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, The preceding results have an amusing formal consequonce,
valid for any ring R, with a unit element 1. Lot #,,7,,... be an in-
finite sequence of elements in R, with repetitions allowed. Then
I, *“’7(,: where 77!, and 77" are defined by the recurrence formulae,
=1, =1 and

Ny="—(1y My My oMyt t1,);

My=— (M e 1,):

This is true for any ring since it is true for the ring Whieh. i
freely generated by 7,=1,7,,%,,..., With infinite sums allowed, pro-
vided no product 47, .7, is repeated infinitely many times,
For if a degree, given by 6(inml...n,llll):f;rlllw+....'[—m,,, is assigned
to each product, only a finite number of terms in such a sum cen
have the same degree. It follows from induetion on ¢ that 7, and N,
are homogeneous of degree g and, as before, that o' »==nn'': —-J where

"1+771+772+"': =140+, s 0=l ey

Therefore 5’'=1’', whence 77:]:17[','.

- Ballioi College, Oxford, England.
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On the relation between the fundamental group
of a space and the higher homotopy groups.

By

Samuel Eilenberg (Warszawa).

’ 1. Y will denote a separable, connected metric space locally
connected in dimensions 0,1,...,n 1). Given a compact metric space &,
the continuous funetions f(:r)c:y with the distance formula

[fo—hl=sup lfo(@)—F(2)|
form a metric space Y%
Given two points ze& and yoe?/ the equation f()="9o

defines a closed subset Y% (@,yo) of y

T will denote the closed interval [0,1] by J and FxJ will stand
for the cartesian product of & and J. Two flmomons forfreX™ will
be called homotopic if there is a function gey 7 such that

fol®)=g(%,0), fi(z)=g(x,1) for all xe .

If also

g(®o,t)=190 for all ted,

we say that fo,flsyg(mo,yo) are homotopic rel. (%g,¥o)-
2. Let & be a polyhedron and X a subpolyhedron of F. It

is well known that T=%x (0)+XxJ is a retract of ExJ and
therefore that

(2.1) BEvery feYT has an emtension’ feyT? o),

It follows immediately from (2.1) that

(2.2) Given two homotopic functions fo,;flef_)/X and an extension fie Y™
of fo, there is an extension ﬂeyi of f, homotopic to f; 2).

1y ¢. Kuratowski, Fund. Math. 24 (1935), p. 269.
2) See forinstance P, Alexandroff und H. Hopf, Topologie I, Berlin 1935,
p. 501.
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8. Let & (0>>0) be the o‘zwdimexm'ond.l sphere It follows 3)
from our hypothesis on ¥ that ¥ and :y (#9,%0) wWhere myel”
are locally connected in dimension 0 and therefore that the .classes
of homotopy of ?/S" (or the classes of homotopy re] (%0,v0) in_
fyS" (%0,%o)) coincide with the components of Y*" (or of s (@0, %0))

(3.1) Every component of :yS" contains at least one component of
fy‘gn(‘vo,yo)-
Proof. Let fye Y. Put F=8", X=(a), folwo)=Fi(2), f( (%) =to.
Since is an arc joining fo(x,) and ¥, in :y therefore fo,he 52/ are

homotopm It follows from (2. 2) tha,t there is a function fi ¢ Y/ st (%0, %0)
hoinotoplc to f. '

4. Y will be' called szmple im dimension m, or shorter n-simple,
if every component of y contains exactly one component of
Y (@6,90), Where @yeS".

- This definition is obviously independent of the choice of xo € b’"

It wﬂl follow later (theorem (5.1)) that it does not depend on. the
choice of y, ¢ either.

The components of ?/ (@0, ¥0) are the elements of the m-th
homotepy group =,(%Y) of ?/5) Therefore if & is n-simple we may
consider the components of ?/ a8 the elements of m,(%). Of course

(4.1) If 7(Y)=0, then Y is n-simple.
For ys"(wo,yo) is then connected. |

5. Let 8" be the set of complex numbers # such that lo|=1.
Consuier in 8"x 8" the set M"=98"x (1 )+ (a0) x 8.

(5 1) Theorem. Y is n-simple if and only if every Jeﬂ/ h_us dn
extension ¢ e:ys"’“‘

%) C. Kuratowski, loe. cit. p. 285. : ‘

*) This is the only blace where we use that 9 is loc ally (ouur(ted in di-
mensions 0, 1,...,n. The hypothesis that every two points in Y can be connected
by an arc is quite sufficient it we agree to consider all the time homotopy classes

and homotopy classes rel. (%o, %) Instead of components of Z/S and of fyS (Tgrtfn)-

In the later part of the paper where we considér the “universal covering space”

of ¥ the hypothesis that % is loc ally connected in dimensions 0 and 1 is needc d.
®) W. Hurewicz, Proceed. Akad. Amsterdam 38 (1935), p. 113.
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It follows from (2.2) that we may admit g(ax,1)=y°.

