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Vu la définition de la suite transfinie (3), on ne peut pas avoir
¥:=@, pour £<d. Il existe donc un nombre ordinal a<<® tel que
y,n0n<a,. On a donc & plus forte raison Y NON < Ty POUT a<<& <
(puisque y, <y, pour a<<é<d).

Soit £ un nombre ordinal tel que a<<é<d. On a done y, non <,
et, vu la définition de la relation <3, il existe un undice 7 tel que
a,(y:)=>a,(xo), Aot y,eU en vertu du lemme précité. On a done
Y:eU pour a<E<d, c. & d. E[a<E]CU. Nous avons ainsi démontré

Ye
qu'il existe pour tout ensemble ouvert UCR un nombre ordinal
a<<? tel que E[a<ECU.
Ye .

Soit maintenant I' un G linéaire quelconque contenant K.

11 existe donc une suite infinie Uy, U,,... d’ensembles ouverts telle que

(6) r=0,0,...

D’aprés 'CR et (6), on a U,CR pour n=1,2,... e, comme
nous venons de démontrer, il existe pour tout » naturel un nombre
ordinal a,<<®# tel que

(7) - E[an<EICU,.
Ye

\ e .
Comme nous savons, il existe un nombre ordinal a<<?, tel que
a>a, pour n=1,2,... Nous avons donc

E[a<€]CE [0,<£]

L Ye
ce qui donne d’aprés (7) et (6) E[a<&]CI.

Ye
. Or, le nombre ordinal ¢ étant, comme nous savons, non con-
final avec w, I’ensemble E[a<] est indénombrable. L'ensemble EI'
L

est donc indénombrable. Ceci étant vrai pour tout ensemble I' qui
est un @ contenant &R, nous concluons que I’engemble R n’est pas
un (s relativement 4 E+ R.

Ainsi Pensemble E+R ne jouit pas de la propriété A.

pour n=1,2,...
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Some Methods of Proving Measurability.
By
H. D. Ursell (Leeds).

1. The present paper is part of an attempt to systematise as
far as possible the cases in which we can say that a function is
measurable (B) or measurable (L). The limit-processes used in ele-
mentary analysis can be divided into sequence limiting processes,
e.g. u. bd, lim and continuum limiting processes, e.g. u. bd.,

. (n) n-»co (x)
lim.
X=po0

In elementary analysis there is an exact parallelism between.
the two kinds of limit process. But in the more advanced parts
of analysis, in which not every function is continuous, this paral-
lelism breaks down. '

A sequence limiting process preserves measurability (B) but
a continuum limiﬁing process may destroy it. For instance, Neu-
bauer has shown?!) that the partial derivatives of a function
measurable (B) are not themselves necessarily measurable (B).

A sequence limiting process preserves measurability (L) but
a continnum limiting process may destroy it. For instance the
formula

1) F(p)= upper Pmmd flz;y)
may produce a non-measurable function F(z) from a measurable
function f(z,%): or from a null-function f(z,y), i. e. from a function

f(z,y)=0 almost everywhere, it may produce a function F(zx) which
even, if measurable need not be a null function. In fact we can form

1) M. Neubauer, Monatshefte fiir Math. und Phys. 38 (1931), p. 139.
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a function g(x) (0<w<C1) such that y=g(x) maps the segment <0,1>
of the x-axis on a set Y of measure zero on the y-axis. If now E
be any set on the segment 0<{x<<{1 and if we define

1 when zeE, y=p(x),
0 otherwise, '

fo, )=

then f(z,y) is certainly a null function. But (1) gives

{1 when zeF,

F@=1, otherwise,

so that F(z) need not be measurable (L) and, if it is, need not be
a null-function.
§§ 2-6 are closely connected with one another. We take first
the formula )
‘ ¢(y)=upper bound f(z)
x€Ey)

where HE(y) is a variable set in z-space depending on the point y
in y-space. This formula produces a function of y from a function
of ». [The upper bound is taken, as a limit can always be reduced
to a repeated bound.] Whatever f(x) may be, p(y) will be lower semi-
continuous provided the set of y — we denote it by E'(z) — for
which zeE(y) is open.

