

The preceding results have an amusing formal consequence, valid for any ring \Re , with a unit element 1. Let η_1, η_2, \ldots be an infinite sequence of elements in \Re , with repetitions allowed. Then $\eta'_q = \eta''_q$, where η'_q and η''_q are defined by the recurrence formulae, $\eta'_0 = \eta''_0 = 1$ and

$$\begin{split} & \eta_{q}' \!\! = \!\! - \!\! (\eta_{q-1}' \eta_{1} \! + \! \eta_{q-2}' \eta_{2} \! + \! \ldots \! + \! \eta_{q}), \\ & \eta_{q}'' \!\! = \!\! - \!\! (\eta_{1} \eta_{q-1}'' \! + \! \eta_{2} \eta_{q-2}'' \! + \! \ldots \! + \! \eta_{q}). \end{split}$$

This is true for any ring since it is true for the ring which is freely generated by $\eta_0=1,\eta_1,\eta_2,...$, with infinite sums allowed, provided no product $\pm\eta_{m_1}...\eta_{m_n}$ is repeated infinitely many times. For if a degree, given by $\delta(\pm\eta_{m_1}...\eta_{m_n})=m_1+...+m_n$, is assigned to each product, only a finite number of terms in such a sum can have the same degree. It follows from induction on q that η_q' and η_q'' are homogeneous of degree q and, as before, that $\eta'\eta=\eta\eta''=1$, where

$$\eta = 1 + \eta_1 + \eta_2 + ..., \qquad \eta' = 1 + \eta_1' + \eta_2' + ..., \qquad \eta'' = 1 + \eta_1'' + \eta_2'' + ...$$

Therefore $\eta' = \eta''$, whence $\eta'_q = \eta''_q$.

Balliot College, Oxford, England.

On the relation between the fundamental group of a space and the higher homotopy groups.

By

Samuel Eilenberg (Warszawa).

1. \mathcal{Y} will denote a separable, connected metric space locally connected in dimensions $0,1,...,n^{-1}$). Given a compact metric space \mathcal{X} , the continuous functions $f(\mathcal{X}) \subset \mathcal{Y}$ with the distance formula

$$|f_0-f_1| = \sup_{x \in \mathcal{X}} |f_0(x)-f_1(x)|$$

form a metric space \mathcal{Y}^{x} .

Given two points $x_0 \in \mathcal{X}$ and $y_0 \in \mathcal{Y}$ the equation $f(x_0) = y_0$

defines a closed subset $\mathcal{Y}^{x}(x_0,y_0)$ of \mathcal{Y}^{x} .

I will denote the closed interval [0,1] by \mathcal{I} and $\mathcal{X} \times \mathcal{I}$ will stand for the cartesian product of \mathcal{X} and \mathcal{I} . Two functions $f_0, f_1 \in \mathcal{Y}^X$ will be called *homotopic* if there is a function $g \in \mathcal{Y}^{\mathcal{X} \times \mathcal{I}}$ such that

$$f_0(x) = g(x,0), \quad f_1(x) = g(x,1) \quad \text{for all} \quad x \in \mathcal{X}.$$

If also

$$g(x_0,t)=y_0$$
 for all $t \in \mathcal{I}$,

we say that $f_0, f_1 \in \mathcal{Y}^{\mathcal{X}}(x_0, y_0)$ are homotopic rel. (x_0, y_0) .

2. Let $\mathcal X$ be a polyhedron and X a subpolyhedron of $\mathcal X$. It is well known that $T = \mathcal X \times (0) + X \times \mathcal I$ is a retract of $\mathcal X \times \mathcal I$ and therefore that

(2.1) Every $f \in \mathcal{Y}^T$ has an extension $f' \in \mathcal{Y}^{x \times T}$ 2).

It follows immediately from (2.1) that

(2.2) Given two homotopic functions $f_0, f_1 \in \mathcal{Y}^X$ and an extension $f'_0 \in \mathcal{Y}^X$ of f_0 , there is an extension $f'_1 \in \mathcal{Y}^X$ of f_1 homotopic to f'_0 2).

¹⁾ C. Kuratowski, Fund. Math. 24 (1935), p. 269.

²⁾ See for instance P. Alexandroff und H. Hopf, Topologie I, Berlin 1935, p. 501.