Consider in S"x T the set N'=8"x(0)4-8"X (1)+(xo)xT-
Theorem (5.1) is the obviously equivalent with
(6.2) Y is m-simple if and only if every geny" such that

g(;v,O):g(Jc,l) for each wef",
) 9(@9,0)=g(0,1)="Yo,

has an extension g’e?/snxg.

Necessity. Putting ¥=8" and X=(2,) we obtain from (2.1)
a mapping g,y such that

gi(@,t)=g(x,t) for (a,t)eT=28"x(0)+(2)xJ.

The two mappings ¢ (x,1) and gl(w,0)=g(w,0):g(m,1)' are
then homotopic and since g,(%,1)=g(xy,1)=1%, and y is n- su:nple
they are also homotopic rel. (#,,¥,). It follows that ge@/ 5.1)1((; gleg/
are homotopic and by (2.2) there is an extension g'ey/ of g.

Sufficiency. Let ]‘o,fley (mg,yo be homotopic. Then there
is & map ge¥Y" 7 such that

fol@)=9(2,0),  fu@)=9g(z,1)

Let ¢, enyn be the map given by

gu(2,0)=g,(2,1)=F(®)  for xel",
G1(20,1)=g(0,1) for ted.
By hypothesis there exists an extension g1 e Y™ of g,. Putting
[ gx,2t) for xeS" and 0<<E
GBN=) 000ty  for seS" and }<i<1

for each xel".

we obtain a function g,e%S 7 such that
9o(@,0)=fo(®), g2, 1)="Fn(®) for wel’,
9a(@oyt)=45(%0, 1 —1) for ted. . .
This function considered only on N" is homotopic to gse Y™,
defined as follows
95, 0)=fo(), g5(,1)=F,(2 for wel" 7
Ja(@ost) =10 for ted.
According to (2.2) there is an extension ¢§ e:ys e of g; and
therefore f, and f, are homotopic rel. (%q,%o)-
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6. Theorcu. If y =0, Y is n-simple for n=1,2,.
Proof. Let f,, fleﬁy @o,y0) De homotopic. Then there is
a map ge¥Y® "7 such that
fola)=y(,0), filw)=g(®,1)

- Since m(Y)=0, the map gej?fN" is homotopic to ¢,¢¥
given by ¢(z,0)=fo(®), g:i(@,1)=F(®), §1(%o,1)=Yo and the theorem
follows from (2.2).

for each weS".

NN

ST

7. Let us consider an a,rbitra,ry gey such that

(7.1) 9(20,0)==y(20, 1)="Yo-

The funections fo(2)=¢(,0) and f,(x)==g(x,1) belong to y wo,yo
and therefore they define two elements ag a,nd o, of the n-th homotopy
group m,(Y) of Y. The function g(z,,t) determines because of (7.1)
a uniquely defined element w of the fundamental group (YY) of ¥.
We define

(7.2) ag=w(ay).

It will be proved later that a, is defined uniquely by w em(Y)
and ¢ em, (%) independently of the choice of g °).

8. The cage n=1. Cutting §'x J along (1)X J we obtain a squaire
with its four vertices mapped by ¢ into y, and its four edges repre-
senting the elements ay,w,o!,w™" of = (Y). It follows that (7.2)
is equivalent with

07

(8.1) .  ag=waw 1.

So the operator (7.2) is simply the inner automorphism of =,(¥/)
induced by w.

_ 9. The case n>1. Let ﬂ be the universal covering space of Y7,
WY)=Y the function “projecting” Y on Y, Y,eY a point such
tha.t u(yo) . To each element wem (%) corresponds a homeo-

8) The transformation w(e) has been introduced by J. H. C. Whitehead
in a paper which will soon appear in the Proc. London Math, Soc,

) We assums that the reader is aquainted with the covering spaces although
the complete theory is published only in the case when %/ is a polyhedron (Seifert-
Threlfall, Lehrbuch der Topologie, Lieipzig-Berlin 1934, Chapter 8). In particular
we are not proving (9.1).
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morphism B(Y)=Y such that u[H(¥)]=u(¥) and waw () =, W,(¥)]
for all §e¥. For every function 7e97 such that {0) =Ty 1(1)=w(T¢)

the function f=wuf represents the element w of =,(¥). Further we
have

(9.1) Given: a connected polyhed; ‘on @ such that m( Q) 0,a pomt 906Q
and o ;fzmctwn fe (g0, o), there is one and only one TeY° (qoTo)
such that uf_~ f.

