On Jordan curves possessing a tangent everywhere.
By
A. J. Ward (Cambridge, England).

M. Freéchet!) recently raised the following question: if we
know that a Jordan curve possesses a tangent everywhere, is it
always possible to choose a parameter ¢ for the curve in such a way
that dz/dt, dy/dt, dez/dt exist and are not all zero (@) everywhere,
(b) almost everywhere with respect to £? In this paper I give first
a simple example to show that the answer to (@) is in the negative,
even for rectifiable curves. In fact, there may exist a perfect set
of points on the curve, at each of which it is impossible for dfa/dt,
dyldt, dz/dt all to exist unless they all vanish, however we choose
the parameter ¢. Next I give a theorem which shows that the answer
to (b) is affirmative; in fact, for a suitably chosen parameter, not
only is the exceptional set of values of ¢ of measure zero, but also
the corresponding set of points on the curve is of linear measure zero.

1. Suppose that we are given, in Euclidean 3-space %), a certain
Jordan arc I'; by saying that a given line | through a given point
Py of I' is the tangent at P, we mean, naturally, that given any
double cone with P, as vertex and I as axis (however small its angle),
all points of the curve within a sufficiently small sphere, of centre Py,
lie also within the cone. We now construct a certain arc Ppossessing
a-tangent everywhere. (The construction actually requires only two-
dimensional space; we may suppose that z=0 throughout)

!) Fund. Math. 26 (1936), 334.

%) The arguments used throughout this

) paper apply equally to n-dimen-
sional space.
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Given three numbers a,b, h,b>a, h>0, we define the are
Cy(a, b, b) as being made up of the straight lines P, P,, P,P,, ..., P, Pg
where Py, P,, ..., Py are respectively the points (a, 0), (a+1,0),
(a+1, 2R), (a+3L, 2k), (@431, k), (¢ 421, k), (a2, 0), (b,0), where
4l=b—a. Cy(a, b, h) is an arc obtained from Ca, b, k) by round-
ing the corners by small circular arcs (the process is obvious and
we do not define it in detail). Ca(a, b, h) is to be the ‘mirror-in‘la,ge of
Oy(a, b, h) — that is, to- be exact, the reflection in the ling s=a
of the arc Cy2a—b, a, h). We now define the arec K(a, D, h) as
being made up of the points (e, 0), (b,0) and all the arcs
Cyla+1/2", 0 +1/2"", h/4") and Cab—1/2""", b —1/2",}k/4"), where
n=0,1,2,.., and again 4l=0>b—a. It is easy to see ithat in this
way we do in fact obtain a-Jordan arc (even a rectifiable curve).
We note, that if (£, ) is any point of K(a,b, k), we have

thmin (E,—a,, b_"E) .

(1) 0TI

K(a, b, h) is itself sufficient to show that question (a) must be ans-
wered in the negative, but we proceed further. We consider thé
so-called ‘Cantor ternary set’ F in <0,1>. For each of its comple-
mentary intervals (a,b) [(1/3, 2/3), (1/9, 2/9), (7/9, 8/9), and so on}
we construct the arc K[a, b, (b— a)?]. The sum of all these arcs and
of the points (x,0) where zeF, forms a Jordan arc I', in fact a recti-
fiable curve. We say that the tangent exXists at all points of I. This
is obviously true for points (z,y) such that z is not in F. For all
‘points (x,0) where # is in F, the line y=0 is the tangent to I". Sup-
pose that « is in F' and not an end-point of a complementary interval.
Then if (£,#) is any point of the curve, either n=10, or £ lies in some
interval (a,b) and (&%) is on K[a, b, (b—a)?]. Thus

0<<7<8(b—a)? min (£—a, b—&)/(b—a)
< 8(b—a) |6—a.

Since b— a—0 as a, b—>2, we see that the line y=0 is the tangent.
We omiti the proof for the case when z is an end-point of a com-
plementary interval; it proceeds on similar lines, using the definition
of K(a, b, h).

