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On vérifie aisément que EP’[L] contient la loi dont la
fonction de sauts est N(x):

AN () = AN (—x) =d[x"] si 0<x<1,
=d(gex)'si x>1,
loi qui n’a pas de moments.

Le lecteur pourra prouver (la démonstration est analogue
a celle du théoréme XI) la proposition:

Pour que EP[L] soit fortement compact, il faut, mais il ne
suffit pas, que pour un @ >0

flxl“dF(x) <.

(Regu par la Rédaction le 1. 8. 1939).
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On isomorphisms of rings of linear operators
by
M. EIDELHEIT (Lwow).

This paper is in connection with the researches on general
linear rings which are due to S. Mazur?). We consider here espe-
cially the rings U (E) of linear operators transforming a given
Banacu space £ into another Banacu space E/. We shall see,
(this was suggested by Mazur), that in any ring A (E) the norm
is in a certain sense uniquely determined. Furthermore, two rings
A(E), A(E,) are (algebraically) isomorphic if and only if the
spaces E,, E, are isomorphic?), The isomorphism

V=0 U) where UeU(E,), VeUA(E),

is then of the form )
V=AUA™,
A being a linear operator which yields the isomorphism between

E, and E,®%). In this theorem we may replace the property of
@ (U) to be additive by the continuity.

§1

1. Consider an arbitrary BanacH space E and denote by
A (E).the set of all linear operators

y=U(x)

1) S. Mazur, Sur les anneaux linéaires, C. R. Acad. Sc. Paris, 207
(1938) p. 1025—1027. _

1) As to the definition of isomorphic spaces, see S. Banach, Théorie
des opérations linéaires, Monografie Matematyczne, Warszawa 1932, p, 180.

%) This theorem was proved for maximal rings of matrices by Weber:
Isomorphismus maximaler Matrizenringe, Journ, f. Math. 171 (1934) p. 227—242,

Studia Mathemntioa. T. IX. 7
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with the domain £ and ranges contained in E. In A(E) the
sum and product of two operators and the product of an ope-
rator by a real number are defined in the customary manner;
it Uy, Uy,eU(E) and 4 is a real number, then

U"l"U A UU ‘‘‘‘ /’LUI:':::C’

where
A@) =U,(x)+U,(x), B@)=U][U, )], Cx)==2U(x)

for every xeE. Obviously A(E) is then a linear ring4). The
unit element is here the identical operator U(x) = x, which
will be denoted by /. An operator UeU(E) is said to have an
inverse if there exists another operator VeU(E) such that
UV =VUs=1I; V is denoted by U™ If U has an inverse,
then U transforms E into E isomorphically. The converse theo-
rem is also true and follows from a general theorem of S. Banacu®),
A (E) may be considered as a Banaci space with the norm

0 Ul = 535 | UG,
This norm satisfies clearly the condition
2) U, U, | < U] G,

for arbitrary U, U,e A(E).
2. We start with an algebraic characterisation of bounded

~ sets in A(E).

Lemma 1. A set FHeW(E) is bounded if and only if the
following condition is fulfilled. For ecvery Ae¢U(E) there exists
a number > 0 such that the operator I— LA U has an inverse,
where A is any real number, |4| <& and U any operator belon-
ging fo H,

Proof. Necessity. LetlUl
be given. Put == (M|A4|)™

- we have

<M for Ue H and let AeA(E)

(A may be supposed == 0); then
; [AAU| <1 for |A|<ea, UeH,

whence it follows that the operator /~—24.4U has an inverse?).

1) CF loe, eit.?
¥ Loc, cit.®) p. 41, th, 5,
%) Namely ummurim T4+AAU- QAU ..
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Szy‘ficiency. Suppose that the set H is not bounded and let
U H be a sequence for which U |— 0. It follows then?) the
existence of an element x,€ E such that hm {U (x| = . This

implies in turn®) the existence of a linear functxonal f(x) such that

3) Tim |/[U, ()] = 0.
Put now :
A@x)=f(x)x, for xekE.

It is easily seen that our condition is not fulfilled for this A.
For, let @ be an arbitrary positive number. Put 4 = [f(U, (xo))]'"1
and choose n so that |1 | <a. We have then

1(xg) — 4, ALU, ()] = xp— 2, f[U, ()] %,= 0,

hence, x, being == 0 by (3), the operator /—2 AU, has no
inverse.

