A sufficient condition for a function of intervals
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In this note I prove the following theorem, solving ¢
i 7 DL & Pr
maised by C. Carathéodory: ’ g a problem

If F(I)is a ]‘uffzction of intervals which is additive, continuous )
qml of bounded wvariation in some interval Ly, and if, at each pom;:
interior to I, we have

i ZLRs (3, y)]

[ 2% & <0

where Rs(x, y) ts the square of cemire (@, y) and side 26 (with sides

parallel to the axes), then ; eqati ; ;
o in L. ), then F(I) is a megative (non-increasing) fume-

Let P(I) and N(I) be respéctively the positive variation, and
the absolute value of the negative variation, of F in I, go that
F(I):P(I)——N‘(I). We shall show that P(I,)=0.

Suppose if possible that P(I;)>0. Choose any sequence of

numbers ,>0 such that 6,0 as n—-oco, a
; . oo, and let E, ;
points (@, y) such that ' » be the sef of

F[Rs (2 0
whenever [Bs ey )] <

0 < bn.

1) That is, F(I)—0 (uniforml;
» F(I)= y) as the area of I tends to 0. The followin
example shows that it is not sufficient to assume only that F(I) -0 as the diag-

meter of I tends to 0. Let I be the interval ;<o s, PSY < Yg IE 2= 0<try,

write F(I)=yy,—y;. If 2,==0>x, write F(I)=—(y,—v,). In all other cases

write F(I)=0. This function is obvi iti
' ously addit E iati
and its symmetric derivative is 0 everywslr:\ere. e and of bounded variation,
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We can find a finite set of non-overlapping intervals J; in I,
such that

12 FI)> (1 — Ié‘o) P > (.1 — 1) 2 PUY.

At least one of these intervals, say Jy, satisfies

1
F(J,) > (1 “I()T)) P(J) >0,
and therefore
1 1
(1) N(J1)<mP(J1)<BﬁF(J1)-
Choose & such that
' 1
()  FDI<EF)

whenever I lies in I, and has area less than é. Let 1, be the length

of the longer side of J,. Take any Iy such that h<<é; and

1
(3) hy < 1 e/l
and consider the squares of the form
rhy <o < (1) by, shy <y <(s+1)hy,

r, s being integers. Let Ai, As, ..., An (say) be those squares of
this form which lie inside J; and are distant more than kb, from the
boundary of J,. (Such squares must exist, for otherwise the shorter
gide of J; would be of length at most 4hy; that is, by (3), the area
of J, would be less than e, which, by (2), is obviously impossible.)

Let A be the rectangle > A;; then J,—A can be divided into four
i==1

rectangles of length at most I, and breadth at most 2h,. Using (2)
and (3), we see that, since the function F is additive,

(4) F(4)> 3Py

‘We are now going to pick out a certain selection of the squares 4,
which we shall call 8 ¢=1,2,...,p, 5ay. When we have defined
any S;, T; will denote the concentric square of five times the side.
S, shall be that square A; for which F(4,) is greatest. If there are
two or more such squares, we choose one of them arbitrarily. Then
it is easy to see that

1
F(8) > = FAT)).
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Among those squares 4; which do not lie in 7, we choose S, ag
that square for which F(4,) is greatest. Then

. 1
P(8) > ot FAT,—Ty) 9).

Among those squares-4; which do not lie in T} or in T, we choose 8,
a8 that square for which F(4,) is greatest. By proceeding in thig
way until the squares A; are exhausted, we obtain a finite set of
squares Sy, Sy, ..., Sp, 82y, such that, for i=1, 2, ...,

F(8) = F(8iy1),

) 1 i1
®) F(8)> 3 FlAT — 5 1))

S i
, Si—l—l‘z{ Ti=0 and 2 DA
e =1

i—1

Then, since the figures (A T— Z,lT,-) do not overlap, we have, by (5),
=

i—1

p
F(4) =£F(AT1 jgjfj) < 252@(&).

Hence, from (4),
l)‘ 1
é F(8)> g5 F(Jy).

If. 81, 8y, ..., 8, are those S;such that F(8,)>0, it follows at once that

q
SES)> 4o B,

=1

Suppose if possible that each §;, i<{q, contains a point of H,, say
(,, y,). Consider the squares

R,= Rh‘ (@, 4,)-

%) If B is a figure composed of a finite number of non-overlapping intervals

N
IpIy Iy, F(H) denotes 3 F(Iy).
i=1
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Clearly R;S;, and so P(R;)=P(8;). On the other hand, since
B, <6, and (#;, ;) is in B, we see that F(R;)<<0. That is,

N(R:) > P(R) = P(8) = F(83),
and so

q q
Y Y 1
éN(RiD% F(8)> 55 F (7).
On. the other hand, since 8;is distant more than &, from the bound-
ary of J;, RB; lies in J,. Also, if i>j, §; lies outside T, that is,
a(8:, 8;) = 2hy, and so R;, RB; do not overlap. It follows that

N> NR)> 5 F ),

Ihv-

contradicting (1). Hence one at least of 8, S, ..., S; contains no
point of E;.

That is, we have found an interval, which we call I;, contained
in the interior of J;, such that F(I;)>0, and therefore certainly
P(I,)>0, while I,E,=0. We can now repeat the whole argument
with I, for J,, B, for E;, and d, for é;,, and so on as many times
as we like. We obtain a decreasing sequence of intervals In,
interior to Jy, such thate I,E,=0. These intervals must have a
common point (v, y) which belongs to no set E, Then clearly

i T LEs (2% ) >0.
>0
Thus the theorem is proved.

It is easy to see that we can sharpen the theorem in either
of two ways. If we leave the hypotheses unaltered, we can conclude
that F(I) is strictly negative (not zero) for intervals lying in I,
On the other hand, to conclude that F(I) is negative in the wide
sense, it is necessary to know only that

liTnF[Ré(zm’ )] <0.
850 6
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