This result is generalised in various ways. In § 2 we aim at
measurability (B) and are able to work throughout in abstract
spaces. § 3 shows that some generalisations which § 2 might suggest
are in fact false. In § 4 we aim only at measurability (L) and ac-
cordingly the y-space becomes a coordinate space. Here we intro-
duce the phrase “regular set” for a set such that if a point y belongs
to the set then there is a small angular region of vertex ¥y contained
entirely in the set. These sets have the property we have enunciated
in Lemma 3 — namely that the sum of any aggregate of regular
sets is a regular set — in common with open sets. This property
plays an essential réle in our work. § 5 is devoted to the corresponding
results for a slightly different formula which includes the formula

M(z)=Timf(&)
E>x

a8 a particular case. It is included for the sake of completeness bub
the theory of this formula does not seem as interesting as the theory
of the upper bound. § 6 gives a final analysis of what assumptions
in the foregoing work are necessary.
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8§ 7, 8 are devoted to results of a type in which, given a fune-
tion f or a set B in (w,y)-space we argue from hypotheses in the
geparate spaces x=const., y=const. to the measurability of f or K.
The notion of a regular get finds another application here.

2. Let f(x) be any real function of a point z in an abstract
space. Let B(y) be a variable set in this space depending on a point y
in a topological space. The function

© (1) (p(y):upperl}?c))und f(z)
X € L(y

is defined for all y except those for which E(y) is empty- but it may
take -~oo ag a value. We may if we wish take ¢(y)=-—oo if E(y)
is empty. ‘ :

Ingtead of considering variable sets E(y) in the z-space we
consider, in the cross-product of the two spaces, the single set W
which congigts of all points (#,%) such that zeE(y). This set H
defines the correspondence between x and y and we could call ¢(y)
the wpper transform of f(») by this correspondence.

For any given # we denote by E'(x) the set of points y such
that (z,y)eB. We shall speak of E(y), E'(x) as sections of E (alt-
hough this term is not quite precise, E(y) for instance being a set
of points in z-space, not in (,y)-space.) And when we speak of
E'(x) being, say, open, we shall mean open in y-space, not in (z,y)-
space.

It is convenient at once to generalise (1) by considering fune-
tions f(z,y) depending on y as well as z. Thus we write

(2) ¢(y)=upper bound f(z,y).
) xe Ey)

Theovem 1. If all the sections E'(z) of B are open and if f(z,y)
is continuous — or at least lower semi-continuous —in y for each fized x,
them @(x) is lower semi-comtinuous.

The proof is immediate. We have

Elp(y)>EK]=E[f(z,y)>K for some zeE(y)]
y ¥

=2 B[y e B'(w), f(z,y)>K]

allx gy
= sum of open gets = open. set.
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As an example of Theorem 1 suppose that F(I) is a function
of interval, not necessarily additive, in a Cartesian space of coordin-
ates (4y,¥s--.) and suppose that we calculate an upper derivative
ot it by tha formula

= F(I)

(3) 9F(?/)——‘63{I;0‘|‘fr

for intervals I containing y in their interiors. Here |I| denotes the

volume of I and &(I) its diameter. Then >

. ) | X

(4) SF(y)=limg (y; ,;)
n—»oo

where

(%) @(y; )= upper bound F(I)
8I)<h ]

for intervals I containing y in their interiors. By Theorem 1, ¢(y;h)
is L.s.c. as a function of y for any fixed h: the place of x in the

theorem is here taken by the variable interval I. Hence 51!’(1/)
is the limit of a decreasing sequence of l.s.c. functions and is of
class 2 at most.

An upper derivative of a function of intervals can be defined
in many ways, according to what intervals are allowed. E.g. we
may admit only cubes, or only intervals whose vertices are irra-
tional, or the term interval may include any parallelopiped. The
above argument will always apply provided the points ¥ for which
any given interval I is relevant form an open set.

Theorem 2. Let z=(21,2...,2:) be a point of a Cartesian t-di-
mensional space and let 21,2s,...,2: be functions of a point y=(y1,ya,...,¥s)
of a Cartesian s-dimensional space which are measurable (B) and of
Baire class a at most. Let f(x,y)=F(x,2) where F is continuous — or
at least lower semi-continuous — in 2 for each fized x. Let

@(y)=upper bound f(x,y).
xeE@

If the sections E'(x) of E are open then ¢(y) is measurable (B)
and of Baire class a+1 at most.