Applying (9.1) for @Q=4~8" we see that the relation between f
and 7 is a homeomorphism of Y (w,vo) and U (26,Ye) which
egtablishes a (1-1)-isomorphism of the groups =,(%Y) and n,,(fﬂ)ﬂ).
The element of =, ( j% corresponding t0 aem,(Y) will be denoted by a.

It follows from. mmy( ﬂ):o and from (6.1) that g is n-simple.
Therefore the elements of n,,(?]) can be identified with the com-
ponents of the space g . It follows that for each wem(Y) the
homeomorphism 2( fﬁ):ﬂ defines & (1-1)-isomorphism

W P)l=mn(Y)-

We are going to prove now that (7.2) is equivalent to
{9.2) , Qo == W(%y).

(7.2) — (9. ") Applying (9.1) we obtain three functions
FeU™ 7, T TieU™  such that

g(mO:O) \/ u§=gi
fi(@o) =, ufi=f, fiea

Since the mapping ¢(x,,t) represents the element wem(Y¥)

we have §(wy,1)=u(%,). It follows from (9.1) that

(9.3) | §(@,0)=1o(@) for all wek’,

§(@,1) = Hf ()]
?0 and z”uﬁ are thus homotopic, which implies (9.2).
(9.2)—(7.2). Let fieY > (2,Y0), fiew; 4=0,1. It follows from (9.2)
that 7, and @7 aré homotopic, so let Fe¥/**? be such that (9.3)
hold. Putting g=ug we verify immediately (7.2).

8) W. Hurewicz, loc. cit.

(i=0,1).
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10. From (8.1) and (9.2) we deduce the following properties
of the operator w(a):

(10.1) w(a) is a (1-1)-isomorphism transforming w,(Y) into ditself,
(10.2)  wylwy(a)l=wyw,(a), l{a)=a. '
We see that m,(%) is agroup of operators for the group =,(Y)
with the unit element as a unit operator.
Let ¢.(Y) be the set of all a such that
(10.3) ’ a==w(u)
for all w, and 2,(%Y) the set of all w such that (10.3) holds for all a.

(10.4) ¢ (YY) is a subgroup of =, (YY),
(10.5) 2,(Y) is a self-conjugate subgroup of =, (Y),
(10.6) If m(Y) has no elements of finite ovder, then ¢,(Y) is
a subgroup of m,(Y) with division.

(10.4) and (10.5) follow immediately from (10.1) and (10.2).
In order to prove (10.6) let naec.(¥Y), n==0. We have then
na=w(na)=nw(a) and therefore a=w(a).

In the case n=1 it follows from (8.1) that (10.3) is equivalent
with aw=wa and therefore

(10.7) The group (Y )=2(Y) is the centrum of the group m(Y).

11. We return now to the notations used in 7. The functions
¢(%,0) and g(x,1) being homotopic, the corresponding elements «,
and «;, which are components of 2/ wo,yo), belong to same com-
ponent of ?/Sn. ‘

On the other hand, given f,, fleil/‘s'"(mo, 1) which are homo-
topic, there is an ¢e¥>>? such that ‘ ’

fol@) = g(2,0)  fi(2) = g(x,1)

and therefore there is a wen,(Y) such that (
Hence we obtain

for all eS8,

7.2), where fiea; (i=0,1).

(11.1) Theorem. Two elements ay, 0y em(Y) (considered as com-

ponents of Y (we,y0)) are contained in one.component of Y
zf and only if there is a wem(Y) such that wy==w(a)?).

9) Por the case n=1 see Seifert-Threlfall, loc. eit., p. 176,
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Therefore we have the theorems:
(112) Theorem. The following conditions are equivalent:

(a) Y is m-simple,
(b) a=w(a) for every aem,(Y) and wem (YY),
(¢) a(Y)=7u(Y),
(@) 2(Y)=m(Y)-

(11.3) Theorem. Y is 1-simple if and only if the group m( Y) is
abelian.

12. From now on we are going to admit that
(12.1) Y is a n-dimensional (n>>1) finite or infinite connected poly-

hedron.

I‘ixing a simplicial division P" of ¥ we obtain a corresponding
division P" of ‘y such that the mapping u y % and the homeo-
morphisms  2( y) g are simplicial.