- **3.** Let S^n (n>0) be the n-dimensional sphere. It follows 3) from our hypothesis on \mathcal{Y} that \mathcal{Y}^{S^n} and $\mathcal{Y}^{S^n}(x_0,y_0)$ where $x_0 \in S^n$ are locally connected in dimension 0 and therefore that the classes of homotopy of \mathcal{Y}^{S^n} (or the classes of homotopy rel. (x_0,y_0) in $\mathcal{Y}^{S^n}(x_0,y_0)$) coincide with the components of \mathcal{Y}^{S^n} (or of $\mathcal{Y}^{S^n}(x_0,y_0)$) 4).
- (3.1) Every component of \mathcal{Y}^{S^n} contains at least one component of $\mathcal{Y}^{S^n}(x_0, y_0)$.

Proof. Let $f_0' \in \mathcal{Y}^{S^n}$. Put $\mathcal{X} = S^n$, $X = (x_0)$, $f_0(x_0) = f_0'(x)$, $f_1(x_0) = y_0$. Since is an arc joining $f_0(x_0)$ and y_0 in \mathcal{Y} therefore $f_0, f_1 \in \mathcal{Y}^X$ are homotopic. It follows from (2.2) that there is a function $f_1' \in \mathcal{Y}^{S^n}(x_0, y_0)$ homotopic to f_0' .

4. \mathcal{Y} will be called *simple in dimension* n, or shorter n-simple, if every component of \mathcal{Y}^{S^n} contains exactly one component of $\mathcal{Y}^{S^n}(x_0,y_0)$, where $x_0 \in S^n$.

This definition is obviously independent of the choice of $x_0 \in S''$. It will follow later (theorem (5.1)) that it does not depend on the choice of $y_0 \in \mathcal{Y}$ either.

The components of $\mathcal{Y}^{S^n}(x_0, y_0)$ are the elements of the *n*-th homotopy group $\pi_n(\mathcal{Y})$ of \mathcal{Y}^5). Therefore if \mathcal{Y} is *n*-simple we may consider the components of \mathcal{Y}^{S^n} as the elements of $\pi_n(\mathcal{Y})$. Of course

(4.1) If $\pi_n(\mathcal{Y}) = 0$, then \mathcal{Y} is n-simple.

For $\mathcal{Y}^{s^n}(x_0,y_0)$ is then connected.

5. Let S^1 be the set of complex numbers z such that |z|=1. Consider in $S^n \times S^1$ the set $M^n = S^n \times (1) + (x_0) \times S^1$.

(5.1) **Theorem.** Y is n-simple if and only if every $g \in \mathcal{Y}^{M^n}$ has an extension $g' \in \mathcal{Y}^{S^n \times S^1}$.

⁵) W. Hurewicz, Proceed. Akad. Amsterdam 38 (1935), p. 113.

It follows from (2.2) that we may admit $g(x_0,1)=y^0$. Consider in $S^n \times \mathcal{I}$ the set $N^n = S^n \times (0) + S^n \times (1) + (x_0) \times \mathcal{I}$. Theorem (5.1) is the obviously equivalent with

(5.2) \mathcal{Y} is n-simple if and only if every $g \in \mathcal{Y}^{\mathbb{N}^n}$ such that

$$g(x,0)=g(x,1)$$
 for each $x \in S^n$,

$$g(x_0,0) = g(x_0,1) = y_0,$$

has an extension $g' \in \mathcal{Y}^{S^n \times \mathcal{I}}$.

Necessity. Putting $\mathcal{X}=S^n$ and $X=(x_0)$ we obtain from (2.1) a mapping $g_1 \in \mathcal{Y}^{S^n \times \mathcal{I}}$ such that

$$g_1(x,t) = g(x,t)$$
 for $(x,t) \in T = S^n \times (0) + (x_0) \times \mathcal{I}$.

The two mappings $g_1(x,1)$ and $g_1(x,0)=g(x,0)=g(x,1)$ are then homotopic and since $g_1(x_0,1)=g(x_0,1)=y_0$ and \mathcal{Y} is *n*-simple they are also homotopic rel. (x_0,y_0) . It follows that $g \in \mathcal{Y}^{N^n}$ and $g_1 \in \mathcal{Y}^{N^n}$ are homotopic and by (2.2) there is an extension $g' \in \mathcal{Y}^{S^n \times \mathcal{I}}$ of g.