The relations expressing zi,2s,...,2 as functions of ¥1,9s,...,¥s
determine a set S in the (s4-¢)-dimensional (y,2)-space. Taking S
as the y-space of Theorem 1 and defining the functions F™*(w,t)
and y(t) for t=(y,2)eS as follows: F*(x,t)=F(y,2), p(t)=supF*(,1),
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wel™(t) where E*(t)=B(y) we see that the hypotheses of that

theorem are satisfied. Hence y(t), considered as a function of po-

sition on §, is L.s.c. and the set E[tes, w()>K] is open. relative
t

to 8. For each point teS we have Plx,2)={f(z,y) and hence

FHa)=fry),  pll)=sup j(z,9)=ply).
xe E(y)

Consequently 14;‘;[teS, P> K]=E[teS, py)>K] and the set
L
]:][teS, @(y)>K] is open relative to §. The set E[p(y)>K] is
t
therefore the sum of a sequence of sets
(6) E(a,a'yb,0) =B [a:<yi<ai, b<z<bj]
y

each of which is measurable (B) and of type O.. It follows that
E[e(y)> K] is measurable (B) and of type O.. Hence ¢(y) is mea-

¥
surable (B) and of Baire class (a-41) at most.
As an example of Theorem 2 let z,y be single variables and let

1) 1) _f@)—=
€*

—y T—2y

(7) Hl,y)=
where 2,=f(y), 2=y. If f(y) is measurable (B) of class a then

(8) @(y;h)=upper bound (=) =1y)
y<x<y+h T—Y

is measurable (B) of class ¢+1 at most and hence

B #) i 1) =1) 4 y;
(9) D™ fly)=lim == — = =lim (ﬂ)

is measurable (B) and of class a+2 at most 2).

Note that in Theorem 2 we require that F(xz,z) shall be con-
tinuous — or at least l.s.c. — in z at each (z,2) which arises from
a point (z,y) of E. But it is not necessary that F should even be
defined for other values of # and z — e.g. for £=2, in our example —
nor that the continuity over the relevant values of (z,2) should
be uniform.

?) W. Sierpinski, Fund. Math. 3, p. 123.
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8. If X-space is topological and if we consider the (x,¥)-space
as a topological space with the ordinary topology®) the condition
concerning F will be satisfied when F is an open set. This might
suggest that if E is not open but constructed from open sets in
some simple way — for instance if E is a G — then ¢(y) would be
measurable-B or even belong to some fixed Baire class. General-
isations of this kind seem however to be impossible. The definition

(1) F(z)=upper bound f(z,vy)
()

of §1 ‘corresponds in fact to a set E in ordinary space given by

(2) <ok, 0<<y<], e=u

where x,y,2 are ordinary Cartesian coordinates. In fact

(3) F(z)=upper bound f(z,y),

(e, ) C E(2)
which is of our form (1). & is in this case a G5 and as special as one
could desire. But as we have seen F need not be measurable.

The argument, in fact, requires whole regions.

We might still hope to prove ¢(y) measurable when F, instead
of being open, is the closed envelope of an open set. It is possible
to prove something of this nature (§ 4) but only with further res-
trictions on E. In fact we shall now construct a set  which is a clo-
sed region but can produce a non-measurable ¢(y).

We take the xz-space and y-space to be Cartesian spaces of
the same dimensions and we fix the coordinate system in each.
Let B be a nowhere dense closed set of positive measure in x-space.
Let 8, be a division of the space into cubes and let S.+1 be the di-
vision obtained from S, by bisecting its cubes each way. For each
closed cube Qn, of the division S, which contains at least one point
of B we examine its successive subdivisions until we find in it cu-
bes Qnyx which do not meet B. We then form the sum og, of these
cubes Qnx: the integer % is the same for all of them and depends
only on @,. We then form the cross-product

(4) (@)% (a,),
i. e. the set of points (x,y) such that
(3) zC4Q,, yCaQn.

%) See C. Kuratowski, Topologie I, Monografie Matematyczne 8, p. 135.
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the second condition meaning that the point in z-space with the

same coordinates as the point y belongs to 0g - We define E to be
1

the sum of all these cross-products plus the set given by

(6) ' y=xCB.

It is easily seen that F is a closed region in the (ax,y)-space:
moreover ecach section E'(z) is a closed region.

It (I B then E'(x) contains no point yCB. If tCB then E'(x)
contains the point x itself but no other point yCB.

Now let B* be a non-measurable subset4) of B and consider
(7) 0=, F'(x).

xC B*

It constains B* but no other points of B. Thus its intersection
with the measurable set B is non-measurable, and so it cannot be
meagurable itself. But if

1 for #CB*,
(®) fl@) “{ 0 elsewhere,
then
__f1 for yCOC,
(9) ?(y) ""{ 0 elsewhere,

so that ¢(y) is non-measurable.

This example, it is true, requires a non-measurable f(z) to
make ¢(y) non-measurable. But by a topological transformation
x—& which converts B into a null-set, f(x) becomes a measurable
function, in fact a null-function, of & There is no difficulty in de-
fining such a transformation, especially in particular cases, e. g.
when the z-space is 1-dimensional. If we leave the y-space untrans-
formed we then get a non-measurable @(y) as the upper transform
of a null-function f(x(&)) by a closed region.