Let B"(Y) [B"(Y)] be the group of all n- dunensmna,l finite

cycles y"[p] in P"[P"] with integer coefficients. To each fe Y 1151
corresponds a unique cycle i(f)eB"(¥Y) [(h(f)eB" (Y] If fo and f,
are homotopic we have h(f,)=nh(f;) and therefore we obtain a homo-

morphism h{z,(Y)ICB"(Y) (R (Y )JICB"(3/)]. We verify easily that

(12.2) hle)=ulh()],
(12.3) L) )= RH(R) ),
and it follows from (11.1) that

(12.4) h(a)= h[w(a)).

Let 37¢B" (%) and let @ be a finite subpolyhedron of % con-
taining 5" Since the inequality @-@(Q)==0 has®) only a finite set
of solutions wen, (%) it follows that

(12.5) Given ?"eB”(@), Yn=0, the equation Y"=w(y") has only
a finite set of solutions wem(Y).

) (', 8. Eilenherg, Fund. Math. 28 (1937), p. 236.
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13. In this section we assume that

(13.1) m(Y)=0 for 1<i<n.

This condition is always satisfied if n=2, 1t follows that

(13.2) m(YP)=0 for i=1,2,..,n—1.

and therefore by a theorem of Hurewicz 1):

(13.8) h(Q) is a (1—1)-isomorphism of the groups =,(¥Y) and B"(Y).
It follows from (13.3), (12.3) and (12.5) that

(13.4) Given aem,(Y), a0, the equation a=1w(a) has only a finite
set of solutions.

This implies:
(13.5) If cu(Y)=0, the group =(Y) is finite,
(13.6) If m\(Y)=£0, the group #,(Y) is finite,

(13.7). Theorem. If Y is n-simple and m,(Y)=+0 the group m(Y)
is finite.

Given a natural m let mB"(Y) be the subgroup of B"(¥Y)
of all the cycles of the form my".

(13.8) Theorem. If the group m(Y) consists of m< oo elements,
the homomorphism h tramsforms c,(Y) isomorphically into
the group mB"(Y).

Proof. To each simplex 4 in ¥ there are in @ exactly m simplexes
Ay As,..., Ay such that w(d)=4 for i=1,2,...,m. Given y"emB"(Y),
define A(y") by taking each A, with the coeficient of 4 in y* divided
by m. Let I" be the subgroup of B"(%/) composed of all the cycles
7" such that P7=w(p") for all wem(%Y). We verify eagily that
AlmB"(Y)]=I is a (1-1)-isomorphism and that w(l") = mB"(Y)
is the isomorphism inverse to 4. On the other hand R(a) is
& (1-1)-isomorphism between ¢,(%Y) and [, so that u[h(d)] is
& (1-1)-isomorphism transforming ¢,(¥) into mB"(¥Y). Using
(12.2) we obtain (13.8).

") Proceed. Akad. Amsterdam 88 (1935), p. 522.
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14. Theorem . If Y satisfies (12.1) and (13.1), then Y is n-simple
if and gnly if h transforms =,(Y) isomorphically into some subgroup
of B"(Y).

Proof: The necessity of the condition follows from (13.7)
it »(%Y) is infinite and from (11.2) and (13.8) if =,(¥) is finite.
Sufficiency follows immediately from (12.4).

15. As an application let us consider the case when Y=M"is
a n-dimensional simplicial manifold such that @ is the n-dimensional
sphere S”(n>1). Condition (13.2) being satisfied, (13.1) and obviously
(12.1) are also satisfied. The group =,(M") is finite. The group x,(M"),
being isomorphic to B"(8"), is cyeclic infinite.

Each homeomorphism #@(S")= 8" has a degree e,=-1.
Since W(y")=-¢,p" for each n-dimensional cycle " in 8", it follows
from (13.3) and (12.3) that

(15.1) w(a)=¢,a.
We distinguish two cases:

1° M" is orientable i.e. & =1 for all wem (M"). By (15.1)
M" is n-simple, m,(M")=c,(M") and @ (M")=2,(M"). The n-di-
mensional real projective space for n=2k+41 and all the n-di-
mengional lens-speces'?) are contained in this case.

20 M" is not orientable, i.e. e,=—1 for some wem(M").
By (15.1) M" is not n-simple. Since z,(M") is cyclic infinite it follows
from (11.2) and (10.6) that ¢,(M")=0. The group z,(M") consists
of all wem(M") such that ,=1. This case containy the n-dimen-
gional real projective space for n=2F%.

12) (. Seifert-Threlfall, loc. eit., p. 210.
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