Now let ¢ be any parameter for the curve I' such that, as &
varies from 0 to 1, I" is described steadily ®) in the direction from

(by (1))

%) The argument applies even if the curve is not described steadily as t
increases. : :
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(0,0) to (1,0). Let 7, be a value of the parameter such that x,=wx(%,)
lies in F. We say that if dw/dt, dy/dt both exist at ), they must both
vanish. We give the proof for the case when x, is not an end-poins
of a complementary interval of F, and leave the other case to the
reader. We can find a sequence of complementary intervals (a,, b,),
such that

(1) a>z4, 0n—>xy a8 n—>o00, and so bp— a,—0;
(ii) all complementary intervals of F' between 2 and a, have
length less than b,—a,. '

) Let ly=(b.— an)/4, hn=(bn— a,)?. Congider the following points
(wg" H ’lJ(xn)) and (mg"), :l/é")) of 02(“n+llz,“lx+21n; hn), na:mely (all+7ln/4:’3hn/2),

(an+-31/2, h[2). Let #", 48" respectively be their parameters as
points of I', then we can see from the definition of Cya, b, h) that

(2) #0 > ¢".
On the other hand, it follows from (ii) that a,—x¢<4l,, and so
3) 2P — o < 22 (2" — ) /23.

Since #57, 1 must tend to t, as n — oo, we see from (2) and (3) that
if dw/di exists at %, it must vanish. Again, using (1), we have ag
before, for all points (@, y) of I' (replacing b—a by its greatest value)

0y <8 lw—uy)/3.
Hence if de/dt=0 at ¢, dy/dt=0 also.

. 2.‘ We now suppose that we are given a Jordan are I" (in three-
dimensional space), expressed by given continuous functions (i),
y(t), 2(t) of a variable ¢, 0<{i<l, in such a way that to each point
of I' corresponds a unique value of ¢. We denote any point of space
by P, and any direction by 4, the opposite direction being denoted
by —A. By 8(Py, 4, 1) we mean the set of points P, other than P,
s1{eh that the line PyP, in that sense, makes an angle less than z
with t}..'le direction A (that is, an open single cone). For convenience
we write f(f) for the point with co-ordinates z(t), ¥ (t), 2(t). I' is
represented by P=f(t). If du/dt, dy/dt, de/dt all exist at t,, we say
that d-f/dt exists there; if they are all zero we say that df/dt is zero.
If H is a set of points in <0,1), f(H) is the set of points f(t) on I
such that ¢¢H; conversely if H is a set of points on I', ' (H) is
the set of values of ¢ such that ft)eH. ,
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Lemmat). If at each point t of a set e, of finite outer measure,
all the derivates of x(t), y(t). 2(t) are less than k in modulus, then 5)

L*[f(O)I< K3 me (o).
Given £>0, let e, be the set of points ¢ of e such that, if [h<<1/n,
o (t-+1) — 2@ < (k-+2) [A,

and the similar inequalities hold for y(t), z(t). Since €. €nts and

D e,=e, we can find n so large that L*[f(en)]>L*(f(e)] — &. Given
any ¢>0, we can cover ¢, by intervals I, s=1, 2, ..., such that

mls<<minfp,1/n], all s, and also D mIg<me(e)+e Then if 1,1,
are two points of e, I, we have .
(ty) — @(ty)| << (B+-e) [t —1|,

and similar inequalities for y, z. Hence

diam [fen I)]<<V3 (k+e) mI,<<V3 (k+e) o,
and
§ diam [f(e, L)1 << V3 (k+2) [me(e) ¢l

Since ¢ is arbitrary small,
L*[f(e)] < L*[flen]+&<<V3 (kt-e) [me(e) +el+e.
Since ¢ is arbitrary small, we have the result.

Corollary 1. If df/di=0 at each point of e, and m.(e)<oo, then
L[f(e)]=0.

Corollary 2. If the derivates of x(t), y(t), =(t) are all finite
at each point of e, and m(e)=0, then L[f(e)]=0.