4. In this § we suppose that the y-space is a Cartesian space
of dimensions s, with coordinates y1,%s,.-.,¥s-

Lemma 1. A set Y in y-space has the property that each poini

yCX is the vertex of an n-dimensional cube Q(y):
(1) Y, SN, Y, T (k=1,2,...,8; a=0a(y))

which is contained entirely in Y. Then X is measurable.

4) On the existence of B* cf. W. Wilkosz, Fund. Math. 1, p. 82, §3.
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Observe first that for each yCY we can take cubes Q(y) ar-
bitrarily small. These cubes ¢ then cover ¥ in the sense of Vitali.
We can therefore choose a sequence @, of such cubes in such a way
that

(2) Y—X@Q, is of measure zero.
But each @,CY and hence
(3) Y=2'Qn+N,

where N is a null-set. Thus Y is measurable.

Notice that ¥ is the sum of an open set and of a null-set on
its boundary. We might speak of Y as being open in the positive
directions.

Lemma 1 may be proved %) without Vitali’s Theorem as fol-
lows. Suppose ¥ bounded and write

(4) Y=G+B

where @ is the open kernel of ¥ and B the rest. Let @: be the part
ot @ within a distance ¢ of the boundary of @ Then G, is measurable
and its measure tends to 0 with e. Let Bs be the part of B for which

o(y)>06. Then a small positive translation transforms B; into a sub-
set of .. Hence

(5) Me Bé gme Gg

for any positive 8, e. It follows that B; is a null-set for each 4: and
as Bs increases to B as 6 decreases to 0, B itself is a null-set.

Lemma 2. A set Y has the property that each point yCY is the

vertex of an n-dimensional angular region Qy)CY. Then Y is mea-
surable. :

The phrase angular region means an open set composed en-
tirely of open segments all having the vertex y of the region as
& common endpoint. By a suitable linear transformation

(6) vy=2a,, Y,

with rational coefficients of non-vanishing determinant we can
securg tha,t‘ the region in y'-space corresponding to a given Q(y)
contains a cube Q(y') as in Lemma 1, except for y’ itself.

%) 8. Banach, Fund. Math. 6, p. 173, has the same result and gives still
another proof. ‘
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The linear transformations with rational coefficients can be.
arranged in a single sequence {T} (m=1,2,..). Let Y, be the
set of points of ¥ for which T, is suitable in the above sense. The
sets Yn may of course overlap. By Lemma 1, Y, is measurable:
0 also therefore is ¥Y=1 Y.

Definition. Let us say that a set ¥ with the property of
Lemma 2 is regular.

Lemina 3. The sum of any aggregate (finite, enumerable or
more than enumerable) of regular sets is reqular.

Theorem 3. If the sections E'(x) of E are all regular and if

(7) @(y)=upper bound f(z)
xCE@)

then @(y) is measurable.
In fact the set E[g(y)>K] is the sum of the sets E'(x) for
by
those values of x for which f(#)>K. By Lemma 3, it is regular:
by Lemma 2, therefore, measarable.

As an example of Theorem 3 suppose that F(I) is a function
of interval, not necessarily additive, and that we define its upper
derivative by the usual formula ‘

— — I
(8) DE(y)=lim {SI”

for cubes @ containing y either inside or on the boundary. Then

= : 1
(0 B ry)=limp (1; 2
where

) F(@)
(10) ¢(y,h)—uppd?£)ggund 0l

for cubes @ containing y. By Theorem 3, ¢(y;h) is measurable for
any fixed h: hence DF(y) is also measurable ).

The property expressed by Lemma 3 is precisely what is needed
for the kind of Theorem we want. Any sub-class of the class

) This result is due to S. Banach, 1.c. Our method applies of course to
many variations in the nature of the intervals used in defining the upper derivative.
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of measurable sets which possesses this property will give us a
theorem of the type of Theorem 3. The only such sub-classes we
know are:

(i) open sets,

(ii) sums of subsequences of a given sequence of measur-
able sets,

(1i) regular sets,

(iv) regular sets in which restrictions are placed on the angle
Q(y), for instance the sets open in the positive directions.

Sets such that any boundary point of the set which belongs to
it 1s linearly accessible from the interior of the set have the property
of Lemma 3: but such a set need not be measurable 7).

A regular set need not be measurable (B), nor even a Suslin
set. For instance if B consists of the square

(11) <<, 0<y<l
together with a non-measurable linear set on the segment
(12) 0<a<l, y=0

then it is regular but its section by y=0 (a Suslin set) is not
measurable, therefore not a Suslin set.

