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On the summability of double Fourier series.
By
J. Marcinkiewicz and A. Zygmund (Wilno).
1. Let f(z,y) be a function of period 2= with respect to each
of the variables »,y. If f(x,y) is integrable over the square
@) — O, —AY <,

then we may associate with the function its Fourvier series

o0
' .
(1.1) 2 G ei(m.\+uy)’
m,n=—oco
where

1 [ .
tm=mz [ [Hogyetomtm do dy (mn—0, 11, 42, ..

—7 —7

BY 6un(®,y)=0un(®,9;f) Wwe shall mean the first arithmetic
means of the series (1.1), that is

ontei=3 31—l 1=tk

U=—m v=m—n

The following theorems have recently been established:
(A) There is am integrable function fz,y) such that
Lmsup |om,. (2, y; ) =
mm_)_{_olc)’ |Om,n (2,3 )] =00 4
at every point (z,y) 1).

') CL. 8. 8aks, Remark on the differentiability of ) i ini
) ) ity of the Lebesgue indefinite
integral, Fund. Math, 22 (1934), pp. 257-261. v ol ’ o Dulefinite
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(B) If the function f(w,y)log’*' [fx,y)| is integrable over the
square (Q), then
im  own(@,y;f)=f(w,y)

m,n-»-}-co
at almost every point (x,y) 2).

The condition imposed on the function f in the last theorem
cannot be relaxed. This is a consequence of the following result,
which fills the gap between Theorems (A) and (B):

(C) If s(u) is any bounded function defined for u>=0 and
tending to 0 as u—-F-o0, then there is a function f(z,y) of period 2z
with respect to w,y, such that f(w,y)log™|f(z,y)] s(|f(w,g/)!) 18 integrable,
and yet

(1.2) Hm sup |6, (2,y;f)|=—4-o00

. m,1-»-|-00
at every point (x,y) ).

The problem of the summability of double Fourier series is
clogely connected with that of the differentiability of double inte-
grals. As a matter of fact, Theorems (B) and (C) are consequences
of the following results concerning double integrals:

(By) If the function f(x,y)log™ |f(z,y)| 4s integrable, then, at
almost every point (x,y),

1
(1.3 lim —
(13) h,/el—>+0 hlk

h k
[ [ Ho+u,y-+0) au dv=fo,9) 9,
0 0

2) See Jessen, Marcinkiewicz and Zygmund, Note on the differentiability
of multiple integrals, Fund. Math. 25 (1935), pp. 217-234.
3) See Jessen, Marcinkiewicz and Zygmund, loc. ¢it. The theorem is

‘stated there in a slightly weaker form, viz. that there is a function f(z,y) with

Ifl log™ |fie(|f)eL and such that (1.2) holds at almost every point (z,y).
Theorem (C) is, however, a simple consequence of Theorem (C,) (see below).

1) See Jessen, Marcinkiewicz and Zygmund, loc. cit.

This result is a special case of the following general theorem:

Let f(my,%y,...,%,) be a function defined in a k-dimensional cell @, with sides
parallel to the coordinate axes. If the function |f| (log™ [f)¥" is integrable over Q,
where v is one of the numbers 1,2,....,k, then, at almost every point (®y,%,, ..., %)
of @ hy Ry

/ /‘y(mﬁu U5 oo Byt W) Athg e D= F(By 5 00 D),
0 0
provided that the ratios hyfhg and hyfhy are bounded for s=1,2,...,7.

In the case r==1 this theorem is proved in the paper just quoted. The

general result can casily be deduced from Theorem 7 of that paper.

lim TTLE‘
h_l,hz,...,hhﬁ() by Ry eee fpy
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(Cy) If e(w) is any bounded function defined for uz0, and
tending to 0 as u tends to oo, then there is & posilive function f(z,y)
such that the function f(z,y)logtf(@,y) (I]‘(m,y){) is integrable, and that

hk>+0

ok
. 1 ) N
(1.4) limsup - f / H@o uyy+v) ddv =00
0 0

at every point (z,y) ®).