1) The priuciple of this lemma is well known; see 8. Saks, Théorie de U'Inté-
grale, Monografie Matematyczne, Warszawa 1933, 156, 174. However, it seems
advisable to give the proof here, since we are now concerned with linear measure
on a curve.

5) I* denotes Carathéodory outer linear measure. C. Carathéodory,
Gottinger Nachrichten (Math. Phys.), 1914, 404—426.
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8. Theorem. Suppose that with each point Po=1(t,) of a certain
set & on Iy such that L(I'—8)=0, +is assoctated a direction 1 and
an angle n<<tm, such that all points of I' sufficiently near to P, lie
in one of the comes S(Py, 4, n), S(Pgy, —24, 1) 8. Then we can empress
the curve im terms of a new parameter as ' :

P=P(y) [5=X(»), y=T (v), e=Z (»)],

in.such @ way that dF|dv exisis and is not zero, except at the points
of a set N_such that m(N)=L[F(N)]=0. = . _ L
Further, the co-ordinates can be empressed as Perron-Sticlijes
integrals 7): L o
X () =X(0)+(PS) [l () A () + (AX[dv),, a0}, "

0

where gv)=0 fjor » in E=F"" (8) and g(v)=1 elsewhere, and
(dX|dv),_y=dX[dv for v in BE—N and (dX|dv), ,=0 elsewhere.
Similar expressions hold for Y (»), Z(»). -

Corollary. If the tangent exists at all points of I, then we can
express I' by P=F(v) in such a way that dF [dv exists, and is not zero,
except ot the points of a set N such that m(N)=L[F(N)=0. The
co-ordinates can be expressed by (ordinary) Perron integrals such as

X(vy) = X(0) + [ (aX i) v,
0

where d X [dv is to be replaced by zero at those points where it does not exist.

We say first that (1), y (). 2(t) are VBG* 8) on the set e=f"'(8).
We observe that if Py=f({,) is in 8, then all points with 1—1,
sufficiently small and positive must fall into only one of the cones
S(Py, 4, m), 8(Py—4,7), since the curve passes through P, only

%) According to a recent result of Roger (Comptes rendus, 200 (1935),
2050, see also' 8. Saks, Fund. Math. 27 (1936), 151—152), it follows at once that
the tangent exists except in a set of linear measure zero. We do not use Roger’s
theerem 4n our proof. .

) A. J. Ward, Math. Zeitschrift 41 (1936), 578—604.

8) Saks, loe. cit., 158 ff.

icm

On Jordan curves... 285

once. On the other hand, it is impossible ?) for f(f) to fall into one
cone S(P,, 4, n) for all sufficiently small t—1i,, of either sign, except:
for an enumerable set, say e, of values of #,. Thus, in general, f(t)
must fall into one cone for small positive t—i,, and in the other
for small negative {—t,. Let Ay, s, ..., An, ..., be an enumerable
everywhere dense set of directions (for example, the set of directions
whose direction-ratios can be expressed rationally).
Let e,, be the set of points t, with the property:

ft) Hes in S[f(ty), Amy dm—1/m] if 0<t—{,<<1/nm,
f) lies in  S[f(tg); —Am, s —1/n] if 0>t—t=—1/n.

It is clear that 3 eun covers e—e, We shall show that @(t) is VB*

m,n

on each of the sets emmp=6mn[p/n<<t<(p+1)/n], and since e, is
enumerable this will show that x(t) is VBG* on e. The proof for
Y (1), 2(t) is exactly the same. Let 3, t,, t, <ty, be any two points of €mump-
Since 0 <t,— 1,1/, f(t,) Lesin S[f(ty), Amy $x—1/n]. For i <t<ty,
F(t) lies in 8[f(4,), Am, 3w—1/n] and also in S[f(fs), —Am, 3w—1/n].
Let d(t,t') be the length of the straight line from f(t) to f('), and
dn(t, t') its projection on the direction A, (with regard to sense).
Then the remark just made shows that, for & <t<t,, dm(t;,?) and
dn(t,t,) are positive and at least equal to d (¢, 1) sin (1/n),
d(t, t5) sin (1/n) respectively. Hence

d(tls t) < dm(th t) cosec (1/"’&)
< Adw (b, 1) +dim (2, 1,)} cosec (1/n)
= dm(ty, t5) cosec (1/n),

and so we see that o[z (t), (¢, to>] [the oscillation of x ()] is at most
20 (ty, 1) cosec (1/n).
Now let f#,<<t,<<..<ty be any finite set of points of euup.
Then we have
N N

