On trigonometric series conjugate to Fourier series
of two variables ).

By
K. Sokét-Sokotowski 1 (Wilno).

1. Let us consider a trigonometric series?)

(1.1) Lag+ Y (@, cos ng + by, 5in nw).

n=

Conjugate to the series (1.1) is called the series

(1.2) . ¥ (a, sin ne— b, cos np).

n=1
The series (1.1) and (1.2) are respectively the real and the

imaginary part of the power series ) e¢,e”™, where ¢=+%a, and
€= —1iby, for n>0. n=0

The series (1.1) is the Fourier series of a function f(z), if a,
and b, are of the form

1/ 1A
== ff(t) cos nt dt, b,,—; f #(t) sin nt dt.

1) This paper is a translation of a Ph. D, thesis presented at the Uni-
versity of Wilno in 1939, The Polish original (,,0 szeregach trygonometryez-
nych sprzeionych do szeregédw Fouriera dwu zmiennych®) was to appear in
~Wiadomodei Matematyezne®, and was already available in reprint form. The
outbreak of the war stopped the publication of the journal and the paper did
not appear in print.

The author, an instructor of the University of Wilno and officer in the
Polish Army, was killed during the war.

Editors.

2) For the theory of trigonometric series of a single variable, see A, Zyg-
mund, Prigonomelrical Series, Monogratie Matematyeczne t. 5, Warszawa-Lwow,
1935. The book will be quoted TS.
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In this paper we consider exclusively integrals in the Lebesgue
sense.

It follows from the theorem of Riesz-Fischer that if (1.1)
js the Fourier series of a function jf(x) e L% then (1.2) is also the
Fourier series of a function g(z) ¢L2 This theorem was extended
by M. Riesz to the Fourier series of functions of the class I», p>1.
On the other hand, it is well known that if (1.1) is the Fourier
series of a fnnction f{x)e L, the conjugate series need not be
a Fourier series.

‘We shall say that a function j(z) of period 2z belongs to the
class Lp4, it the function |f(z) {log *Jf(#)]}" is integrable.

It has been proved3) that if f(z) belongs to the class LM%
%k>1, then the series conjugate to the Fourier series of f(x) is the
Fourier series of a function fz) belonging to the elass LW+t In
particular, if f(z) e LY, then ) eL.

In what follows, by f(z) we shall mean the (genevalized) sum
of the series conjugate to the Fourier series of the function f(z).
It is well known that

T T

(1.3)  flo)= f'f 5 tan x_t)dt, where leim

=)
0 &
A function f(z,y), of period 3z with respect to each variable,

will be said to belong to the class I”, if the integral f j if(a, 1) dedy

—T -

exigts. We define the class Lrk similarly.
The analogue for two variables of the series (1.1)is the series

1.4) ,Z Amalt ),

i, n=0
where
Ago=1%a00, Aon=7%(t0nc080Y+bos sin ny),
«

Am,U: ;’(am.ﬂ €os e - €m,0 sin ”L‘B)i

A pn= A p COS ML COS NY ~+ bm,n COS ME §in Ny + émn SN MT COS NY -+
4 dn,n 8IN M2 81D 1Y,

. 3) See TS, p. 165.
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168 K. Sokol-Sokolowski:

m and » being positive. The series (1.4) is the Fourier series of
a funetion f(z,y), if

a,,,,,.:% / f f(z,y) cos ma cos ny dxdy
S n
for m,n =0,1,2,..., and if analogue formulas hold for b
and dp,n.

nuny G

The purpose of this paper is to obtain certain results for the

series conjugate to Fourier series of two variables?). .

The notion of conjugacy for double series has a slightly dif-
ferent character than in the case of single series. This follows from
the fact that every series (1.1) is the real part of a power series;
the series conjugate to (1.1) is defined as the imaginary part of
that power series. On the other hand, not every series (1.4) is the
real part of a power series of two variables. If this is to be the
case, certain relations between the coefficients must be satistied,
namely

Ump=— dm,n: bm,n =Cmn-

Let us introduce the following definitions
(1.5) *S(f)= ’%; A (@), =2 Abn(2,y)
(1.6) &= 2 Aunnlmy).