In Theorems (B) and (C) the indices m,n tend to -foco inde-
pendently of each other. The main object of this paper ig to prove
the following result, which completes those theorems:

Theorem 1. Let f(»,y) be o function of period 2w with respect
to & and y, and integrable L over the square (Q). Let 121 be any fiwed
number. Then, at almost every point (x,y), ‘

(1.5) u,n (2, ) —F(@, ),
provided that m and n tend to +-o0 in such a way that
(1.6) min<a, n/m<i 8.

This theorem is an analogue for Fourier series of the clas-
sical result of Lebesgue asserting that at almost every point (x,y)
we have (1.3), if only A and % tend to 0 in such a way that h/k<4,
k/h<2. It must however be observed that, unlike in the previous
cases, Theorem 1 is not a consequence of the corresponding result
on the differentiability of double integrals (and the proof of The-
orem 1 is not so easy as one might expect). This is understandable,
since in order to estimate the integral defining o,,.(%,y) we cannot
apply inte;/grls:btion by parts. An integration by parts would introduce

integralg / / fle+u,y-+v) dudv with ratios h/k and %/h unbounded.

00

5) 8. Baks, On the strong derivatives of functions of intervals, Fund. Math. 25
(1935), 235-252. An example of a positive function f sueh that [f]log™ [fe(|f])
is integrable and (1.4) holds almost everywhere, was given independently and
at the same time by Busemann and Feller; see the paper quoted in footnote 2).

%) The summability of double Fourier series by spherical Cesaro means
wag investigated by S. Bochner. See his paper Summation of multiple Fourier
series by spherical means, Transactions of the American Mathematioal Society 40
(1936), 175-207. A comparison of Bochner’s results with Theorems (B),(C), and L
shows that the properties of the spherical Cesiro means of double Jfourier serics
are quite different from those of ordinary (vectangular) (lesdro means.

Added in proof, 16, I. 1939: See also the recent paper of I, Tejér,
Zur Summabilititstheorie der Fourierschen wnd Laplaceschen Reihe. Proc. Cam-
bridge Philos. Soc. 34 (1938), 503-509.
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2. We begin by proving a number of lemmas.

Lenvma L. Let « be any positive number, and let B be any plane
set satisfying the condition
0<| Bl<oo.

If to amy point (w,y) belonging to B corresponds o rectangle
R=Ry, with centre at (x,), and with sides 8=0(R) and o, parallel
respectively to the axes @ and y, then there is a finite number of mon

1 { 18 Jid ] / D ‘ Lo
overlapping rectangles .Ir’,m()’:,,(), lx,%yl,...,I\’w”,y”, such that

n
Y N l. -
(2.1) PALT

n )

) 7
where By= Ky, o, )
Proof. Lot I, denote the class of all the rectangles B, and let

dy=Max (k).

If §,=-}-o0, then there exist rectangles R Wit-h ares as laa?ge
ag we please. Lf, for example, |Eq|>|E|, then' (2.1) is satisfied with
n=0. We may therefore confine our attention to the case when
Sy<+oe. Lot By be any rectangle belonging to K, and such that
8(Rg)>10y. Liet K| denote the class of the rectangles R eI, over-
1a,ppin.gu with I, and let K, denote the clags of the remaining
rectangles Re I, We write

8= Max é(R),
Re KK,
and denote by R, any rectangle belonging to K, and suchftix}?t
S(Ry)>16;. Let Kj and K, denote respectlvelj the .elasses od “o;
rectanéles Re K, overlapping and non overlapping with E,;, and le

dy=Max O(R).
Rel,

[ i L ; ain features in common
) The proof which tollows of Lemma 1 has cert

i v int 1 is that
with the usaal proof of Vitinli’s covering lemma, The 1‘)01.111:1 of I;gx:ﬁaof 1a- he?
the numoriesl fnetor on the right hand side of (2'}? i ind e-ﬁ(:,'wémg ol
the case wsal of. T. Radd, Sur wn probldme relatif & wn th ]

Tund. Mabth. 11 (1928), 228 220,
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By R, we denote any rectangle of K, such that O(Ry)>}s,,
and so on. Qenerally, having defined K;, K, 6, and R, for
i=1,2,...,m—1, we define Kj, and K, as the classes of rectangles
Re K, 1 respectively overlapping or non overlapping with™ R,._,
(so that K,.=K,+K,) If

(2.2) Sm==Max (K),
ReK,,

then by R, we denote any rectangle Ke I(, such that
(2.3) O(Ry)>k bim.