Zw[m(t)} <ti—1, ti>]<22dnl(ti_1, ti) cosec (1/%)
= = -

= 2dm (o, tn) cosec (1/n)

which is bounded. That is, z(t) is VB* on émmp.

%) G. Durand, Acta Math. 56 (1931), 363—369.
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Since x(t), y(t), 2(t) are continnous and VBG* on ¢, we can
find a strictly increasing function x(#) such that

— |o(t) — @(to)
fim [0 7 k)
“ e 110 = 2lto)|
[and similarly for y(f), 2(f)] at each point of ¢ 7).
Define the function P=g(7), [#=£&®), y=n(z), 2={(7)], by the
equation

@()=f(t) if 1(t—0) <7< x(8+0).

Since y is strictly increasing, &(z), 7(r), {(v) are one-valued contin-
uous functions. By (4), their derivates are all finite at each point of
the set H (say) =¢~1(8), except at for most an enumerable set, D.
As 7 varies from #(0) to x(1), @(r) describes I' “steadily in the
wide sense’’; that is, we may have ¢(t;)=g¢(r,) for 7,<zy, but if
50, then ¢@(r)=gp(zr;) whenever 7,<<XT<T,.

Let H; be a measurable set including H and of the same outer
measure; then as the derivates of &(z), n(z), {(r) are finite for v in
H—D, and are measurable functions, they are finite for almost all ¢
in H,. By a well-known theorem, it follows that d&/ds, dn/dz, di/dr
all exist almost everywhere in H;. Let H, be the sub-set of H; for
which de/dv is zero, and H, the subset of H; for which de/dr exists
but is not zero. Define the function »(r) by '

v(m) = m By [1(0) ST <] = m [ Hy — Hy) [1(0) <o <)

»(7) will be an increasing function, but not in general a strictly
increasing function, of z. Suppose that »(zy)==v(zy), 73<75. The
points of the interval {z;,7,> may be divided into three sets asfollows.

(i) The set {vy,7o0—H. Since ¢({zy, 1,0—H)C I'—H, we have
L¢(ry op—H]=0, and so m[£(<zy, Top—H)]=0.

(if) The set HHy 7y, 7oy. Since d&/dz=0 for each point of the
seb, m[§(HH, {7y, 75))]=0 ).

(iii) The set (H—H,)<{t;, T,>. Since the derivates of &(r) are
finite on H—D, and m[(H—H,)<{ty, 1o0]=0 since »(r,)=»(ty), we
see that m[&{(H—H,)<{ry, Top}]=0.

10y ' Ward, loe. cit. lemma 6. Since (f) is continuous, it i easily seen that
we can do away with the enumerable set of exceptional points in that lemma.
By taking functions x;, x4, x3 a8 in the lemma for «(t), y(t), 2(f) respectively,
we obtain by addition our required function yx(2).

1) We are using an obvious analogue of the corollaries to our lemma.
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These three results show that m[&({zy, 1,0)]=0. Since &(z)
is continuous, this means that &(z)=£&(r,). Similarly 5(z)=7(z),
L(r)=C(ty); that is, ¢(r;)=¢(r,). Conversely, if ¢(r)=p(z,), then
@(t) is congbant in the interval {z,7,>, and therefore »(z) is constant.
Thus we see that »(z) is constant in exactly those intervals where .
@(7) is constant. Thus if we define

F(v) = glr) if v =1(7),

we have a one-valued function F(v), and further, F(») uniquely
defines ». The representation of I'by P=F(v) (say =X (v), y=Y(»),
#=Z(»)) is the required parametrisation. Since »(r) is an increasing
function of =, not constant except where ¢(z) is constant, it follows
that X(»), ¥ (»), Z(») are continuous functions of ». Now dv/dr=1
for almost all v in Hy,, say for all = in a set H (C H,. Since de/dr exists
and is not zero for v in H,, dF[dv» must exist, and be not zero, for all
y in »(H,).