Sufficiency. Let $f_0, f_1 \in \mathcal{Y}^{S^n}(x_0, y_0)$ be homotopic. Then there is a map $g \in \mathcal{Y}^{S^n \times S}$ such that

$$f_0(x) = g(x,0),$$
 $f_1(x) = g(x,1)$ for each $x \in S^n$.

Let $q_1 \in \mathcal{Y}^{N^n}$ be the map given by

$$g_1(x,0) = g_1(x,1) = f_1(x)$$
 for $x \in S^n$,
 $g_1(x_0,t) = g(x_0,t)$ for $t \in \mathcal{I}$.

By hypothesis there exists an extension $g_1' \in \mathcal{Y}^{s^n \times g}$ of g_1 . Putting

$$g_2(x,t) = \begin{cases} g(x,2t) & \text{for } x \in S^n \text{ and } 0 \leqslant t \leqslant \frac{1}{2} \\ g_1'(x,2-2t) & \text{for } x \in S^n \text{ and } \frac{1}{2} \leqslant t \leqslant 1 \end{cases}$$

we obtain a function $g_2 \epsilon \mathcal{Y}^{s^n \times \mathfrak{I}}$ such that

$$g_2(x,0) = f_0(x), \quad g_2(x,1) = f_1(x) \quad \text{for} \quad x \in S^n,$$

 $g_2(x_0,t) = g_2(x_0,1-t) \quad \text{for} \quad t \in \mathcal{I}.$

This function considered only on N^n is homotopic to $g_3 \in \mathcal{Y}^{N^n}$, defined as follows

$$g_3(x,0) = f_0(x), \qquad g_3(x,1) = f_1(x) \qquad \text{for} \quad x \in S^n, \ g_3(x_0,t) = y_0 \qquad \qquad \text{for} \quad t \in \mathcal{I}.$$

According to (2.2) there is an extension $g_3' \in \mathcal{Y}^{S^n \times \mathcal{I}}$ of g_3 and therefore f_0 and f_1 are homotopic rel. (x_0, y_0) .

³⁾ C. Kuratowski, loc. cit. p. 285.

⁴⁾ This is the only place where we use that \mathcal{Y} is locally connected in dimensions 0, 1, ..., n. The hypothesis that every two points in \mathcal{Y} can be connected by an arc is quite sufficient if we agree to consider all the time homotopy classes and homotopy classes rel. (x_0, y_0) instead of components of $\mathcal{Y}^{S''}$ and of $\mathcal{Y}^{S''}(x_0, y_0)$. In the later part of the paper where we consider the "universal covering space" of \mathcal{Y} the hypothesis that \mathcal{Y} is locally connected in dimensions 0 and 1 is needed.

6. Theorem. If $\pi_1(\mathcal{Y})=0$, \mathcal{Y} is n-simple for n=1,2,...

Proof. Let $f_0, f_1 \in \mathcal{Y}^{S^n}(x_0, y_0)$ be homotopic. Then there is a map $g \in \mathcal{Y}^{S^n \times \mathcal{I}}$ such that

$$f_0(x)=g(x,0),$$
 $f_1(x)=g(x,1)$ for each $x \in S^n$.

Since $\pi_1(\mathcal{Y})=0$, the map $g \in \mathcal{Y}^{N^n}$ is homotopic to $g_1 \in \mathcal{Y}^{N^n}$ given by $g_1(x,0)=f_0(x)$, $g_1(x,1)=f_1(x)$, $g_1(x_0,t)=y_0$ and the theorem follows from (2.2).

7. Let us consider an arbitrary $g \in \mathcal{Y}^{S^n \times \mathcal{I}}$ such that

$$(7.1) g(x_0,0) = g(x_0,1) = y_0.$$

The functions $f_0(x) = g(x,0)$ and $f_1(x) = g(x,1)$ belong to $\mathcal{Y}^{S^n}(x_0,y_0)$ and therefore they define two elements a_0 and a_1 of the n-th homotopy group $\pi_n(\mathcal{Y})$ of \mathcal{Y} . The function $g(x_0,t)$ determines because of (7.1) a uniquely defined element w of the fundamental group $\pi_1(\mathcal{Y})$ of \mathcal{Y} . We define

$$(7.2) a_0 = w(a_1).$$

It will be proved later that a_0 is defined uniquely by $w \in \pi_1(\mathcal{Y})$ and $a_1 \in \pi_n(\mathcal{Y})$ independently of the choice of g^{-6} .