The hypothesis of Theorem 3 cannot be replaced by the hypo-
thesis that F is regular: this last is neither necessary nor sufficient
for the sets B'(x) to be regular. For instance if a set £ of a 3-di-
mensional space is given by

(13) ‘ y<om<y+1, YTy +1

it is regular but the section E'(z;,2,) is not regular when |, — 2| =1.
The sets E'(z) will certainly be regular if Z is regular and if

in addition the angle Q(x,y) at a point (z,y)C E meets the space x= const.
through its wvertes.

?) 0. Nikodym, Fund. Math. 10, p. 116, has constructed in the plane
a closed set F of positive measure, every point of which is linearly accessible
from the complementary set G. The set @ + a non-measurable subset of F
{cf. W. Wilkosz, l.c.) would give us our example.
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Theorem 4. Let z=(21,2s,...,2) be a point of a Cartesian t-di-
mensional space and let 21,2s,...,2; be measurable functions of a point
Y=(Y1,Y2.--,Ys) of a s-dimensional space and let f(z,y)=F(x,2) where
F(x,2) is continuous — or at least lower semi-continuous — in z for
each fized x. If B is an open set — or if at least s sections B (x) are
all reqular — then '

(14) p(y)=upper bound f(z,y)
xCE@y)
18 measwurable.

To prove this theorem we use

Lemma 4 (Lusin’s Theorem). If #(y) is a measurable func-
tion of y in a closed interval I then given >0 we can find a dlosed
set ¥ such that G=I—F is of measure less than & and that 2(y)
18 continuous on K.

We return now to Theorem 4. We determine sets F; such that 2
is continuous on F; and write F=IIF;, G=I—F. Then the % are
simultaneously continuous on F. '

If F is open then F-E[g(y)>K] is open relative to F: in par-

e 4

ticular it is measurable. Hence
(18) e B [o(y)> K] —mE [p(y)>K]<mG
u /4

and since & is of arbitrarily small measure it follows that E[¢(y)>K]
is measurable. v

If we assume only that the sections E'(z) are regular then we
find that F-E[¢(y)>K] is regvlar relative to F, i.e. if a point Yo

belongs to F yand if (yo,)>K then there is an angular region 2(y,)
of vertex y, such that @(y)>K for every y belonging to F in this region.
If to the set F-E[p(y)>XK] we add all these angular regions we get

a regular set B and F-E[g(y)>K]—=FR. Hence F-B[p(y)>K] is

y y
measurable and the proof of the theorem is completed as above.
As an example of Theorem 4 let #,y be single variables and let

(19) fa,y)= f(az——f(y) _f@)—z

—Y T2y

If f is a measurable function then we find that D'f(y) is also
measurable 8). :

8) 5.Banach, Fund. Math. 8, p.128, H. Auerbach, Fund. Math. 7, P.263.
Fundamenta Mathematicae T. XXXII. 21
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5. The methods of § 2 would tell vs that the function

1 fg(a;):upp(gl.‘}?gundf(ﬁ
is Lsg.e. and hence that
>0

is of class 2 at most. In actual fact it is u.s.c. and s0 of class I
at most. The upper semi-continuity depends upon a different ar-
gument: it arises rather in the process of taking the limit as ¢—0
than in the process of taking the upper bound.

Suppose that we have a decreasing sequence H, of sets in
{@,y)-space and that we define

(3) @n(y)=upper bound f(z),
xCE, @

(4) P(y)=1im @, (y).
n—oo

Here H,(y) denotes a section of H, given by y=const. The

limit certainly exists as gu(y) is monotonic in n. We may write simply

(5) ply)= lim f(z).
xC Ep(m)

Theorem 5. If Ex(y)CEn(y,) for all N, y satisfying
(6) (Y, Yo)<do= Bg(ygsm),
N>Nog=DNo(Ye79),

then o(y) is upper semi-continuous.
The proof is immediate. If @(y,)<K then there is an = go
great that g (y)<K, say ¢,(y,)=K—e where ¢>0. Then f(2)<K—e

for all 2CE (y,) in particular for all zCEx(y) if y, N satisfy (6).
Hence

P(y)<K—¢ for N>N,
py)<SK—e  p(y)<K

for all y in d(y,y,)<d,. Thus the set E[p(y)<K] is open and so o(y)
b
is uw.s.e.
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The hypothesis concerning the sets B, is quite complicated
compared with the condition in Theorem 1 that & be open: and
it does not seem possible to simplify it substantially even by sa-
crificing some generality. Another difficulty enters when we replace
f(@) by f(e,y). We now write:

(7 : @n(y)=upper bound f(e,y),
xCE ()
(8) w(y)=nli§10 oa(¥)

Theorem 6. Let z=(21,2s,...,2:) be a point of a Cartesian t-di-
mensional space, let z1,2s,...,2; be functions of a point y= (Y1, Y2,y ...sYs)
of a Cartesian s-dimensional space which are measurable (B) and of
Buaire class a at most. Let f(z,y)=F(x,2) where F is continuous — or
at least wpper semi-continuous — in z uniformly in x. If En(y)C . Eu(y,)
for all N, y satisfying (6) then @ly) is measurable (B) and of Baire
class a-+1 at most.