Here, for every trigonometric polynomial A of two variables,
*A means the polynomial conjugate to 4, the latter being treated
as a function of a single variable x; A* is defined similarly, the
roles of @ and y being interchanged. Finally, 4 ={*4}* Corres-
pondingly the (generalized) sums of the series (1.5) and (1.6) will
be denoted by *f(z,y), fX(z,y) and Fz,y). The series (1.6) will e
called conjugate to the series (1.4). On account of the formula (1.3),
the functions *f(x,y) and ;i*(ac,y) may be written as follows

* o i@ +u, ) —f (2—u,y)
. ey 7 2 tan Lu du,
(1.7 ’
1 + —
f*(m,y)—-—ﬁfﬂmﬂ/ 0vmnfl(ov,y %) 4o,

%) For the general inforination concerning the trigonometric series of twp
variables see L. Tonelli, Serie Trigonometriche, Bologna, 1928.
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the integrals having the same meaning as in (1.3). Purely formally,
J(z,y) may be written

dv.

*fla,y +v)—*f(@,y—0)
f( V) = n/

2tan Lv

Substituting for *f(x,y) its value from (1.7) we get (again
arguing formally)

1 ey ey ) —flauy—o) Hfa—uy—)
ftey)= ?ff 2tan tu- 2 tan 1o dudr.
0

We shall show that, if f(x,y) satisfies certain conditions, this
integral exists at almost every point (#,¥), if we understand it in
the following sense

Sf-m fF.

Here ¢ and % tend to 0 indep‘endently of each other. We shall
then say that the integral (1.9) converges sirongly, to distinguish
this case from the one in which ¢ and » tend to 0 in such a way
that the ratios ¢/ and #/e remain bounded.

(G
In what follows, we shall use the symbol / g(x)dx to denote
—
the integral extended over the sum of the intervals (—m, —&) and
£, 7). Similarly,
@&a (nw

[ [ stxy)dsdy
—n ~n
will mean the integral extended over the domain sglxlgn,n<iy|§n.
The main object of this paper is the proof of the following
two theorems.
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Theorem 1, If the function f(x,y) is of period 2m with respect
to & and y, and belongs to the class L, p>1, then the funciion

@a (P
1 [ fatuy+o) ‘
(1.10) Forsy)= fligl() w? J 2tan iw-2tan v dudv
—it. —IT

exists for almost every point (x,y) and satisfies the inegquality )

] jm dedy <A, / [|f|’¢zfay

-1 —7 - —

Theorem 2. If the function f(xy) belongs to the dlass Lk
where k=3, then the fundion f(x,y) defined by the formula (1.10)
ewists almost everywhere and belongs to the class L'c—2

Theorem 1 is an analogue of the result quoted above of
- M. Riesz.

2. The proof of Theorem 1 is hased on a few lemmas.

Lemma 1. If the function f(z) of period 2z belongs to the
cdass TP, p>1, then the conjugate function f(x), the w-th partial sum

sa(x) of the Fourier series of f(x),- and the n-th partial sum 5,(x) of
the conjugate series satisfy the inequalities

[ H)far<a, / f@ldn, [ Jsiefar<a, [ 1,
(2.1) — — —n To—a

‘/'IE,,(m) Par< A, f [f(@)fdz.

—7 —

This result is very well known and is due to M. Riesz ).
In what follows we shall use the following notations

M(z,y31)= Sup f|f (-t u,y +v)| dudo,

—h —k

R
(2.2) M(zy;f)= b}}p 7 /[j(;v-}—u,y)]du,
’ -h

&
w. L [
My =swy [Ifey+o)a,
—k
with 0 <h<{zm, 0<k<m.
5) In this paper, 4, and B, will denote constants (not always the same)

depending exclusively on the parameter p.
8y TS, p. 147,
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Lemma 2. Let f(x,y) be a function of period 2z with respect

10 & and y, and of the class L7, p>1. Then

T

[ [ ey aay<a, [ [ ) ded.

