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On Characteristic Functions of Families of Sets.
By
M. H. Stone (Cambridge, Mass., U. S. A.).

In an interesting paper?) Szpilrajn has employed the cha-
racteristic funetion to develop a certain method of dealing with
the algebraic structure of sequences of sets; and has established
with the aid of this method a variety of specific theorems and
equivalences in the domain of set-theoretical topology. He attri-
butes to Kuratowski the first use of the characteristic function
of a sequence of sets.

In the present note, I ghall trace certain connections between
the content of Szpilrajn’s paper and the general theory of abstract
Boolean algebras which I have developed in two memoirs publighed
elsewhere ?). In doing so, I deem my chief purpose to be that of
reconciling two independent points of view which prove, upon
examination, to present a considerable analogy so far as the theory
of the algebraic structure of sequences of sets is concerned.

As I shall point out below, an obvious but theoretically de-
sirable generalization of Szpilrajn’s work leads to the introduction
of the characteristio function of an arbitrary transfinite sequence,
or well-ordered family, of sets. It seems to me of more importance,
perhaps, to observe that the réle of order, which is essential to
the definition of the characteristic function, appears to be artificial

1) E. Szpilrajn, The characteristic function of a sequence of sets and
some of ils applications, Fundam. Math. 31 (1938), p. 207-233; see also Fundam..
Math. 26 (1935), p. 302.

?) M. H. Stone, The Theory of Representations for Boolean Algebras,
Trans. Amer. Math. Soc. 40 (1936), pp. 37-111 (cited here by the letter R);
and Applications of the Theory of Boolean Rings to General Topology, ibidem
41 (1937), pp. 375-481 (cited here by the letter A).
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so far as the majority of applications is concerned. In principle,
therefore, one is tempted to seek an order-free theory of the alge-
braic relations envisaged. I shall show here that such a theory is
already in existence and that, through the adjunction of elementary
considerations of order, it leads back to the theory of the charac-
teristic function due to Szpilrajn.

§1. The Space B.. If ¢ is any cardinal number, we ghall
.denote by B. the cartesian product of ¢ two-point Hausdorff spaces.
It is a totally-disconnected bicompact Hausdorff space; in the
particular case where c¢=x, it is homeomorphic with the Cantor
discontinuum. In the sequel we shall suppose that ¢ is an infinite
-cardinal.

A more detailed description of B., adapted to later discussions,
may be given in the following terms. Starting from the class 4 of
ordinals « preceding some fixed ordinal 8, subject to the restriction
that A shall have cardinal number ¢, we take ag the points of B,
the real functions s defined over 4 and assuming only the values 0,1.
‘We then take as a basis (of open sets) for B, the family composed
of all sets €. and €, a<<f, where €. consists of all 5 with g(a)=1
and €, is the complement of €, in B. (i.e. €, consists of all s with
$(a)=0). The algebraic and topological properties of the space B,
80 obtained are fully discussed in R Chapter I, especially Theo-
rems 9-13; they include ‘those noted above. For our later con-
venience we have replaced the sets U., We of B by G, €. respe-
-ctively in the present description.

The sets €, bear a special relationship to the topology of B.
‘which proves to be of importance in the sequel. This relationship
i8 most concisely expressed in terms of the Boolean algebra A.
generated from the sets € by the formation of all possible com-
plements, finite unions, and finite intersectioms. According to R
Definitions 1,2 and Theorems 1, 9 the sets belonging to A. are
-characterized as the open-and-closed subsets of B.. Moreover, R
Theorem 12 discloses that the algebra 4. is a free Boolean algebra
generated by the ¢ elements €, and is thus completely characterized
in algebraic terms. The proof of the theorem cited consists partly
in establishing the independence (to use Szpilrajn’s terminology)
of the sequence {Mo}={E.}, which is obviously equivalent to that
of {€.}. The constituents of {€.} are thus non-void closed subsets
of B.. By virtue of the bicompactness of B., all the atoms of {&,}
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are therefore non-void; and, since the sets €., €., a<<f, constitute
an open basis for B, no atom can contain more than one point.
The sequence {&} is therefore completely independent. As a matter
of fact it is quite easy to see, directly from the definition of the
sets €, and without recourse to the topology of %B., not only that
the constituents of {E€.} are non-void, the sequence consequently
being independent, but also that the atoms of {€.} are precisely
the one-point subsets of B., the sequence thus being completely
independent. And the bicompactness of B, can then be deduced
essentially from this direct observation in the manner indicated
in the proof of R Theorem 9.