The relations connecting y and z determine a set § in the
(s-+t)-dimensional (y,z)-space. We easily find that ¢(y) is u.s.c.
as a function of position on 8. The result stated then follows as
in Theorem 2.

The new difficulty is that we need to assume F not only con-
tinuous in z but uniformly so.

We shall disregard Theorem 3 and proceed at once to the
analogue of Theorem 4.

Theorem 7. Let z=(21,%s,...,2:) be a point of a Cartesian i-di-
mensional space, let 21,2,...,2; be measurable functions of a point
Y==(Y1,f2,-.-, Ys) 0f a Cartesian s-dimensional space and let f(z,y)=F(z,2)
where B is continuous — or at least upper semi-continuous — in 2
uniformly in o. If Ex(y)CEn(y,) for all N, y satisfying

(9) yCLa(y0)y  N>No=DNo(¥o,7Y)

then g(y) is measurable.

As in Theorem 4 we first construct a closed set FF in -y—spdcé‘
on. which the z are simultaneously continuous. We then show that
the set FE[p(y)<K] is regular relative to F' and hence measurable.

And siucey the complement of F is of arbitrarily small meagure it
follows that E[e(y)<<K] is measurable.
¥

21*

.
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6. In this § we make certain general observations on The-
orems 1-7, in particular on how far the hypotheses made are
necessary.

(i) We have supposed the z-space, like.the y-space, metrical.
But # may vary in any aggregate, even one in which no topology
is defined, and the theorems in question will remain true with the
single exception that it will not be possible, in Theorems 1-4, to
- speak of X being open. In applications the z-space is invariably
metrical and usually the same as the y-space.

(ii) In Theorems 2 and 6 we supposed the y-space Cartesian
and introduced a z-space which we also supposed Cartesian. Now
Borel sets and Baire classes can be defined in any metrical space
and if we keep the z-space Cartesian we need not restrict the y-space.
The proofs require only a slight change if the y-space is separable:
but if it is not separable we must proceed as follows. To fix the
ideas take the case of Theorem 2. If the point (y,,2,) of 8 gives
@(yo)>K then, since ¢ is l.s.c. on §, there is a neighbourhood

8(y,y0)<bo, bj<z1-'<bl" (7.*—‘1727---:”

which includes (yo,2,) and is such that ¢(y)>K for any point (y,z)
of § which lies in this neighbourhood. We denote by ZE(b,b’,5,)
the set of all points y, such that the numbers b;, b; and §, are ap-
propriate in this sense to (y,,%). Then H(b,l’,8,) increases as &,
decreases. Let FE(b,b’) be its limit as 8,—0. It is easily seen that
E(b,b') is a relatively open subset of

B[y <z<<bj]
n
and hence of type O.. The set E[p(y)>K] is the sum of the sets
/]
E(b,b’) for all rational values of b;,b;. It is thus itself of type O.

and hence g¢(y) of class (a+1) at most.

(iii) It is also possible to generalise the z-space in Theorems 2,
4, 6, and 7. We can replace, it by any separable space, e.g. by a Hil-
bert space or by Jessen’s @.°). If with any point y a definite point
z i associated we say that the point z is a function of the point y
and write

2=Y(y).

%) B. Jessen, Acta Math. 63, p. 249.
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Given a set Z in z-space we obtain from it a set
Y Z)=B[¥(y)CZ)
/)

in y-space, the original of Z. If for every open set V in z-space w(v)
is open then we say that ¥ is a continuous function. If () is
of type O. then we say that ¥ is of Borel ?) class a. And if (in. The-
orems 4 and 7 where in the nature of the cage the y-space is Cax-
-tesian) ¥(V) is measurable we say that ¥ is measurable.