—T T —3 —

This result is also known 7)

Lemma 3. Thé Fourier series of a function f(z,y) of the class L7,
p>1, is almost everywhere summable by the wmethod of the first arith-
metic mean ®).

8. Lemma L. Let f;r be a function defined in the interval

h

(—m, ), and let p= bup I [ fle)|de. Then

(h) ;'z

(3.1) h / P g<op

u
Proof. Putting F(u)= [ |f(t)|d, we may transeribe the left-

—u

hand side in the form

7w, Fu)]* | | /ZF(zl) ,
hf [‘u—]h-r_)zh' e du
. h
,u—l—_auhf du

Lenmuna 5. If f(x) is of period 2a and of the elass I, p>1,

the function
flo+u)—f(x—u) i |
o
flo)= bup f 2 tan fu |

LAY L P
:ﬂ;‘u—l-gpzh{h z}\zd,u.

satisfies the m('quamy

[ fr(x)de < A4, j |f(z)da.
’ 7) See Jessen, Marcinkiewicz and Zygmund, Note on the Differen-
tiability of Multiple Integrals, Fund. Math. 25 (1935), pp. 217-234, esp. 216,
%) See A, Zygmund, On the differentiability of multiple integrals, Fund.
Math. 23 (1934), pp. 143-149, or the paper quoted in footnote 4).
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This lemma is known9). It implies at once

Lemuna 6. If the function f(zy) of period 2z with respect
to x and y is of the class Le, p>1, the functions

(hyx
f(r—}—u,a i > " flw,y +o)
2y ()= 8 )
Stan u dﬂ|7  Jlwy)=5up

Tl = Sup -
Fu@y)= R 2'tan Lo

dvl

satisfy the wwguulities

[ Fr@gde<a, [|f(zy)) i, / Ployay <4, / (e, ay.

-t -3 —
Lemma 7. If (1.4) is the Fourier serves of a function flz,y)
of the class LP, p>>1, then the series (1.4) and the series S 2 " A mn(2y),

m n

Z A% n(@,y) all converge in the mean of order P to the funclions
f(ﬂv:y) Sl ), (e

Proof. Let us consider the partial sums

) respectively.

ny on m, m m

B= 2 Z;A,",,(w,y), *E= 2./ Z *A (2, y), R*= \1 2.1 Amn'l}y?/

m=( n= m=0 n=0 m:() =0

A repeated application of the second inequality (2.1) gives

/‘ / [R(z,y)]" dody < A, / / ]f(ivﬂl P dzdy.

—r -

Applying the first inequality (2.1), we also get
[ [ Byl ardy <4, [ [ [Rlay) dedy < 4, j /[f (@) [P dedy.

— —I
A s11nﬂar inequality is satisfied by the function R*, analogous
to *R. From these formulas we easily deduce

Lemma 8. If f(z,y) e I, p>1, and if
flz,y) ~ Z-Amn (),

the series Z' A,,, »(%,y) converges in the mean of order p.

m,n
This result follows if we apply Lemma 7 twice.

%) TS, p. 260.
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4. We may now pass to the proof of Theorem 1. Let f(a,y)
satisfy the hypotheses of Theorem 1, and let f(z,y) be the {gene-
ralized) sum of the series &(f) (ef. (1.6)). On account of Lemma 8,
J,y) e I’ and G(f)=3(f). In virtue of Lemma 3, S(f) is almost
everywhere summable by the method of the first arithmetic mean
to sum f(z,y).