3. Theorem 1. Let |U|* be an arbitrary norm defined
on U(E) which besides the usual conditions satisfies (2) and
with respect to which W(E) is a complete space; then this norm
is equivalent to the norm (1), i. e. for any sequence U, eA(E),
|U,|*— 0 implies |U,|— 0 and vice-versa.

Proof. Let |U, |*— 0; choose a sequence of real num-
bers @ — o so that |a,U,[*— 0. The sequence {¢, U} being
bounded with respect to the norm |U|* satisfies the condition
of the lemma, because the proof of its necessity involves only
those properties of the norm (1) which the-norm |U|* also pos-
sesses, Hence, by the same lemma, the sequence {|a, U,[} is
bounded, whence we infer that |U |—0.

A general theorem of BanacH®) gives the converse implica-
tion, and so the theorem follows.

§ 2.

1. We need now an algebraic characterisation of the ope~
rators of the form
Ux)=f(xy,

") Loé. cit.?) p. 80, th. 5.
% Ibidem, p. 80, th. 6.
%) Ibidem, p. 41, th. 6.

7*
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where f(x) is a linear functxonal and y an element in E. Such
operators will be called, in the sequel, one-dimensional.

~ Lemma 2. An operator UyeUA(E) is one-dimensional if
and only if the following condition is fulfilled. For every UeU(E)
there exists a number L such that

) (UUY*=LUU,.

Proof. Necessity. It is evident that for an one-dimensional
operator I there exists a number A such that V’=AV. But U,
being an one-dimensional operator, UUj, is always also one- dxmem
sional and so (4) follows.

Sufficiency. It is sufficient to show that the range of Uj(x)
is one-dimensional. For we have then U, (x) == g (x) x, where g (x)
is a functional and x;¢E. But Uj (x) being linear, it follows
easily that g(x) is llnear too. Thus suppose that the range of
U,(x) contains two linearly independent elements,

(5) Uo(x1):y1s Uo(xz):yzv
Then there exist two linear functionals £ (x), f,(x) such that

L) =0, filyg)=1, fi(g)==1, f,(y)=0

Xy Xy, Yy L.

Putting

U (x) == f, (x) %+ £, (%) x,

we have UU,(x) = x,, UU,(x;)==x,, hence, on setting
V= (UUp?, V(x)=1x,. But (4) implies V(x)) == U[U,(xy]

i. e. x,== Ax,, consequently y,==2y,, contrary to our assumption,

-

2. Let E,, E, be two Banacu spaces. The corresponding
rings A(E,), A(E,) are said to be algebraically isomorphic if
there exists a one-to-one transformation V=@ (U) of U(E)
into A(E,) (the whole ring A(E)) additive and multiplicative
i e, such that

(D(U1+ Uz = m(U1) + d)(Uz ’ (D(U1 Uz) == (D(Ui) (D(Uz)
for any U,, U,eA(E).

Theorem 2, Two rings U(E), U(E,) are algebmtcally
isomorphic if and only if the corresponding spaces E,, E, are

icm
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isomorphic; moreover V=0 (U) being the isomorphism between
U(E,) and U(E,) there exists an isomorphism A(x) =y between
E and E, such that

6) @ (U) —AUA™ for Us AE,).

Proof. The sufficiency is evident.

Necessity. We first show that @ (U) is homogenous. Let A
be an arbitrary number and UeU(E)) an arbitrary operator.
Since 4[;.U=U.AI ({, is the unit element of A(L)) we have
O @AL) Q)(U) = d)(U) ® (1) i. e. the operator @ (A/) is permu-
table with every operator of (E,). Hence ?)

O(GL) =ul,

where /, denotes the unit element of A(E,) and u is a suitable
number. But @ (U) being an isomorphism, the real function
u==u(4) is obviously additive and multiplicative. Moreover
u(l) =11). By a well known theorem of Darboux this implies
u(l) =1, and consequently @ (L/) =21,. Now we have for an
arbitrary Ue A(E,)

OAU) = OALU) =

i. e. (V) is homogenous.

