda < \lambda'$ par $G^*(\lambda)$ l'ensemble des $z \in G$ tels que

(1)
$$\varrho(z,R_2-G) > \lambda; \qquad |z-z'| < \frac{1}{\lambda}.$$

Soit $G(\lambda)$ le composant de $G^*(\lambda)$ contenant z'. $G(\lambda)$ est borné, simplement connexe, on a $\overline{G(\lambda_1)} \subset G(\lambda_2) \subset G$ pour $\lambda_1 > \lambda_2$ et, pour une suite $\{\lambda_j\}$, la condition $\lambda_j \to 0$ entraîne $\sum_{i=1}^{\infty} G(\lambda_j) = G$.

Posons pour $f, g \in \mathfrak{A}(G)$:

(2)
$$\sigma_G(f,0) = \inf_{\lambda} (\lambda + \sup_{z \in G(\lambda)} |f(z)|),$$

(3)
$$\sigma_{G}(f, y) = \sigma_{G}(f - y, 0).$$

¹⁸⁾ loc. cit., Theorem 10.

¹⁾ Une série de puissances S est dite ultraconvergente dans un domaine U contenant le cercle de convergence de S, si une suite de sommes partielles de S converge dans U, la convergence étant uniforme dans tout sous-ensemble fermé et borné de U. L'ultraconvergence a été étudiée par M. M. Jentsch, Ostrowski et Bourion.