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MEASURES IN NON-SEPARABLE METRIC SPACES
BY
E. MARCZEWSKI (WROCLAW) AND R. SIKORSKI (WARSAW)

In this paper we call a measure every g-additive set function
a(X), such that 0<<pu(X)<-+oo, defined on a o-additive field of
subsets of a set ¥. A measure is said to be o-finite, if ¥ 1s the
sum of an enumerable sequence of sets of finite measure.

A measure on the field of all Borel subsets of a metric space
% is called a Borel measure in X.

The chief problem of this paper!) is a decomposition of any
metric space ¥ with a o-finite Borel measure u:

(1) ¥=N-4S, where pg(N)=0 and S is separable.

We shall prove that, roughly speaking, this problem is equi-
valent to the known generalized problem of measure of Banach?)
(see Theorems I1I, IV and V). In particular the decomposition (1)
is possible for every metric space X for which the answer to
Banach’s problem is negative, e.g. for each ¥ of power x,.

Therefore, the results of this paper reduce, in practice, the
examining of Borel measures in metric spaces to the separable case.

Two ideas play an essential part in our proofs: a certain -
method of Banach concerning measures in abstract sets and
a theorem of Montigomery on non-separable meiric spaces
(see p. 135).

We wish to thank Professor B. Knaster, whose questions
and remarks have contributed to the solution of the chiet pro-
blem of this paper.

1. Lemmas om o-finite measures. We shall establish two
simple lemmas.

1) Presented to the Polish Mathematical Society, Wroclaw Section, on Octo-~
ber 30, 1947, and to the Warsaw Section on December 5, 1947.

%) See Banach et Kuratowski (2], Banach [1], Ulam [11], Mar-
czewski [4], p. 308, Marczewski et Sierpidski [6], Sierpidski [9],
p. 107.

Numbers in brackets refer to the bibliography at the end of the paper.
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1. Every o-finite measure p in a field K may be expressed
as a series of finite measures yn in K:

w(X) = p (X)+ pafX) ... for each XeK.

In fact, u being o-finite, there is a sequence of sets X,eK
such that wp(Xn)<<co. Putting p(X)=p(XX,), we obtain the re-
quired decomposition.

We say that a Borel measure u in % is everymhere positive
in a Borel set XCX, if u(U)>0 for every non-void subset U of X
which is open in X.

2. If a o-finite Borel measure u in a mefric space X is eve-
rymwhere positive in X, then X is a separable set.

For any finite Borel measure in ¥, each class of disjoint sets
of positive measure is at most enumerable. On waccount of Lemma 1,
the same holds for any o-finite Borel measure. Then, from hy-
pothesis it foliows that every class of disjoint sets, which are con-
tained and open in X, is at most enumerable (or, in other terms,
that X possesses the so-called Souslin property #)). X, as a metric
space, is therefore separable.

2. Addition theorem. We say that a cardinal number m has
measure zero if every finite measure u, defined for all subsets of
any set 9 of power m and vanishing for all one—point sets, va-
nishes identically %).

) It is easy to see that, if m has measure zero and n<<m, then
n has also measure zero.
Ulam has proved that every cardinal number less than the

first aleph inaccessible in the weak sense ) has measure zero ©)..

%) See e. g. Marczewski [5], p. 128 and 130.

1) Obviously, if & set 9 fulfils this condition, then every set of the same
power fulfils it also.

) pe==Ra>1n, is called inaccessible in the rweak sense, if A is a limit num-~
ber and if the condition p;<Cp, where ¢ runs over a set T of a power less than P
implies that 2p,<p See Tarsk1 {10], p. 69.

% See Ulam {11], p, 141, Satz (A). We use the term ,cardinal of measure
zero” instead of Ulam’s term ,.non-measurable cardinal”. Our term seems to
be more adequate: compare e.g. the Ulam's Lemma 1 (ibidem, p. 144) which
receives now the following intuitive form: Lef m be a cardinal number of mea-
sure zero. If a cardinal n is the sum of wm cardinals of measure zero, then n
is also of measure zero. See likewise our Theorem I,
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In particular ®; and &, have measure zero. The analogous ques-
tion for the power of the continuum ?) belongs to-day to the classi-
cal problems of the General Theory of Sets.