§ 2. Definition of the Characteristic Funetion. Let
e=(H,), where a ranges over the class A of §1, be a transfinite
sequence of subsets of a fixed non-void set X. The charaecteristic
funetion ¢, of this sequence is defined as that single-valued function
from X into B. determined by assigning to each x in X the image
s=0,() Where s(a) is 0 or 1 according as zeB, or zeBy, a<f. It is
evident that an arbitrary single-valued function ¢ from X into
B, is the characteristic function of a unique sequence e={Ha}
determined by taking E. as the set of all # such that s=c(x) satisfies
the condition s(a)=1. In short, the characteristic function ¢, is
determined by the relations

Co(B)=Ca0e(X),  Ba=0; (Ea);

These relations evidently serve to establish the two following

properties, which summarize the information essential to the majority
of applications of the characteristic function:

(1) the correspondence ©n0.(X)«>E, induces an isomorphism
between the Boolean algebra A.(X) generated in ¢.(X) by the sets.
E.0.(X) and the Boolean algebra E, generated in X by the sets Eq;

(2) the sets in A.(X) are both open and closed in the relative
topology of c.(X) considered as a subspace of B..

Trom A Theorem 56 we know that the corregpondence
G Grc.(X) induces a homomorphism A.>A4.(X). Hence the
correspondence G,<>E. induces a homomorphism A4 H,.

Tt is convenient to determine when two -elements », and #, in X
gatisty the condition o, (@1)=¢c. (15). Without difficulty we findthat the
following statements are equivalent: Col1)=0.(%2); %1 and s are-not
separated by {E}; #, and 2, are not separated by E,; #; and @, belong

X=c, (B.).
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to the same atom of {E.). Consequently we may construct ¢, in
two steps, first identifying points of X belonging to the same atom
of {#,} and then forming the characteristic function of the reduced
sequence {F%} in the resulting set X™*. Xt is evident that the firgt
step here is precisely that of reducing the algebra E, in accordance
with A Theorem 54.

8 3. Alternative Definition of the Characteristic Func-
tion. We ghall now rephrase the definition of the characteristic
function in algebraic terms.

We begin by observing that the correspondence €.« B, a<f,
induces a homomorphism 4.—E,. Since 4. is a free Boolean algebrs
-each of its elements is expressible as a finite union of terms of the
general form

(Eul... (Ean(%n_*_y--@laﬂ_py n=0, p=0, n+p=1;

-and, as is shown in the proof of R Theorem 12, two such expressions
can be equal only in consequence of fhe fundamental Boolean iden-
tities. On replacing each €. in every such expresgion by its cor-
respondent F., we obtain a correspondence from 4. to ¥, which
-carries equal elements into equal elements, complements into com-
plements, unions into unions, and intersections into intersections,
by virtue of the fundamental Boolean identities. We thus have
a homomorphism 4.—F,, which evidently becomes an isomorphism
if and only if {¥,} is independent. .

With each point # in X we now associate by virtue of A
Theorem 34, the prime ideal p(x) in X, which consists of those sets
‘in B, not containing x. From p(x) we pass by A Theorem 48 to the
prime- ideal p.(w) of all those sets in A. which are carried by the
homomorphism A.—E, into sets in p(z). And from p.(x) we pass
to & uniquely determined point s, in B, with the help of R Theorem 9.

The characteristic function ¢, of {H.} is defined by the equation
-6g(z)=s, for all x in X.

It is easy to show this definition equivalent to that of § 2.
The proof of R Theorem 9 discloses that s.(a) is 0 or 1 according
a8 Uo=Crepc(2) or Ue=E,ep.(x). Clearly the relations Crep(w)
“Crepe(x) are equivalent respectively to the relations By ep(m),
Hyep(x); and hence are equivalent respectively to the relations
@el,, well,. Thus we see that c.(w)=s is determined by putting
-8(a) equal.to 0 or to 1 according as weF. or wel,.

H
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§ 4. Unordered Families. The construction of the charac-

‘teristic function ¢, described in the preceding paragraph reveals
‘that the ordering of {#.} has significance only insofar as it deter-

mines the homomorphism A%, through the correspondence

Eou>H.. If we replace this homomorphism by any other, the con-

struction can still be carried through and still provides a mapping
of X in B, with the essential properties (1) and (2) of § 2. By con-

gidering the reduced algebra determined by E,, as suggested atb

the close of § 2, and applying A Theorem 69 we obtain an immediate
verification of property (1); and property (2) then follows from
the results summarized in § 1.