The z-space being separable, we can find in it a sequence {Va}
of open sets which define the topology of the space: i.e. given any
point 2z we can find in the sequence arbitrarily small neighbourhoods
of z. In the case of Theorem 2 and 6 we simply replace the sets

bj<<zj<bj,

where b;,b; are rational, by the sets V,. For Theorems 4 and 7 we
start with the generalisation of Lusin’s Theorem:

If the point z of a separable space is a measurable function of
the point y=(y1,Ys,.--,Ys) ™ an interval I then we can find a closed
set B such that z is continuous on F while G=I1—F is of arbitrarily
small measure.

From this generalisation of Lusin’s Theorem the proofs pro-
ceed as before.

In conclusion we observe that the z-space, supposed separable
and metrical, is homeomorphic to a subset of Hilbert space. Let
®1,%,... De the coordinates in this space. Then

(a) if # is of Borel class a each 2, is of Baire class o at most,
if each 2z, is of Baire class a at most then z is of Borel class a.
(b) if # is measurable, each z, is measurable: and conversely.

Thus the generalisations we have just made amount roughly
to making ¢ infinite.

7. In the sequel z-space will be a meagurable subset of a Car-
tesian space, y-space will be Cartesian and the word funstion will
mean & numerical function. We shall consider the Borel classes
relative to #- and y-spaces given and to their Cartesian-product.

1) The identity between Borel classes so defined and Baire classes
does not hold without conditions on the z-space: cf. F. Hausdorff, Mengenlehre,
(1927), p. 268, and C. Kuratowski. Topologie I, Monografie Matematyczne 3,
. 187-188. '
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Theorem 8. If f(z,y) is measurable as « function of » for cach
fized y and continuous as. a function of y for each fimed x then it is
measurable as a function of (z,v).

‘We ghall suppose the y-space 1-dimensional. For each positive

ihtegér n we divide up the range of y by points ;}g—; (m integral)
and define
m—]—l
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haa=f{a ) it
Then f, is measurable in (z,y) and f,—f as n—>co. Hence f

is measurable.
If now the y-space is s-dimensional, say

Y=(Y3Ys 1Y)
then from the hypotheses of the theorem we find suecessivelj that fis

meagurable in (z,y,) for fixed (y,y...,¥,)

measurable in (z,y,,y,) for fixed (y,,...,%,)

measurable in (2,9,Yyy - ¥,)-

We may remark in conclusion that it is sufficient if f is con-
tinuous in y for almost all # and measurable in 2 for an everywhere
dense set of points y.

Theorem 8 illustrates a type of result in which, given a func-
tion f or a set E in (#,y)-space we argue from hypotheses in the
separate spaces = const., y==const. to the meagurability of f or E.

The theorem on sets corresponding to Theorem 8 would be:
if the sections E(y) are all measurable and the sections B'(z) all open
(or all closed) then B is measurable. This is false: Sierpiriski!l) has
constructed a set I for which the sections E'(x) and B(y) are all
closed but which nevertheless is not measurable.

In view of the examples afforded by this set and its comple-
ment the following theorem is perhaps somewhat surprising.

Theorem 9. If the sections E'(z) are all open, the sections H(y)
all closed, then E is of type Oy (i.e. it is an Fs) and hence mea-
surable.

ny W. Sierpinski, Fund. Math. 1, p. 112.
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Let y,,5...,y, be the-coordinates in y-space and let I be an
open rational interval in that space:

I: 7Y, <t (k=1,2,..,8)
where 7z, 7% are rational numbers. The set

E[ICE ()]

is closed. Its cross-product with I, namely
E[yCICE’(w)]

is an Fy,. And F is the sum of these sets for all rational mtervﬂa I
in y-space.

Corollm"y. The set B is also*2) of type F, (i.e. it is a Gs),

For the complement of K satisfies the hypotheses of the the<
orem (with « and y interchanged) and so is an F,.

Theorem 10. If the sections E'(z) are all reqular and the sec-
tions E(y) all closed then E is measurable.

As in Theorem 9 the set
E[ICE (2)]
X

is closed and
ECICH @)

is an K. Let G be the sum of theSe setg for all ratlonal intervals I
in y-space. Then @ is an F,.

Clearly & (x) is the open kernel of E'(x).’

We shall show that F—@ is of measure zero. Let B consist’
of the points of F—@ at which E'(z) is open in the positive direc-
tions and let Bs congist of the points of B for which a(y)>4d in the
notation of § 4. Denote for each open interval I: r<<y<rz (k=1,2,...,s)
by L: the open interval '

7k e<<y, <1, (k=1,2,...,8)

if such exists, i.e. if the numbers »,—r, all exceed &, and otherweise
let I. denote the empty set. Let H. be the sum of all the sets

E[yCL, ICE (z)].
Xy

2) It iz thus an “‘ensemble ambigu” of class 1.
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It is an F, and increases to @ a8 & decreases to 0. Write
Go=G—H,.
Then G- is measurable and (if it is confined to a finite interval)
m@,—~0 as &—0.