The first arithmetic means of the series (1.4) and (1.6) will
be denoted bY 0u(2,y) 20d Gpa(z,y) respectively. Thus

Umn '1"77/) 2 ( III+1)(1 n +1) Ak I(‘r J)S

k=0 I=0

7520—"1,11(1"5 7/) = /‘ /ﬂ‘ﬂ"{_ U,y +U) KM(M)E"(D) dudy

k3 ax
1 sin(m-+1)u
: - —
:fff(”“’y ‘ v)[Q-ta,n{Tu 1) sm%u)]
—_n —
1 gin(n+1)%
— - 5| dude.
[‘2-tan{;1; (n-+1)(2 sin .}’U)‘} o
If we set
oy 1
Ko(u) = 3tanlu — Ba(u),
we get the following inequalities
4.1) | K (u)]<n, for all # .
4.2) |Ra(u)| <m?du, for |uj<1/n
(4.3) | Ra(1t)] < 7%/4nu> for 1fn<|u|<z.

Let ¢ and 5 be two positive numbers less than s, and let m

and # denote the positive integers defined by the inequalities
(4.4) 1/ m+1)<e<1/m, 1/n+1)<n<l/n.

We split the fundamental square —z<ua, —a<KI <A into

four domains
I (—e<u<ge, —n<o<n), I (egful<a, —n<o<y)
I (—egu<s, n<ip|<a), LIV (e m, g <oi<a)-
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Then
(455) nolnllmﬁJ)~[/+//+[['|ff
1
= Ae,q "I“ Bs,n "" Ce,:;‘i'Da,v/;

say. We may write

@ @ ()

Dwi=,/‘ ff(w—{—'u,y +'U)Km(u)lzrn(”) dudv—/ :)ft(}:t—l{—;‘;;/[é;;”l) dudy

[CEAGES I
H@+u,y+v) - sin (n4-1)o
2tan fu-(n4-1).(2sin iv)?

o dudy —

[CE ALY
f@+4-u,y-+9) - sin (m+1)u

2 tandv-(m4-1)-(2sin Lu)?

dudv
(& x ()
+ /fm+1a,u+v) sin (m--1)u - sin d(n-+1)v
(m-4-1)(n-41)(2sin Lu)?- (2 sin Lv)?

dudy=

=D},y— DYy -y 4D
say. Hence

(-16) [7‘520_'”1.11 (-”a y)“D;m =

eal [ Besal | Conl + D3| (D] +1 D57

We shall give an estimate for the right-hand side of the in-
equality (4.6). From (4.5) and (4.1) we get

i/n  1n
e <mn [ [|fe+uy+o)| dudo < M(a,y;)
—1/m —1/n

where M (xz,y;f) is defined by the formula (2.2). Furthermore

(cf. (4.5))

(&)
fle+u,y4-v) @
Boy= [ Eal Y1) gy — / g, hﬂ:ﬁ_ﬁL
& f “otaniu (v)d ) (mF1)2sinju)
::ﬁe 5 &,
say, and ﬁ v
(4.8) 1Bl <[ Biy| +|Bu,.
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Using the notation of Lemma 6, and in virtue of the inequal-
ity (4.1) we get

i< |

-

1n

T4+Uu
f ‘)‘:&I’lyl—!_m d%ldU{?lj Hlz,y+v) do < Mz(";./:fl)

—Ln

The lnequality (4£.3) and Lemma 4 give

1jn (Aim+1) ~
m <t (2 ‘ lf(m+u,y+ﬂ>;du}dv<
1Besl < 4 J m+1 ) u?
._1“'" —T
<zt if) de.
—1/n

Finally,

|BL,| < a®Malw,y; My).

On account of the inequality (4.8),

(4.9)

| Bl < Mo(@,y373) + a2 Ma(@,y; 1),

Similarly we get

(4.10)

[Col < Mo, y372) + 2 Ma(@yy; M)

Using the notation of Lemma 6 we deduce from (4.3)

T (OF
at (" dv fletuyt) l}
|Dul<@ f?{S?p\ . 2taniu du;
— —ir
(1 ‘n41) T,

/ Tl 7?!T’L’)d

On account of Lemma 4, this gives

{4.11)

Similarly,
(4.12)

FZOES

2 My(,y311) = 7 Ma(ay37)-

| Dl < a*M(y3Ta)-

Finally, we easily estimate D;y if we use Temma 4 and the

irequality (4.3)
(4.13)

| D) < et M 1(m, Y 3 M o).
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From the relation (4.6) and taking into account the inequal-
ities from (4.7) up to (4.3) we get
(0.14) |20 ()~ Dl < M(,5) 4 (L+a2) M o(ay y3 1) +
(L a2) Mo, 572) + 72 Mo(@, y; M1)+ 731+ 72) Ma(,y; My).