Having proved this, the continuity of @ (U) follows easily
by the lemma 1. For let A be any bounded set in U(Z,); the
condition of the lemma 1 is then satisfied and the properties of
@ (U) imply that the range ®(H) of the set H satisfies the
same condition. Hence, using again the lemma 1, we see that
the set @(H) is also bounded, which involves the continuity
of @(U)1).

We determine now the operator A (x,) which yields the
isomorphism between £, and E,. Choose a fixed linear functional
fy(x). in E and an e]ement erE such that f(x) =1 and put

U, (x) = f,(x) x,.

1) It follows simply from the fact that @ (AJ)) is permutable with every
one-dimensional operator.

1) For we have for every UCU(E;), ®(U) = @ ([,U) =
and therefore @ (f) == /,.

1%) Observe that that conclusion is valid also without the property of ®(UJ)
to be a one-to-one dimensional transformation,

DAL O(U) =40 (U)

(@L) @ (U)


GUEST


102 M. Eidelheit.

U, satisfies the condition of lemma 2 and the properties of ®(U)
1mply that this condition is fulfilled by the operator V== & (U,)
too, consequently

Vy(y) =g, y, for yek,,

where y,€ Eyand g,(y) is a linear functional in E,. U,being =0
we have also V== 0, hence y,== 0 and g,(y) »l~

We defme now the required operator A4 (x) as follows. Let
2¢E, be given; we choose then an arbitrary operator Ue U (E,)
such that %)

and set

AG) =V (y)

where V== 0(U). We prove now:

a) A(2) is uniquelyd etermined. For, if U, (x,) =
U, Uye A(E), then U[U,(x)]==U,[U, (x)]
quently V. Vy=V,V,, where V== (D(Ul),
V, (w0 =V, (5)-

b) z1~|— z, implies A(z)) A(zz) Let U,(x) == 2,, Uyx,)==z,,
U, U,eA(E), V=0 U), Vy== D (U,). We have then U, U,
£ U, U(,, consequently AZ% }r ViV ie. Vi(yy) &V, (g

c) The range of the operator A(x) is identical with the
whole space E,. For, if an arbitrary element yek, is given,
there exists an operator Ve U (E,) such that V(yy) =:y. Putting
U= 07 (), Ul ==z, we have ¢ g == A(z).

d) A(x) is additive. Let zl, zeE and U, U,e A(E),
Uxp) =z, U (xb)—mzz, we have then U, (x)) + U,(x)) == 2,1 z,
and CD(U—!—U)-—— -+ V, where V= 0>(U1), Ve "'*'(D(Uz), conse~
quently A (z, -+ zz) =V ( .Vo) + V5 ( JO) == A (z,) -+ A4 (2,).

e) A(x) is contmuous Lel zekE, z,— 0;

l‘j2 (x())r‘:m Zy
« f, (%) 2, conse-
o= @ (U, whence

put U, (x)

=f(x)z, . We have \U. =11z, |-->0 hence 1V|-~~:=|(D(U)|-—+0
further, since U, (x) = z,, A(z,) == V,(y), consequently
A(z,)—0.

By a), b), ¢), d), ) A(x) is an isomorphism between E
and E,.

We are now able to finish the proof of our theorem. Let
zeE and UeU(E,) be arbitrary chosen and put V=@ (U).

9) E. g Ux) = fy (x) 2
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We determine an operator U,e %(E,) such that U, (x) =z and
put V= @(U,). We have then UU, (xy) =U(z) and &(UU,))=V'V,,
hence

AU =VIV (g1 =VIA@];

z being arbitrary, it follows V=4 UA ™" which proves the theorem.

Corollary. If, in particular, E;=E,=E we obtain the
following theorem: Every automorphism of the ring A(E) is an
inner one.

3. We shall now prove a slightly different theorem replacing
the additivity of @ (U) by its continuity.

Theorem 3. Let U= D (U) be an one-fo-one continuous
and multiplicative transformation of the ring U(E,) into the ring
A(E,), E, being a space at least two-dimensional; @ (U) is then
also adclztme, consequently, by the theorem 2, of the form (6)%4).

Proof. As before we obtain (6) knowing now merely that
A(x) is a one-to-one continuous transformation of E, into E,
(the whole space). Moreover the equality @ (AU) =u (4 @ (U)
for arbitrary 4, U yields

@ AQD) =u(®) AR

for any real A and x€E,. In order to prove our theorem, it is
sufficient to show that A (x) is additive, for, by (6), it follows
then the additivity of @ (U)®).