8. The case n=1. Cutting $S^1 \times \mathcal{I}$ along $(1) \times \mathcal{I}$ we obtain a squaire with its four vertices mapped by g into y_0 and its four edges representing the elements a_0, w, a_1^{-1}, w^{-1} of $\pi_1(Y)$. It follows that (7.2) is equivalent with

$$a_0 = w a_1 w^{-1}.$$

So the operator (7.2) is simply the inner automorphism of $\pi_1(\mathcal{Y})$ induced by w.

9. The case n>1. Let $\widetilde{\mathcal{Y}}$ be the universal covering space of \mathcal{Y}^7), $u(\widetilde{\mathcal{Y}})=\mathcal{Y}$ the function "projecting" $\widetilde{\mathcal{Y}}$ on \mathcal{Y} , $\widetilde{\mathcal{Y}}_0\epsilon\widetilde{\mathcal{Y}}$ a point such that $u(\widetilde{\mathcal{Y}}_0)=y_0$. To each element $w\in\pi_1(\mathcal{Y})$ corresponds a homeo-

morphism $\widetilde{w}(\widetilde{\mathcal{Y}}) = \widetilde{\mathcal{Y}}$ such that $u[\widetilde{w}(\widetilde{\mathcal{Y}})] = u(\widetilde{\mathcal{Y}})$ and $w_2\widetilde{w}_1(\widetilde{\mathcal{Y}}) = \widetilde{w}_2[\widetilde{w}_1(\widetilde{\mathcal{Y}})]$ for all $\widetilde{\mathcal{Y}} \in \widetilde{\mathcal{Y}}$. For every function $\widetilde{f} \in \widetilde{\mathcal{Y}}^{\mathcal{T}}$ such that $\widetilde{f}(0) = \widetilde{y}_0$, $\widetilde{f}(1) = w(\widetilde{y}_0)$ the function $f = u\widetilde{f}$ represents the element w of $\pi_1(\mathcal{Y})$. Further we have

(9.1) Given: a connected polyhedron Q such that $\pi_1(Q) = 0$, a point $q_0 \in Q$ and a function $f \in \mathcal{Y}^Q(q_0, y_0)$, there is one and only one $\widetilde{f} \in \widetilde{\mathcal{Y}}^Q(q_0, \widetilde{y}_0)$ such that $u\widetilde{f} = f$.

Applying (9.1) for $Q = S^n$ we see that the relation between f and \widetilde{f} is a homeomorphism of $\mathcal{Y}^{S^n}(x_0, y_0)$ and $\widetilde{\mathcal{Y}}^{S^n}(x_0, \widetilde{y}_0)$ which establishes a (1-1)-isomorphism of the groups $\pi_n(\mathcal{Y})$ and $\pi_n(\widetilde{\mathcal{Y}})^8$). The element of $\pi_n(\widetilde{\mathcal{Y}})$ corresponding to $\alpha \in \pi_n(\mathcal{Y})$ will be denoted by $\widetilde{\alpha}$.

It follows from $\pi_1(\widehat{\mathcal{Y}})=0$ and from (6.1) that $\widetilde{\mathcal{Y}}$ is *n*-simple. Therefore the elements of $\pi_n(\widehat{\mathcal{Y}})$ can be identified with the components of the space $\widetilde{\mathcal{Y}}^{S^n}$. It follows that for each $w \in \pi_1(\mathcal{Y})$ the homeomorphism $\widetilde{w}(\widetilde{\mathcal{Y}})=\widetilde{\mathcal{Y}}$ defines a (1-1)-isomorphism

$$\widetilde{w}[\pi_n(\widetilde{\mathcal{Y}})] = \pi_n(\widetilde{\mathcal{Y}}).$$

We are going to prove now that (7.2) is equivalent to

$$\widetilde{a}_0 = \widetilde{w}(\widetilde{a}_1).$$

 $(7.2) \rightarrow (9.2)$. Applying (9.1) we obtain three functions $\widetilde{g}_{\epsilon}\widetilde{\mathcal{Y}}^{S^{n}\times S}$, \widetilde{f}_{0} , $\widetilde{f}_{1}\epsilon\widetilde{\mathcal{Y}}^{S^{n}}$ such that

$$\widetilde{g}(x_0, 0) = \widetilde{y}_0, \qquad u\widetilde{g} = g,$$

$$\widetilde{f}_i(x_0) = \widetilde{y}_0, \qquad u\widetilde{f}_i = f, \qquad \widetilde{f}_i \in a_i \qquad (i = 0, 1).$$