From Lemmas 2 and 6 we see that each term on the right
of (4.14) is a function of the elass If, p>1. Denoting the sum of
these terms by h(z,y), we have

(4.15) |7E Cmn(2:Y)— Y//I<h (@)
and furthermore
wi) [ [Renwdy<d, [ [ @] way.

From (4.15) and (4.6) we see that
lim sup |#2G 0 (@,y)—Dr..|

is finite for almost every point (#,y). We shall prove that this
limit is equal to 0 almost everywhere. For this purpose we set

fo,y)=Fu2,y)+falw,y), where fi(2,y) is a trigonometric polynomial
of two variables and fy(z,y) satisfies the condition

(£.17) [ [ iayPasy <&

— —a

4 denoting a sufficiently small number. Obviously

Em:" (wa;j)"'_’Em,n (‘T!ysfl) + Em,n (‘T,y;fz)
and

|75 mal ) =D D < mnlf1) =D (f1) |+ 72 m nlfr) — Dy fo) | =E 1+ K

say. Clearly, a%oma(f1) tends uniformly to the integral we obtain
from (1.8) by replacing- there f{a,y) by fi(z,y). Let us denote this

integral by I. Since
Ifetu,y-+0) —H(@—u,y+v)—fla-t-u, y—v) + f(z—u, y—o)] < Const [uv]
the integral I converges absolutely, and (even uniformly)

D (fr) — a2l —0
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so that K;—0. By the inequality (4.15), K,<Chy(2,y), where
ho(z,y) is & function derived from fy(w,y) in the same way as
h{x,y) Was derived from f(z,y). Using the formmulas (4£.15) and (4.17)
we see that the measure of the set where hy(r,y)>612 is less than
Bpé”’ , where B, is a constant depending only on p. Hence the
measure of the set in which |25, fz)——De,,‘ (fo)|>482 for all m
and » sufficiently large is less than 2B, oP%, Since & may be arbi-
travily small, we infer that lim |z? gm,,,(f) —D.()]=0 at almost
every point (#,4). Lemma 3 and the relations (4.4) thus give the
required result

©x (=
R f( _Haetu,y o)
lim Stanim.o T
5750 2taniu-2tan v

—% —7

— dudv=f(z,y)

at almost every point (z,y).
From (4.14) and from the fact that the funection o(z,y)=
= SUp |6mn(®,y)| satisties the inequality
[ [ o@yady <4, [ [ |f@y)] iy =)

—7 - —T -

easily follows the following

Theorem 3. If f(z,y) e IF, p>1, then the function

@n (@)
_fotuyto) oo
2tanlu-2faniv

z Su
y(@,Y) 0<w1én

satisfies the inequality

f f 7(@y) dwdy<Apj _f”mw,y P awdy.

This theorem also proves the inequality of Theorem 1.

5. The proof of Theorem 2 is analogous to that of Theorem 1,
and we may, therefore, be more concise now. Instead of Lem-
mas 1, 2, 3 we shall use the following lemmas:

1) See the paper quoted in footnote 7, p. 234.

Fundamenta Mathematicae. T. XXXIV. 12
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Lemma 9M). If f(x) is of the class L\*, k=1, then (x) be-
longs to the class L1, and

J [F)lflogHf@) =t de < Ay [ |f(@)i{logH|f(@)|}* d +B,.

Lemma 102, If f(x,y)e L, where k=2, then M(x,y;f) e L1 2
and

/ [ My {log*| M a,y) [} drdy <

— —

T T
<4 [ Ify){log*ifiz, )} dedy+Bs.
~Lemma 1173). The Fourier series of a function f(2,y) of the,
class LY is summable almost everywhere by the method of the first
arithmetic mean.
The following lemma, in which we use the notation of
Lemma 6, is an analogue of the latter.