It may happen that the sequence [y, Ry, R,,... is finite, that
iy that the class I, is empty for a certain m. Lot us assume for
the moment that this is not the case. Since &y22d,224,..., there are
two possibilities:

(i) the numbers d, are bounded below by a positive number;
(ii) the numbers §,, tend to 0.

In the first case the inequality (2.1) is obvious, if only = is
large enough. Passing to the second case, we write:

S=2‘R, Sm-‘——'sz
ReK, ReK'

m

(m=1,2, ),

where S and the 8, denote point sets. It will now be shown that

(24) S=2 Sm .
m==1
For let R be any rectangle of K, and 3:6(1?7). O'n account
of (2.2) and of the relation 6,,—0, the rectangle R cannot belong
to all the classes A, Let u>1 be the lowest integer such that R

does not belong to K,. Since R belongs to K, 1, and K w—1=1C+ K,
the rectangle B must belong to I # and so 8C2'8,. The opposite

m==1

relation being obvious, we obtain (2.4). Let us now observe that
SDE. From this and from (2.4) it follows that

oo

(2.5) %‘llgml > |E|.

m-
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We ghall now prove that

(2.6) Bl > g 18,
m=()

For let RelK), so that R belongs to K, i and overlaps with
R,—1. Hence

S R)<K0m -1,
which gives §(R)<20(R..1). It follows that the set 8, is contained
in a rectangle concentric with K, -1 and with sides five times those
of Ru_i. Hence |8 <25 |Ru—i. From this and (2.5) we obtain (2.6),
which gives (2.1) for n big enough.

If the sequence {R,) is finite and consists of n41 terms, the
above argument gives (2.6) with co replaced by n. The inequa-
lity (2.1) iz then true a fortiori. The proof of Lemma 1 is thus
complete.

Lemma 2. Let f(x,y) be an integrable function defined in the
square (@) —2n<o<2m, —2n<Y <2, and let o be any positive and
fiwed number. For (z,y) belonging to the square (@) —rn<E<w,
—nLy<m, we write

5(Rm—-1 )> 1? 6m~1 3

ah h .
1 7
frta, )= g [ [ ool
—ah —h
where the number h is so small that the rectangle over which the integral
is taken is contained in Q'. Lel
8u(E)=Hf% (@, y) >}

(x.p)

for any £>0. Then ‘
(2.7) léu(f)K% 4 / |f(z, )| dov dy-

Proof. If the point (z,y) belongs to 8.(¢), then there is a rect-
angle RCQ' with centre at (2,y), with sides parallel to the axes ©
and vy equal respectively to 9, ad, and such that

5 [ 1wl >t
R

The class of these rectangles satisfies the conditions of Lemma 1.
Hence we can find a finite number of these rectangles R, Ry, ..., Bny
pon overlapping and satisfying the inequality (2.1), with B=68,(£).
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This gives
£
/[v s sy S [ [ e wiy>F 160,
m=0 Ry,

and (2.7) follows at once.
Lemma 3. Let the function f(x,y) satisfy the conditions of
Lemma 2, and let

1]l . .
@, y)=Max{ff(@,9) 272" for s=0,£1,42,..., and (2,9)¢Q.

We write

(&)= K (@,y)>£)

EYY/i

lbojjlf 4,9) do dy.

Proof. A necessary and sufficient condition for the inequality
fH(@,y)>¢€ is that f3( ao,'y)>:§2"SI for some integer s. Hence

for any £>0. Then

T|9|

(é)CE (827,
and so

(‘5

7|s| <26 Tl
#E2ISE f!f(w,?/)! (2 274! ‘)dmdy.

§=—00 Q’

This completes the proof.

::3.. Using the results of §2 we shall now prove certain in-
equalities for the sums oy, These sums are given by the formula

(3.1) - omalmyy;7f) f/fw+u,y—|—v)1i’,,,() K, (v) duw dv,

where K, (u) denotes Fejér's kernel:

1 sin?f(m-41)w
m+1l  2sin?ly

Ko (u)=

icm
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The kernel K, (u) satisfies the following inequalities

(3.2) I (u) < Am, I () <A [ (m=1, 0<u<n).