By a translation of length less than Min(e,d) in the positive
direction B; can be transformed into a subset of @;. Hence

e Bs<mGe

and thus Bj is a noll-set. Since Bs increases to B as & decreases to
zero it follows that B is also a null-get.

The result for the set B can be extended to the whole of B—@
a8 in § 4, Lemma 2. Thus Z is the sum of the Borel set ¢ and a null-
set and so is measurable.

In conclusion we may mention that just as the regular sets
introduced in § 4 imitate open sets in that they have the property
expressed by Lemma 3 so the complementary sets — let us call
them CR sets — imitate closed sets in that the product of any
aggregate of OR sets is a CR set. We can therefore replace the con-
dition that E(y) be closed in Theorem 10 by the condition that
E(y) by OR. The same proof applies save that “closed”, “an F,”
must be replaced by “CR”, “measurable’ respectively. :

.8. Theore:m 11. If f(x,y) is measurable in = for each fimed Y
and increases with y for each fized x then it is measurable in (m,9).

.Theorem 1. If the sections B(y) of a set B are all measurable
and increase with y then the set B is measurable.

In these theorems “increase’ is understood in the wide sense.

We shall also suppose y a simple variable. The theorems remain
‘t‘xl'ue when y‘=(y1,y_2,...,ys) is a multiple variable provided the phrase
Increase with y is defined as “increase with each y; (1=1,2,...,8)".
This extension follows at once from the simple case by induction.
Theorem 11 will follow from Theorem 12 applied to the sets

B=E[j(z,y)> K]
To prove Theorem 12 first confine the set Z to a finite interval I:

GG By, a<<y<b.
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Divide up the range of ¥ by points 11,,¥s, .3 ¥,_;s
) a=Y<y<..<y,=b,
in such a way that
Y. —Y, <& (r=1,2,...,n).

We obtain an inner approximation F to E by taking

Fly)=Ey,_,) n y,_ ,<y<y,.

and an ounter approximation @ by taking

Gly)=Gy,_,) in y,_ <y<y,.

Then F, G are both measurable and FCEC@G. But writing m,
for mE(y,) we find that

(G —F)=3 (y,—Yy,_,) tm,—m,_,)
<& X Mp—Mp—1)=&(Mp—mp)=Ke.

K depending only on F and the interval I. Hence E, or ra-
ther EI, included between two measurable sets whose measures
differ by arbitrarily little, is measurable. This being true for any
interval I, the whole set F is measurable.

The phrase “‘increases with " in the hypothesis of Theorem 11
cannot be replaced by ‘““is of bounded variation in y”. For the cha-
racteristic function u(x,y) of the Sierpiriski set E in mentioned
§7 i8 b. v. in y for each fixed # and b. v., a fortiori measurable,
in z for each fixed y. But we can make an extension in that direc-
tion as follows.

Theorem 13. If f(x,y) is measurable in x for each fimed y and
monctonic in y for each fired x then it is measuralbe in (x,y).

Here again we suppose y a simple variable: the extension to
the case of a multiple variable y is obtained by induction. Let X,
be the set of values of  for which f(x,y) is non-decreasing in y and
let X, be the set of values of # for which f(x,y) is non-increasing.
Every « belongs by hypothesis either to X, or to X, — or to both,
in whieh case f(z,y) would be a constant for that particular z.
Let 7 denote generically a rational value of y. Then ,
Hy= 11 B, m)>flzma))

Xy= [] B[f(z, 7)< H@,72)]

W X
Thus X, X,, as products of sequences of measurable sets, are
themselves measurable,
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On the set §; in (w,fy)-spa.cé‘ given by &:
0[’CX1

f(, y) is measurable by 1°) Theorom 11 Slmlhrlv it is measurable
on the set S, 111 (a:,y) space given by S,

'nC_X

Thebe setb being measurable and. filling the (z,y)-space it fol-
lows that / is measurable.
~ In conclusion we may observe that in Theorems 11 and 13
the condition “for each fixed y” may be replaced by the same con-
dition for an everywhere dense set of values of y.and the condition
“;Eor each fixed‘ 2" by the same ,eondition “for almost all .

18) The relativised fmm of Theorem 1 required helc can be proved in t]w
same way as-Theorem 11 itself. It can also be detlu(‘ed from Theorem 11. E.
if we define f;=7 in 8, fi= 0’ elsewhere then f, is measurable by Theorem 11
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