We wish to show that the complement of »(H,) (in the in-
terval <0, »[4(1)D), say FEs, satisfies mE;=0, LF(E;)=0. Now
E;Cv(comp Hy)-+v(H;—H,). Now dyv/dr=0 almost everywhere in
(comp H,), and the derivates of »(z) all lie between 0 and 1 every-
where. Hence, by the same argument as before, we see that
mB;=0. Again

F(Es)=I'-F[v(H,)|=I'-¢(H,)
C I'—p(H)+o(HH,)+p(H—H,— Hy)+ o[ H(Hy — Hy)].

Now we know that L(I'—¢(H)]=L(I'—8)=0. Also dp/dt=0
on HH,, and all the derivates of &(7), n(t), {(r) are finite at each
point of H—D. Finally, m(H—H,—H,)=m[H (H;—H,)]=0. By the
corollaries to our lemma, this shows that L[F (#;)]=0. If we write ¥
for the set of all points where dF/dv does not exist, or exists and
vanishes, then N(CF; and so m(N)=L[F(N)]=0.

Since d.X/dv exists on E—N, we have, for all »,

PV

X(v) = X(0) + (PS) [ {gs0) AX0) + (AX ), _ ),

0

where g¢,(»)=0 for » in E—N and g¢,(v)=1 elsewhere ?), To prove

12) Ward, loc. cit., Theorem 14.
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the required formula we have only to show that / '{gl(v)—— g(»)}dX (v)
0

vanishes for all ». This is true 13), since ¢(»)—g(») vanishes except
~on the set EN, of measure zero, and X(») is VBG* on EDEN,
{For 9, t are different parameters for the same curve I, and (t) is VBG*
on e=f[F(B)]) |
The corollary follows at once. E reduces to the whole interval,

80 that g(v) vanishes, and the PS-integral reduces to an ordinary

Perron integral.

13) Joe. eit., Theoremn 10.

Warszawa, 1936.
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Ultraconvergence et espace fonctionnel.
Par

Stefan Mazurkiewicz (Warszawa).

- 1. Cette note contient un théordme général sur existence de
séries de puissances wltraconvergentes '), basé sur Pétude d’un espace
fonctionnel.

2. Désignons par R, le plan de la variable complexe z. G étant
un domaine simplement connexe, désignons par A(G) 'ensemble de
toutes les fonctions holomorphes dans G. Nous définirons dans UA(F),
considéré comme un espace fonctionnel, une distance par une mé-
thode due en principe & M. Fréchet. Choisissons dans G un point
arbitraire 2/, posons A'=g(#’, R,—@), enfin désignons pour 0<<A<d’
par G*(2) Densemble des zeG tels que

O deR—G>h k—#I<3

Soit @(A) le composant de G*(1) contenant 2'.. G(2) est borné,

simplement connexe, on-a G(4)C Qi) C G pour i,>2, et, pour

une suite {1}, la condition 4— 0 entraine > G (4)=G.
- j:l,
Posons pour f,'geA(G):

@ o(f, 0) = Tnt (1 Sup [f(2)),

(3) Ga(f?g)ZGG(f”‘!/, 0).

1) Une série de puissances S est dite ultraconvergente dans un domaine U
contenant le cercle de convergence de S, si une guite de sommes partielles de S
converge dans U, la convergence &tant uniforme dans tout sous-ensemble fermé
ot borné de- U. L ultraconvergence a été étudiée par M.M. Jentseh, Ostrowski
et Bourion. : . : -
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