Here and in the sequel the letter A denotes an absolute con-
stant. The congtant need not be be the same at every occurence. Let

(3.3) Gomyn (0,95 1) [/f (4, y +v) Ko () K, (v) du do.

() 0

Let %k be any non negative integer, and let the integers m
and n satisfy the inequalities:

(3.4) akm<2", mn<a, nfm<.

It ig not difficult to see that then

arh ax~k g

[ (28,3 1)| < A2 /du/ [f(@4-2, y- a"~|~u 7/+1> 1d +Al/d / [f(@+u, y+ m-}—u,z/-{—q )]

0 ok 0y ok
T T an—hk qo—h
+Al2_2”/ / fl@tu,y+o) dudy -+ A2 ""‘f /]f B,y +0)| dudo

w2 ?
ma—k ga—k

= A ) Py(@,y)+A2Qu(@,y)+ A A Ri(2,y)+A 2 8i(2,Y),

say. We write

e~k

Max Py(i,y) = Max /du/‘f w—i—u y+oll

=0,1,..s h==0,1,.

P*(a,y) =

ok
and similarly define the expressions Q*(z,y), R*(z,y), and 8%(#,y).

Lemma 4. Let f(x,y) be a function of period 27 with respect

to @ and vy, integrable over the square (@), and lot [J{P*>¢) denote
Ry
the set of the points (v,y)eQ at which P*(x,y)>£>0. Then

f/ (9| do dy,

and the same inequality holds for the fumctions @*(x,y), R*(z,y),
and S*(x,y).

Fundamenta Mathematicae. T. XXXIL 9

(3.5) | FAP*>E]

X,y
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Proof. In the formula
I 1 r,'z an i

/ If(e »I—?»,J+@)I i

;;.0 [

Pk(w,y)

the -th term of the sum on the right does not exceed
ao—R o
(3.6) A2” folu /|f(w+u,y+«u)] v <A27 0 (o, y)
ki
(with the notation of Lemma 2). Hence (¢f. Lemma 3):
k—1

Pala,y)<Af*(z,y) D2

j=]
That the last inequality holds with P* replaced by @% is
obvious. Passing to the function E*, we observe that

o L (- d*’Af* (@,y), P, y)<Af*(@,y).

-1 h— o) -~

Ri(z,y) =2 MZZ ‘du/ |fw+u,;(/+q;)| i

T ukt
. U
=0 =0 i1 i1

k—l k—1 a1l ;'ll"“’ Iz 1 k1
AN VoD / du [ |flo—+u,y+o)do<d27 >, \w s (@)
i=0 j=0 e e e | fe ()j 0
k=1 -1
<42 frayy) D) DRI A f*(ayy).
=0 j=0

Hence R*(z,y)<Af*(x,y). That S*(z,y)<<Af*(#,y), is obvious,
since Sy(w,y) does not exceed the expression (3.6) with i="r.

In order to complete the proof of Lemma 4 it is sufﬁclent to
apply Lemma 3.
~ Taking into account the inequalities (3.3), (3.4), Lemma 4,
and observing that on.(z,y) may be written as a sum of four
integrals, all analogous to (3.3), we see that the function

3.7)  oi(w,y;f)=Max [onu(2,y; 1), where m,n>1, min<id, nfm<a,
satisfies the inequality
oX(%,y;f) < AAf (2,y).

8) The restriction m,n:=1 was introduced for the sake of convenience only.
The properties of the function hold if that condition is omitted.
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From this and from Lemma 3, and taking into account the
periodicity of f, we deduce the following

Lemma . For every £30,

Flot( ,y,f)>5\i<——~ / el ay.

R

(3.8)

The last inequality implies in particular that the function
0% (z,y;f) is finite almost everywhere.
- Theorem 1 is a simple consequence of Lemma 5. It is suffi-
cient to make a decomposition

(8.9) : f=hHh+1s,

where f; is a trigonometrical polynomial, and f, is such that

E\U/’v(x:sz >0} |<6

R

where 6 is a fixed positive number, as small as we please. Since
Omn(%,y;f;) tends (uniformly) to f,(z,y), and since [Omn(2,Y;7s) does
not exceed J, except in a set of measure <8, we have (1.5) at almost
every point (#,y). The proof of Theorem 1 is thus completed.

