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A generalized theorem on oscillating functions.
By
Eli Gourin (New York).

A one-valued continuous function of 2 real variable which
oscillates overywhere in a given interval I, repeats, according to
Koenig?), at least one of its values an infinite number of times
in I. We generalizo this theorem by showing that it suffices to as-
sume that tho function oscillates everywhere in any perfect subset
K or I'?%) in order to reach the same conclusion about the existence
of infinitely many times repeated functional values in I.

The application of this result enables us to offer a straight-
forward treatment, based on elementary point set theory, of the
following problem: Let x(¢) and y(¢) be one-valued continuous fune-
tions in a given interval in which the derivative of y(t) with respect
to #(t) vanishes everywhere in the interval; in other words, let

MQ—)“-‘—-O whenever ¢ tends toward ¢, by a sequence of
w(t) —a(ty)
values other than those for which y(t)—y(to)=w(t)—a(t,)=0. It is
required to show that y(t) is constant throughout the intervals).

1. Lemma. Let z(t) be o one-valued continuous function in
a closed interval I and let w(t) oscillate everywhere in a perfect subset
K of I. Then w(t) repeats at least one of its values an infinite number
of times in I.

') Bee A. Schoentlies, Berichi iber der Mengenlehre, 1900; p. 160.

2) In other words, there exists no open interval of I, having points in com-
mon with K, in which the functional values of K never increase or never de-
CTeage.,

3) See K. Petroveky, Ree. Math. Soc. Math Moscou 41 (1934), 48-58.
Also 8. Saks, Theory of the Integral, Monografie Matematyczne 7 (1937), p. 275,
and R. Caccioppoli, Sul lemma fondamentale del caleolo integrale, Atti Mem.
Accad. Seci. Padova 50 (1934), 93.98. ‘
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98 E. Gourin:

We notice that unless the complement of K in I is zero, it
consists of open intervals, whose end-points are in K, no two inter-
vals having an end-point in common. We denote by I; any such
interval in which #(f) assumes the same value at both its end-points,
and by I any or the remaining intervals.

We choose a closed interval J of the real line and select in J
a set of points {zy} similar to set of the intervals [; *) in T in their
natural order arrangement. It is possible then to set up an order-
preserving correpondence S which carries in one-to-one way each
interval I; into the corresponding 2y and, likewise, every remaining
pomt of I in one-to-one way into a point z of the complement of
{25} in J. Under § every interval I, will go over into an open inter-
val 6; and the set K into a perfect set T' of J. (In case no intervals
I: are present in the complement of K in I, or in case this com-
plement is zero, we simply choose for J the mturvall I and for §
the identical transformation).

Woe define in J a function #;(z) by assuming that, for any point
of the set {z,}, z:(2y) is equal to the value of ®({) at either ond- 1)0int
of the corresponding I7; for any point # of 7' which is not in {en},
and thus corresponds to a unigue ?, ®,(2) is equal to x(t); {inally,
on any interval 0;, @,(2) is assumed to vary linearly between the two
values fixed at its end-points in accordance with the foregoing rule.
It is clear that the function #,(2) thus defined is ome-valued and
* continuous; furthermore, since #(f) assumes on any interval I;
every valus which is taken on by y(2) on the corresponding o,
it follows that if #,(2) has values repeated an infinite number of
times in J, the same conclusion must hold for () in I. We shall
show that z,(2) actually possesses this property.

We notice that ay(2) must oscillate everywhere in 1’ if x(¢)
oscillates in K. Hence every point a of T must be either a proper
maximum of #(z). or a limit point of such proper maxima; other-
wise in any neighborhood of o there would be available an open
interval in which the functional values of I' would never increase
or never decrease. We denote by M the set of the proper maxima
of ,(2) in J. Because z,(2) varies linearly on every interval &;, no
point of M belongs to a 6;-M, therefore, is a proper subset of T'
lying everywhere dense in T' and hence it denge in itself.

1) As usual, T; denotes the closure of Ii.
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With every point @ of M we associate two intervals Br=(p—m, 1]
and  Op==[4,pu-t-my) such that their sum 0 becomes the largest
interval containing u for every point z of which, with the exception
of u, wy(2)<awy(p).

We observe that both 6, and 0, belonging to a point ux of M
must have points in common with. M besides u. This is obvious
if wis not an end-point of a &, for in this case, in any neighbor-
hood of i, there are available points of T, and hence points of M,
lying both to the right or left of u. If, however, x4 is an end-point
of a &, say, a right-hand point, then 6, will certainly have points
in common with M besides u; as regards 6, we notice that is must,
in this casde, contain the left-end point of ¢, in its interior and the
conelusion is the same.