The most direct treatment of unordered families on the basis
of A and R is, however, the following. Let {E} be a family of sub-
sets, distinet or not, of a fixed non-void set X; and let E, be the
Boolean algebra generated in X by the given sets K. By A Theorem 67
and R Theorem 1 there is associated with K, a totally-diseonnected
bicompact Hausdorff space B(X,). If the algebra E, be reduced
in accordance with A Theorem 54, the resulting isomorphic algebra
«of sets is, by virtue of A Theorem 69, equivalent to a certain algebra
of subsets of a fixed set XC B(E,); and, in view of information,
summarized in A Theorem 69 and R Theorem 1, the latter algebra
.congists precisely of the sets GX where G is both open and closed
in B(E,), the set X itself being everywhere dense in B(E,). Thus
we obtain a single-valued function ¢ from X into % in B(H,); and
we see that ¢ carries &, isomorphically into the algebra of sets GX,
the inverse ¢! serving to invert the isomorphism determined by c.
Tf we now appeal to R Theorem 10, we can imbed B(E®) topologically,
as a closed set, in the space B.. The function ¢ therefore maps X
into B, with ¢(X)=2% as before; and the algebra into which it
carries B, can now be characterized as consisting of all sets G.X
where @, is both open and closed in B..

§5. An Application. To illustrate the applicability of the
results of §4 we shall consider a generalization of a theorem of
Kuratowski proved by Szpilrajn with the aid of the characteristic
function. Let X be a non-void topologieal space, more speeifically,
a T,-space (in the terminology of Alexandr off and Hopft) of infinite
character ¢. Let {E} be an arbitrary (open) basis for X. We may
in particular choose {¥} so that its cardinal number is ¢. Since any
two distincts points in X are separated by the basis {#}, the Boolean
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algebra E, is a reduced algebra of sets. Thus the map ¢ of X onto X
is biunivocal. Now, if G is any non-void open subset of X, it is the
union of certain sets F; and ¢(@) is the union of the corresponding
sets ¢(F). Since ¢(E) is open in the relative topology of X, consi-
dered as a subspace of B, we conclude that ¢(¢) is also open in
this topology. We thus obtain the following result:

Theorem. If X is amy Ty-space of infinite character ¢, it is
a biunivocal continuous tmage (by the map ¢) of an appropriate
subspace X of a totally-disconnected bicompact Hausdorff space of
character ¢ (the space B.).

Of course, the map ¢ of X into X is continuous only if X is.
homeomorphic with X¥. The conditions under which a given space X
is homeomorphic with a subspace of a totally-disconnected bi-
compact Hausdorff space (Boolean space) are discussed in R Theo-
rem 55, Hven though ¢ fail to be continuous, its topological cha-
racter must still be comparatively simple. In fact we can show
that, if ® is any (relatively) open subset of X, then ¢~!(®) is the
union of at most ¢ sets of the form GF where & is open and F' cloked
in X. We include here the cases G=2X, F=ZX. From § 4 we know
that the sets o(H), HeE, constitute a basis for X. Hence & is the
union. of (at most ¢) sets ¢(H); and ¢~1(®) is the union of the cor-
responding sets H=c~'¢(H).. Now each set H, being expressible in
terms of the basis {E} as a finite union of sets of the form

E1...ByBnis ... Brgp, n=0, p=0, n+p>l,
i8 a finite union of sets of the form GF described above. Thus ¢! (B)
has the property asserted. In case X is a regular space we can
sharpen the preceding result, asserting now that ¢~1(®) is the union
of at most ¢ closed sets. To establish this proposition we associate.
with each point  of & non-void open set GCX an open get G(x)
such that zeG(@)CE (¢)CE, this being possible by the regularity
of X. Since {¥} is a basis for X, it must contain a set B(w) such that
vel(x)CG(x). The relations B (#)CG (#)CG now show that G is
the union of the closed sets B (v), of which at most ¢ are distinet.
It follows immediately that ¢~(®), being the union of at most ¢
sets GF, can be expressed as the union of at most ¢ closed sets.
In particular, if X is regular and separable — in ofher words, is
metric and separable —, the set ¢—1(®) is an F.-set.
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In conclusion we point out that the representation provided
by the Theorem proved above is entirely distinet from the repre-
sentations provided in the theory of “Boolean maps” given in R.
Indeed the present representation of X in B, defines a Boolean
map m(B.,X* X), where X* is the family of one-point subsets of
X=¢(X), only in the extremely special case where X and X are
homeomorphic by the map e.

Fundamenta Mathematicae. T. XXXIII.
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