Lemma 12. If f(x,y) e V% k=1, then )

J P llogt Fay)y—ar < A [ [f(e,)|{log* [fw,y)[}*da+ B,

b

| Tty {tog* Tyt dy < Au [ [ftw,y)|{log* fle,y)dy + B

Lemma 131), If f(z,y)eL', k=1 then the functions
My(z,y;5f) and My(z,y;f) of §2 belong to the class Li+*1,

Passing to the proof of Theorem 2, we show that under the
hypotheses of that theorem the function f(x,y) belongs to the class
Lve—2, In fact, if we treat f(x,y) as a function of a single variable z,
and form the conjugate function (we denoted the latter by *f(z,v)),
then, on account of Lemma 9, *f(x,y) belongs for almost every y
to the class Li*~! with respect to . Integrating the inequality of

11y TS, p. 150.

12) See Jessen, Marcinkiewicz and Zygmund, loc. cit.

13) Bee Jessen, Marcinkiewicz and Zygmund, loe. cit., p. 230.

14y TS, p. 250.

15) See Hardy, Littlewood and Pélya, Inequalities,, Cambridge, 1934,
p. 291, and Jessen, Marcinkiewicz and Zygmund, loc. cit.
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Lemma 9 with respect to y, we come to the. conclusion that
*f(a,y) e LM*~1. We now treat *f(z,y) as a function of the sole var-
iablg y; the function conjugate to *flz,y) with respect to y will
be flz,y). On account of Lemma 9, f(z,y) is of the clags ILt+2.
Since k23, and in view of Lemma 11, the Fourier series of fla,a)
will be summable by the method of the first arithmetic mean.

The estimation of the terms of the right-hand side of the
inequality (4.6) leads to the inequality (4.14). By Lemmas 10, 12,13,
all the functions on the right of (4.14) are of the class ILh+—2 We
shall therefore have the inequalities

|28 (5 ,)—D;,,;l < H(z,y)
[ [ Hzy){log+ Blz,y)y-2avay < :

—7 =i

<4y [ [ Ifa)|fog (g} dedy + B,

—J =T

Let us apply the last inequality to the funection 2- Fle,y),
where J is a constant greater than 1 and such that B/i<d. Then

/ ' / " H(z,y){log* H(z,y)}2dedy <

<4 [ [fep)|{log alf(z,)]}* dzdy +6.

Repeating the previous argument we find that
Hm sup |720m,. (2,y)—Ds | <6

almost everywhere. Since § is arbitrary, Theorem 2 is proved,

Remark. It seems very likely that the integral (1.8) exists
(in the strong sense), if f(x,y) e L%, This theorem I am unable to
prove. However, an argument analogous to the proof of Theorem 2
gives the following

Theorem 4. If f(x,y) e L1, then

®x oy o y0)
_ LU, Y0 »
Tmnl®,Y) — ) 2taniu-2tanie dudo—0

- —T

as 6,7)—}0, and m, n satisfy the condition (4.4).
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The. proof of this theorem is based on the following lemmas:

Lemma 14 If g(x,y) is integrable, the inequalities
[f{Ml(w,y;y)}“dw]1/“<Aa [ l9@,y)laz

[ /"{Mzwy,g)}“dy]”v‘i flg a,y)| dy

—
s

hold for every 0 <a<<118).
Lemmu 15. If f(sc,y) is of the class L, then

T Com

([ [ oteyiyasay] <. | [t fepiasay 5,

—TT =TT
for every 0<a<c1'7).

6. In the previous arguments we confined our attention for
simplicity to functions of two variables, but the foregoing results
can be extended without diffieulty to the case of n variables. For
example, we have the following theorems: '

Theorem 5. If f(#1,%,...,2,) is of period 2z with respect to
each of the variables, and is of the class I”, p>1, the integral

;(xlmzi ceey Bp) =
(hry) = (hp)

— 1i F(@ 15y B 0)
71,}f$+0 (—a—) f f 5 tan Jus... 2 tan ju, dul ;T8

exists almost everywhere and is a function of the class I”.