Since the mapping $g(x_0,t)$ represents the element $w \in \pi_1(Y)$ we have $\widetilde{g}(x_0,1) = \widetilde{w}(\widetilde{y}_0)$. It follows from (9.1) that

(9.3)
$$\widetilde{g}(x,0) = \widetilde{f_0}(x)$$
 for all $x \in \widetilde{S}^n$,
$$\widetilde{g}(x,1) = \widetilde{w}[\widetilde{f_1}(x)]$$

 \widetilde{f}_0 and $\widetilde{w}\widetilde{f}_1$ are thus homotopic, which implies (9.2).

 $(9.2) \rightarrow (7.2)$. Let $f_{le} \mathcal{Y}^{3n}(x_0, y_0)$, $f_{le} a_l i = 0, 1$. It follows from (9.2) that \widetilde{f}_0 and $\widetilde{w}\widetilde{f}_l$ are homotopic, so let $\widetilde{g} \in \widetilde{\mathcal{Y}}^{S^n \times S}$ be such that (9.3) hold. Putting $g = u\widetilde{g}$ we verify immediately (7.2).

⁶) The transformation $w(\alpha)$ has been introduced by J. H. C. Whitehead in a paper which will soon appear in the Proc. London Math. Soc.

⁷⁾ We assume that the reader is aquainted with the covering spaces although the complete theory is published only in the case when \mathcal{Y} is a polyhedron (Seifert-Threlfall, Lehrbuch der Topologie, Leipzig-Berlin 1934, Chapter 8). In particular we are not proving (9.1).

⁸⁾ W. Hurewicz, loc. cit.

S. Eilenberg:

10. From (8.1) and (9.2) we deduce the following properties of the operator $w(\alpha)$:

(10.1) w(a) is a (1-1)-isomorphism transforming $\pi_n(\mathcal{Y})$ into itself,

(10.2) $w_2[w_1(a)] = w_2w_1(a)$, 1(a) = a.

We see that $\pi_1(\mathcal{Y})$ is a group of operators for the group $\pi_n(\mathcal{Y})$ with the unit element as a unit operator.

Let $c_n(\mathcal{Y})$ be the set of all a such that

$$(10.3) a = w(a)$$

for all w, and $z_n(\mathcal{Y})$ the set of all w such that (10.3) holds for all a.

(10.4) $c_n(\mathcal{Y})$ is a subgroup of $\pi_n(\mathcal{Y})$,

(10.5) $z_n(\mathcal{Y})$ is a self-conjugate subgroup of $\pi_1(\mathcal{Y})$,

(10.6) If $\pi_n(\mathcal{Y})$ has no elements of finite order, then $c_n(\mathcal{Y})$ is a subgroup of $\pi_n(\mathcal{Y})$ with division.

(10.4) and (10.5) follow immediately from (10.1) and (10.2). In order to prove (10.6) let $na \in c_n(\mathcal{Y})$, $n \neq 0$. We have then na = w(na) = nw(a) and therefore a = w(a).

In the case n=1 it follows from (8.1) that (10.3) is equivalent with aw=wa and therefore

(10.7) The group $c_1(\mathcal{Y}) = z_1(\mathcal{Y})$ is the centrum of the group $\pi_1(\mathcal{Y})$.

11. We return now to the notations used in 7. The functions g(x,0) and g(x,1) being homotopic, the corresponding elements a_0 and a_1 , which are components of $\mathcal{Y}^{S^n}(x_0,y_0)$, belong to same component of \mathcal{Y}^{S^n} .

On the other hand, given $f_0, f_1 \in \mathcal{Y}^{S^n}(x_0, y_0)$ which are homotopic, there is an $g \in \mathcal{Y}^{S^n \times \mathcal{I}}$ such that

$$f_0(x) = g(x,0)$$
 $f_1(x) = g(x,1)$ for all $x \in S_{n}$

and therefore there is a $w \in \pi_i(\mathcal{Y})$ such that (7.2), where $f_i \in \alpha_i$ (i = 0, 1). Hence we obtain

(11.1) **Theorem.** Two elements $a_0, a_1 \in \pi_1(\mathcal{Y})$ (considered as components of $\mathcal{Y}^{S^n}(x_0, y_0)$) are contained in one component of \mathcal{Y}^{S^n} if and only if there is a $w \in \pi_1(\mathcal{Y})$ such that $a_0 = w(a_1)^{9}$).