Theorem 2. The function oX(z,y;f) defined by (3.7) satisties,
for every 0<e<1, the inequality

, ' )
610) [ [l <22 [ fiwpia a.
Q Q

Moreover, for m and n satisfying (1.6),

- —
(3.11) | [ omn(@y; H)—flx, )
Q
The inequality (3.10) is a simple consequence of (3.8). The
relation (3.11) can be obtained from (3.10) by means of the de-
composition (3.9), Where again f; is a trigonometrical polynomial,
and the integral / / [fe dz dy is small.

“dx dy—0.

4. We conclude the paper by a few remarks.

(a) It is plain that the number A in Theorem 1 need not be

a constant, but may be a function of the point (x,y). This slightly

more general result is an immediate consequence of Theorem 1 in
its previous form.

Q%
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(b) Under the condition (1.6), the expression ol (#,y;f) tends
almost everywhere to f(x,y), where olh, denotes the (C,q, ) means of
the Fourier series of the function f, and the numbers & f are positive.
The proof follows the same line as that of Theorem 1. We must .O?lly
observe that the (0, a) kernel Kr,(u) satisties for 0<a<1 theinequalities:

@ w1

| B ()| <A (a)[m (m=1,2,...,; 0<u<<m)

| Ko ()| << A(a)m,

analogous to (3.2). (4(a) depends on « only). ‘
Similarly we prove that, if P(r,u) denotes Poisson’s kernel, then

WD) 5 [ [Hetuyo) P Plow) du dofioy)

at almost every point (x,y), provided that
(I—0)/(1—1)<d,

More generally, we have the following

(4.2) r—1, -1, (1 —r)/(1—p)<A.

Theorem 3. At almost every pont (,Y),

L [ [ ety m0) 2o, Ployo) du do—>flayy),
provided that the conditions (4.2) are satisfied, and that t]z@ ponts
with polar coordinates (r,&), (o,n) tend respectively to the points
(1,2), (1,y) along non tangential paths.

Similarly we may generalize Theorem 2 °).

(¢) Theorems 1 and 2 are true for the Fourier series of func-
tions of » variables. The proofs undergo no essential changes.

9) If the function |f| logt|f| is integrable over @, we have (3.11), for m

and n tending to 4+oco independently of each other. The function
o (@,y;f) = Max |o,, , (2,y;])|
: m,n
satisfies the inequality

[ [ (= 1—¢ ]1/’(1"'5’) Ay N A

U [ @ysn) dmayy ™ o [ [lillog™ fide dy+7 -

Q . Q
These results are implicitly contained in the paper quoted in footnote 2).
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On the isomorphism and the equivalence
of classes and sequences of sets?).

By
Edward Szpilrajn (Warszawa).

Introduction. The notions which are the subject of this
paper belong to the General Theory of Sets and particularly to itg
part which deals with classes and sequences of sets. It seems that
one of the chief problems in this field is the investigation into such
relations between classes (or sequences) of sets which are analogous
to as important a relation between sets as the equality of powers.

The relationships in the domain of classes of sets are obviously
more complicated than in the domain of sefs; and so it is possible
to define in a natural way many relations between classes of sets
which are reflexive, symmetrical and transitive and which may be
congidered as analogous to the equality of powers. In this paper
we examine four notions of this type: weak isomorphism, isomorph-
ism (‘“iscmorphie algébro-logique” in terms of Kuratowski-
Posament ?)), total isomorphism, and equivalence (‘‘double similar-
ity in terms of Whitehead-Russel! 3)).

Let us denote by K and L two classes of sets. If K and L,
considered as sets partially ordered by the relation of proper in-
clusion, are similar, then they are called weakly isomorphic. Further,
we say that K and L are isomorphic when they have the same pro-
perties from the point of view of all finite operations upon sets (ad-
dition of two sets and complementation). Analogically, K and L

1) Presented to the Polish Mathematical Society, Warsaw section, on
May 6, 1988. (1. the preliminary report Szpilrajn [6].

2) Kuratowski-Posament [1], p. 282.

3) Whitehead-Russell [1], p. 84. Cf. also Sierpinski [1], p. 80, Stone
[1], p. 91, Szpilrajn [1], p. 306, [2] and [3].
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