Wo are in a position. now, following Koenig’s line of argument,

to complete the proof of the lemma, We choose, namely in J a point
wof M. We denote by 0’ any one of ity intervals 6, and 6, which
contains the abgolute minimum value of #,(2) in 6. The other part
of 0 woe denote by 0f. We choose then in the interior of 67 a point u,
of M. It is clear that there must be available in 6’ a point uf, such
that o(u)==w(ui). We repeat the same process with u’, Its interval
0y is thus sub-divided in two intervals 0" and 6{ and again we fix
in the intervals 0’, 0" two points us, ws , respectively, such that
@1 pg) = w1(ws)==w1(ws’). We keep on, repeating this process mdeflmtely
and obtain in this way a sequence of intervals 6',6”,6'",...,6%,
It is clear that no two of these intervaly, end- pom’us meluded ca,n
have points in common. Let ui, us, us, ... be the points determined
by the described process in 6’. Let u:, be one of their limit points. We
are able to choose in each of the remaining intervals 6",6"",.. 46%,...
limit points u), w4, ... such that

w"* w 3

&y (ar,) =y (1, ) = ... =, (pP) =

This proves our lemma.
2. Theorem. Let x(t) and y(t) be onec-valued continuous functions

in a closed interval I. Then if the derivative of y(t) with respect to a(t)
vamishes everywhere in I, y(t) is constant throughout I.

We denote by ¢ the curve y=y(t), s=u(t). Let y(f) not be
constant everywhere in I. We show that under this assumption ¢
cannot he a simple curve.

vv*
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100 E. Gourin:

Suppose, indeed, that ¢ has no multiple points. This implies,
of course, that for any sequence of points ti, t, ...y tn, ... cOnVOrging
toward a point ¢ in I, the relation y()—y(t:)==a(t)—2(t)=0 iy
never satisfied, and hence the relation

oY) —y@)
o o = ()"

holds for any converging sequence in I without exceptions. We
conclude that 2(t) can, therefore, repeat none of ity values in points
of an infinite subset of 7, for at & limit point of such points (1) could
not hold. ) .

We denote by ¢ the set of those points of I every one of which
can be covered by an open interval in which y(f) remains constant.
@ is obviously an open set. Because () is continuous and not con-
stant, the complement of ¢ in I is a perfect sot J distinet from zero.
In any neighborhood of a point « of K the function y(¢) is noever
constant. We shall show that this conclusion leads to a contra-
diction.

The components of @ are intervals of constancy of y(t). We
denote, as in the proof of the lemma, by I; any of these intervals
in which «(f) assumes the same value at both ity end-points and
by I; any one of the remaining intervals. We introduce again the
interval J and defermine in the latter by means of the correspon-
dence 8 the open intervals & and the perfect set 7. By using the
device given in the proof of the lemama, we finally carry both func-
tions #(t) and y(¢) in I into functions »(2) and y,(#) in J. We recall
that @(2) can repeat none of its values an infinite number of times
in J because x(t) does not possess this property in I. We observe
also that y;(2) is never constant in any neighborhood of a point of 7.

Let #1,2y,...,24,... be any sequence of points of J with z ag a limit
point. We show that
(2) lim Y1(2n) —y1 (=

n=co 1 (ﬁn) — (_5= 0.

This relation is certainly satisfied whenever # is an inner point
of a §;, for the numerators in (2) vanish then for sufficiently largo
values of n. Let, therefore, z be a point of 7. Without loss of ge-
nerality we may assume that the 2's approach # from one side only,
say, from the left. Let, accordingly, 2;<ze<...<gn<<...<2.
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It 18 always possible to choose in I a corresponding seqeunce
fy<<lo<l o < ty<<..s NUCh that ya(e)=y(t) and @(z)=wn(t), for every i.
Whenover, namely, 2 i8 in I' and is the transform of a unique point
of T under 8, we' choose this latter point as t;; if, however, 2 is the
transform. of a whole intervalle Ij, we take for i any one of its
end-points; finally, if 2 is a point of a &, we select #; from among
those, always available, points of the corresponding I; for which
w1 (@) =wu(t;). The sequence of the t¢’s obviously converges toward
a point ¢. Because of continuity, «(t)=wy(2) and y(t)=y(2); hence

o Yi(en) —yi(R) g yl) —y(t)
0 )1 (5) 0 o) o)

Since @, () repeats none of its values an infinite number of
times in. oJ, it follows from our lemma that @,(z) does not oscillate
everywhere in 1. In other words, there exists in J an open interval
»n which has points in common with 1" and in which the functional
values of T never increase or never decrease. Because the comple-
ment of the intergection D{n,T) in 5 consists of intervals d;, in every
one of which @,(2) varies linearly, we conclude that @y(2) is strietly
monotone in #. In virtue of (2), u(2) is, therefore, constant in .
This contradicts the above reached conclusion that y,(#) is never
constant in any neighborhood of a point belonging to T. Hence
if y(t) is not constant the curve € is not simple.