- (11.2) Theorem. The following conditions are equivalent:
 - (a) V is n-simple,
 - (b) a=w(a) for every $a \in \pi_n(\mathcal{Y})$ and $w \in \pi_1(\mathcal{Y})$,
 - (c) $c_n(\mathcal{Y}) = \pi_n(\mathcal{Y})$,
 - (d) $z_n(\mathcal{Y}) = \pi_1(\mathcal{Y})$.
- (11.3) **Theorem.** Y is 1-simple if and only if the group $\pi_1(\mathcal{Y})$ is abelian.
 - 12. From now on we are going to admit that
- (12.1) Y is a n-dimensional (n>1) finite or infinite connected polyhedron.

Fixing a simplicial division P^n of \mathcal{Y} we obtain a corresponding division \widetilde{P}^n of $\widetilde{\mathcal{Y}}$ such that the mapping $u(\widetilde{\mathcal{Y}}) = \mathcal{Y}$ and the homeomorphisms $\widetilde{w}(\widetilde{\mathcal{Y}}) = \widetilde{\mathcal{Y}}$ are simplicial.

Let $B^n(\mathcal{Y})$ $[B^n(\widetilde{\mathcal{Y}})]$ be the group of all n-dimensional finite cycles $\gamma^n[\widetilde{\gamma}^n]$ in $P^n[\widetilde{P}^n]$ with integer coefficients. To each $f \in \mathcal{Y}^{S^n}$ $[f \in \widetilde{\mathcal{Y}}^{S^n}]$ corresponds a unique cycle $h(f) \in B^n(\mathcal{Y})$ $[h(f) \in B^n(\widetilde{\mathcal{Y}})]$. If f_0 and f_1 are homotopic we have $h(f_0) = h(f_1)$ and therefore we obtain a homomorphism $h[\pi_n(\mathcal{Y})] \subset B^n(\mathcal{Y})$ $[h[\pi_n(\widetilde{\mathcal{Y}})] \subset B^n(\widetilde{\mathcal{Y}})]$. We verify easily that

$$(12.2) h(\alpha) = u[h(\widetilde{\alpha})],$$

(12.3)
$$h[\widetilde{w}(\widetilde{a})] = \widetilde{w}[h(\widetilde{a})],$$

and it follows from (11.1) that

$$(12.4) h(\alpha) = h[w(\alpha)].$$

Let $\widetilde{\gamma}^n \in B^n(\widetilde{\mathcal{Y}})$ and let Q be a finite subpolyhedron of $\widetilde{\mathcal{Y}}$ containing $\widetilde{\gamma}^n$. Since the inequality $Q \cdot \widetilde{w}(Q) \neq 0$ has 10) only a finite set of solutions $w \in \pi_1(\mathcal{Y})$ it follows that

(12.5) Given $\widetilde{\gamma}^n \in B^n(\widetilde{\mathcal{Y}})$, $\widetilde{\gamma}^n \neq 0$, the equation $\widetilde{\gamma}^n = w(\widetilde{\gamma}^n)$ has only a finite set of solutions $w \in \pi_1(\mathcal{Y})$.

⁹) For the case n=1 see Seifert-Threlfall, loc. cit., p. 176.

¹⁰) Cf. S. Eilenberg, Fund. Math. 28 (1937), p. 236.

13. In this section we assume that

(13.1)
$$\pi_i(\mathcal{Y}) = 0 \quad \text{for } 1 < i < n.$$

This condition is always satisfied if n=2. It follows that

(13.2)
$$\pi_i(\widetilde{\mathcal{Y}}) = 0$$
 for $i = 1, 2, ..., n-1$.

and therefore by a theorem of Hurewicz 11):

- (13.3) $h(\tilde{a})$ is a (1-1)-isomorphism of the groups $\pi_n(\mathcal{Y})$ and $B''(\tilde{\mathcal{Y}})$. It follows from (13.3), (12.3) and (12.5) that
- (13.4) Given $a \in \pi_n(\mathcal{Y})$, $a \neq 0$, the equation a = w(a) has only a finite set of solutions.