Suppose first that x,,x,¢E, are linearly independent. We
put y,= A(xl), y;~A(x,) and distinguish two cases:

1) A7 (y,+y,) =x, is linearly independent of x,,x,, -
2) the contrary case occurs.

In the first case we can determine an operator Uec?UA(E))
such that

8) Ux) =x;, Ulxy) =x,, U(xy) = x,+ x,

) In the one-dimensional case the theorem is false. E. g. we may put
for U(x) =ux, ®(U)=1u’x, x and u being real numbers.

) That (6) together with the continuity of A (x) implies 4 (x) to be
linear was proved otherwise in the case of the ring of finite matrices by
M. Nagumo: Uber cine kennzeichnende Eigenschaft der Linearkombinationen
von Vektoren und ihre Anwendung, Gott. Nachr. (1933) p, 36.


GUEST


104 M. Eidelheit.

o g UG) = £, x+f (Dt fy (D) x4y, where f(x) = 0 for
ik, ==1 for i==k).
We have then by (6) and (8), putting V== @ (U),

V (gt yz) == A[U(x,)] == A4 (- xy),
further
V(!h) + V(yg) R A[U<x1)] +4 [U(xa)] w2 4 (x1) + A4 (xz)v

hence

A (et xy) = A (x) + A(xy).
In the second case let
xg== by Xy Ay Xy s
We determine an operator Uc?(E)) such that U(x)==x,
U(x,) = 0, By (6) we have then, putting V == @ (U),
Vgt yp) == AU Gy x,+ by x))l,
and on the other hand

V(g +V(y) = A[Ux)] + A[U(x)],
hence

AU G+ by x)] = A[UGx) + A[UG)],

or by (7) u (4) A(x,) == A (x,). This implies u (%) ==1, whence
A==1, since u(d’) == u(@”) for A A" and u(l)==1,
In the same way we obtain A,==1, i. e.

A7 g+ y) = A7 (g) + A7y,

It remains to prove that A4(x) is homogenous. Let xekE
be an arbitrary element and n an integer, We choose a sequence

{x.} linearly independent of x such that lim x,==nx, We
have then koo

A((n+1)3) = im A e+ x) = A () + A (xn).

By induction we see at once that A (nx) == nd (x) for an arbitrary

integer. Thus the homogeneity of A (x) follows in a familiar way
from its continuity,
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Corollary. In the above proof the continuity of A (x)
was used only to prove the homogeneity of A (x). Hence we may
replace in theorem 2 the additivity of ®(U) by its homogeneity.

Remark. In the theorems 2, 3 it is essential that the con-
sidered spaces and rings are real, i. e. we use only products of
elements and operators by real numbers. In the case of complex
spaces and rings, we have to suppose explicite that the transfor-
mation @ (U) takes every operator A/, into the operator Al,; the
hypothesis of ®(U) to be additive resp. continuous is then
superfluous.

(Received 10-th 7. 1939),

Ilpo isomopdpismm wimnuis aindfinux omeparopin
M. Bitgeusrotin (Lusin)

(Posone)

Hexalt £ Gymsaxmii upocrip ramy (B), U (E) mimsme mimitt-
HEX omeparopis, mo BimoGpamyiors E B cefe (npm spmIaiimmx
mediminiax amreGpmammx miit).

Teopema I xmo B A(E) ¢ mana mopma | A| (AeA(E))
npr axit A (£) e mpoerip muny (B) i axa samoBomBHAE yMOBY
|AB|< |Al|B| mux . A, BeUA(E),

TO N WOpMA eKBiBameHTHA 3Bwuadmilt mopmi:

4] mlgllligllfl(xﬂ :

Teopema II. [Ipa ximsma A(E,), U(E, e axrebpmamo
isomopdmi womi i mimexm mopmi, xomm mpocropm E, i E, e iso-
mopdmi. Taomopdiam

V== U), UcU(E), VeU(E)
Ma8 Togi dopmy
Ve=AUA™
me A e niniitrwil omeparop, axmit mae isomopdism mim K, i E,.

B uiit weopemi momuma Bacvymmrm amxmrusmicrs omepamii

@ (U) ii nenepepnuicrio abo omopixmicrro.
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