We must, theretore, assume that (' has multiple points if y(t)
is not congtant. We shall show that this assumption it also un-
tenable.

Let, indeed, A(wy,y) and B(wy,y,) be two points of the curve
¢, with =¥, It is known that there exists then a simple curve
¢,CC whick joins the points 4 and B. The curve ¢, may be taken
to he parametrically represented by two one-valued continuous
functions x=#(T) and y—y(T) where T varies in the interval [0,1].
Let T, Ts,..., Tsy... be a converging sequence of points, with T as
a limit point, and let o be an accumulation point of the sequence

(T —y(T)

of ratios T —g(1) i=1,2,...,m,... There exists then a subse-
) —
quence T{,T%,...,Th,... of the given sequence for which,
() —g(T)
lim =57 et
ll~oo w(”n)*?j(T)
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102 , E. Gourin.

With each point 7% in the interval [0,1] we associate a poing #;
in I for which #(t;)=%(T;) and y(t;)=F(T:). Let t be an accumulation
point of the s and let the properly choosen sub-sequence blybageeey by ...
of the #'s, associated with the sub-sequence T7',T%¢,..., Ty, ... ’of

the T7s, converge towards t. It is clear that 2(1)=%(T) and
Y(t)=7(T). We have further:

— Jim YU —3/(1)
it

Y L) —g(T)
#(T)—a(T)
verges toward zero. As we have shown above, this conclusion con-
flicts with the assumption that 0, is a simple curve. Hence y(t)
must be constant throughout I. i .

—lig ZI) =T .. G —H(T)
O ) —=( D) R T —z
Hence the sequence

i=1,2,...,m,... always con-

3. In conclusion we shall state without proof one more regult
related to the problem discussed in our lemma. We notice that
the proper maxima of the function #,(2), introduced in the process
of the proof, form a set dense in itself. It can be shown that, in
gener.al, whenever the proper maxima of a one-valued continu,ous
function in a given interval form a get dense in itself the function

must have at least one value repeated an infinite _
i i ’ inite ;
in the interval. number of times

Columbia University,
New York, N. Y. (U. 8. AL).
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Sur les courbes s-déformables en arcs simples,
Par

Z. Waraszkiewicz (Varsovie).

Lo but do cotte Note est la cavactérisation intringéque des
courbes planes qui, pour tout &>0, se laissent e-déformer en un
are simple. La famille do toutes ces courbes sera désignée par (4);
jo les appelle aussi apparentécs avee DVare simple.

Je démontre que la famille (4) eoincide avec celle des courbes
planes I qui ne coupent pas le plan et qui jouissent en chacun de
leury points de la propriété suivante t):

(py) pour chague systéme de 3 sous-continus de K qui contien-
nent le point donnd, Pun deuw fait partie de la somme de deux autres.

Termes et notations. Jo désigne, pour chague couple de points z,y
d’un espace métrique R, pav ¢ (x,y) la distance entre ces points et par @y un are
simple aux extrémités « ot y, contenu dans R,

Etant donnds dans B deux ensernbles quelcongues A et B, je pose

o(A,B)=inf o(x,y);
ved, jeB)

le diamdtre do A sera désigné par d(d). :
Jappelle dendrite finie une dendrite (c.& d. continu localement connexe
ne contenant aucune courbe fermée) qui est somme d’un nombre fini d’arcs

simples.
Une transformation continue f d'un ensemble ACR en un autre BCE

est dite une e-déformation, lorsqu’'on a
sup ¢ (w, f(x)) <.
ved

8i une telle détormation existe pour tout &0, A est dit e-déformable en B.

Ly Lrdguivalence on question a 666 signalée dans mon travail O pok're'wieo}
stwie Lontynudw, Windomodei Mutematyesne 48 (1936), p. 1-87 (en polonais)
qui en renferme nune éhauche do la démonstration. .


GUEST