This implies:

- (13.5) If $c_n(\mathcal{Y}) \neq 0$, the group $\pi_1(\mathcal{Y})$ is finite,
- (13.6) If $\pi_n(\mathcal{Y}) \neq 0$, the group $z_n(\mathcal{Y})$ is finite,
- (13.7) **Theorem.** If \mathcal{Y} is n-simple and $\pi_n(\mathcal{Y}) \neq 0$ the group $\pi_1(\mathcal{Y})$ is finite.

Given a natural m let $mB^n(\mathcal{Y})$ be the subgroup of $B^n(\mathcal{Y})$ of all the cycles of the form m_{ν} ⁿ.

(13.8) Theorem. If the group $\pi_1(\mathcal{Y})$ consists of $m < \infty$ elements, the homomorphism h transforms $c_n(\mathcal{Y})$ isomorphically into the group $mB^n(\mathcal{Y})$.

Proof. To each simplex Δ in $\mathcal Y$ there are in $\widetilde{\mathcal Y}$ exactly m simplexes $\Delta_1, \Delta_2, ..., \Delta_m$ such that $u(\Delta_i) = \Delta$ for i = 1, 2, ..., m. Given $\gamma^n \in mB^n(Y)$, define $\Lambda(\gamma^n)$ by taking each Δ_i with the coefficient of Δ in γ^n divided by m. Let Γ be the subgroup of $B^n(\widetilde{\mathcal{Y}})$ composed of all the cycles $\widetilde{\gamma}^n$ such that $\widetilde{\gamma}^n = w(\widetilde{\gamma}^n)$ for all $w \in \pi_1(\mathcal{Y})$. We verify easily that $\Lambda[mB^n(\mathcal{Y})] = \Gamma$ is a (1-1)-isomorphism and that $u(\Gamma) = mB^n(\mathcal{Y})$ is the isomorphism inverse to Λ . On the other hand $h(\widetilde{\alpha})$ is a (1-1)-isomorphism between $c_n(\mathcal{Y})$ and Γ , so that $u[h(\widetilde{\alpha})]$ is a (1-1)-isomorphism transforming $c_n(Y)$ into $mB^n(Y)$. Using (12.2) we obtain (13.8).

14. Theorem. If Y satisfies (12.1) and (13.1), then Y is n-simple if and only if h transforms $\pi_n(\mathcal{Y})$ isomorphically into some subgroup of $B^{n}(\widetilde{\mathcal{Y}})$.

Proof: The necessity of the condition follows from (13.7) if $\pi_1(\mathcal{Y})$ is infinite and from (11.2) and (13.8) if $\pi_1(\mathcal{Y})$ is finite. Sufficiency follows immediately from (12.4).

15. As an application let us consider the case when $\mathcal{U}=M^n$ is a n-dimensional simplicial manifold such that $\widetilde{\mathcal{Y}}$ is the n-dimensional sphere S''(n>1). Condition (13.2) being satisfied, (13.1) and obviously (12.1) are also satisfied. The group $\pi_1(M^n)$ is finite. The group $\pi_n(M^n)$. being isomorphic to $B^n(S^n)$, is cyclic infinite.

Each homeomorphism $\widetilde{w}(S^n) = S^n$ has a degree $\varepsilon_m = +1$. Since $\widetilde{w}(\widetilde{\gamma}^n) = \varepsilon_w \widetilde{\gamma}^n$ for each *n*-dimensional cycle $\widetilde{\gamma}^n$ in S^n , it follows from (13.3) and (12.3) that

$$(15.1) w(a) = \varepsilon_w a.$$

We distinguish two cases:

1º M^n is orientable i.e. $\varepsilon_w = 1$ for all $w \in \pi_1(M^n)$. By (15.1) M^n is n-simple, $\pi_n(M^n) = c_n(M^n)$ and $\pi_1(M^n) = z_n(M^n)$. The n-dimensional real projective space for n=2k+1 and all the n-dimensional lens-speces 12) are contained in this case.

 2^0 M^n is not orientable, i.e. $\varepsilon_w = -1$ for some $w \in \pi_1(M^n)$. By (15.1) M^n is not n-simple. Since $\pi_n(M^n)$ is cyclic infinite it follows from (11.2) and (10.6) that $c_n(M^n)=0$. The group $z_n(M^n)$ consists of all $w \in \pi_1(M^n)$ such that $\varepsilon_m = 1$. This case contains the n-dimensional real projective space for n=2k.

¹¹⁾ Proceed. Akad. Amsterdam 38 (1935), p. 522.

¹²⁾ Cf. Seifert-Threlfall, loc. cit., p. 210.