. (6.1)

Theorem 6. If f(z1,%s,...,2,), of period 2w with respect to eack
vartable, is of the class LY“%, k>n-+t1, then the limit (6.1) exists
almost everywhere and belongs to the class LhA—n,

16) See Jessen, Marcinkiewicz and Zygmund, loc, cit., p. 222.
17y Loe. cit., p. 223,
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7. Recently, Marcinkiewicz and Zygmund proved the
following result which will be stated as

Lemma 1618). If f(x,y)eL, then at almost every point (&)

the first arithmelic means oun(2,y) of the Fourier series of f(r, y)
satisfy the condition

G,y 4) = f(2,7)
for m,n—-oo, provided the ratios min and nim are bounded.

The methods used in the proof of that result give the follow-
ing theorem analogous to Theorem 4.

Y

Theorem 7. If f(x,y)eL, then almost ‘eL:erywhfre

OEACEY

Um n(@',y) -

—r —=

ety +

“———-dudv—w
2tan{u-2tan v

provided that & and 7 tend to O in such a way thai the ratios efy
and nfe are bounded, and m, n are defined by the conditions (4.4).

‘We shall not give the proof of the theorem because it would
be too long. We shall however establish the following result:

Theorem 8. Let f(z,y) belong to the class L2 Then

@ 7 () = |
Hm = fle+u,y+v)
o0 T2 2tan fu-2tan v

—7 =T

dudv=f(z,y)

almost everywhere, provided & and 5 tend to O in such a way that the
ratios & and nle are bonnded.

This result becomes a direct consequence of the argnment of
§5, provided we use Lemma 15. In fact, nunder the assumptions
of Theorem 8, the function f(z,y) will be of the class L and, in
virtue of Liemma 15,

(7.1) Tl 0,Y) = F(, )

18) Marcinkiewicz and Zygmund, On the summability of double Fourier
series, Fund. Math. 32 (1939), pp. 122-132.
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almost everywhere, provided the ratios m/n and n/m are bounded.
Estimating the right-hand side of the inequality (4.6) and argn-
ing as in §§ 4, 5, we come to the conclusion that

®@ao)a
lim {nzam,n{w,y) —

m,n-»c0

f(@ 42,5 40) }
2tan fu- ‘)tanzvdudv

—7 —it

The boundedness of the ratios efy and /e, and (4.4) imply
the boundedness of the ratios m 'n and n/m. Comparing (7.1) and
(7.2) we get the required result.

, . . . . .

Sur l'ensemble des. points singuliers d'une fonction

d'une variable réelle admettant les dérivées de tous
les ordres.

Par

Zygmunt Zahorski (Krakéw).

Introduction.

1. Le but de ce travail est de caractériser d’une manitre topo-
logique I'ensemble des points singuliers des fonctions d'une variable
réelle admettant les dérivées de tous les ordres.

Etant donné un ensemble Z de nombres réels dense en soi,
j'appelle fonction de classe Do sur Z toute fonetion qui admet en
chaque point de Z les dérivées de tous les ordres par rapport i Z.
Dans le cas ol ces derniéres sont finies (done continues), la fonction
sera dite de classe Coo sur Z.

En particulier, lorsque I'ensemble Z est ouvert, les (la%eb Do
et O coincident.

Enfin, j'appelle fonctions de classe (o, tout court, les fone-
tions qui sont de classe (o sur P'axe des z tout entier.

Si f(z) est une fonction de classe (., on peut former, pour
tout x, la série de Taylor:

o

T, )= () 415 1(2)+ (@) o

dont le rayon de convergence ry(x) (en tant que celui de la série
en h) est défini par la formule de Cauchy-Hadamard:
1
— a1
J— (r)
= | /)]

n-yoo n!

ry(a) =

en posant 7(x)=0 ou ry(x)=- oo, suivant que le dénominateur
est infini ou s’annule. ;
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