Theorem I. Let u be a o-finite Borel measure in a metric
space ¥, and let G be a class of open subsets of X of measure u
zero. If the power of G has measuré zero, then the sum N of all
Ge@G is of measure u zero.

Proof By Lemma 1 it can be assumed without any loss of
generality that u is finite. Let G: (0<<é<Cy) be a transfinite se-
quence of all GeG and let

H,=G, ZGg for 0<<y<<y.

Obviously
N=2XH,
<y -
and u(H,)=0, since H,CG,. Let 9 denote the set of all ordinals
n<<y. If Y9, then, by a theorem of Montgomery?), the set

=2H,

ney
is an F,.

Putting »(¥)=u[H(Y)] for any Y9 *) we obtain a finite
measure » defined for all subsets of 9. Moreover, »[(y)]=pu(H,)=0
for every 7e?). Hence u(N)=19(9))=0, since the power of %) has
measure zero. :

3. Separability character. If G is a class of sets, we denote
by Z(G) the sum of all sets GeG.

A class B of open subsets of a meiric space ¥ is called a basis
of %, if for every open G( ¥ there exists a subclass G of B such

that G=2(G)

7) See Ulam [11], p. 141 (ID).

» Montgomery [8], Lemma 2. p.528. Montgomery’'s hypothesis on
the increase of the sequence in question is superﬂuous Ct. Kuratowskl 31
p. 534 et 537, 1°

9 This method is originally due to Banach. Cf. Banach [1], p. 104, and
Ulam [i1], p. 144, footnote 2.
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.Theorem Il The folloming four properties'®) are equivalent
for metric spaces:

(8} there exists a dense subset of ¥, rohose porver has measure
zero. ,

(8) there exists a basis B, whose porwer has measure zero.

() for each class G of open sets there exists a subclass HC G
such that 2(G)= 2 (H) and mhose poroer has measure zero.

(o) the pomer of any class of disjoint open sets has measure
zero).

Proof. We shall prove the following implications:

@)= (B) > (A) > (o) > 3).

The proofs of the implications (3)—>{8)— (2} are the same as
in the case of spaces separable in the ordinary sense. The impli-
cation (A)-$(0) is obvious. .

Let us prove that (s)—(3). % being a metric space with the
property (s), there exists for each positive integer n a set D,
whose power has measure zero, and such that for each xeX

there is a yeDp with o(x, y)<—1r; %), The set D=D,+D,~... is

dense in ¥ and its power has measure zero ).

The smallest power of a basis of ¥ may be called the sepa-
rability character of . Hence, the property (8) of a space ¥ asserts
that the separability character of ¥ is of measure zero.

In particular, if the power of a space has measure zero, the
separability character of ¥ is also of measure zero.

4. Decomposition theorems. The answer to the problem of
degompositign (1) is given by Theorems III, IV and V.

10y The property (4) is analogous to the well known theorem of Lindelsf
and the property (o} to the well known property of Souslin,

) Obviously, Theorem II is a particular case of a general theorem concern-
ing the spaces whose separability character is less than a cardinal n. Namely,
we may formulate analogously the properties (6n), (gn), (4n), (z.) and we can prove
for any n the implications (6x) = (1) - (4n) - (o).

Moreover, if the cardinal n fulfils the following condition:

(*) n4m+4..<n for each sequence of cardinals nj<n
then also (on) - (én).

%) elx, y) denotes the distance between x and y.

) See Ulam’s lemma cited above, p. 134, footnote 6, Compare also our
footnote 11, condition (»).
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Theorem Il If the separability character of & metric space
¥ has measure zero and if u is a o-finite Borel measure in %, then
there exists a decomposition (1).

We shall prove, more precisely, that

(i) the sum N of all open sets of measure u zero has also
measure u zero.

(i) the measure u is everymwhere positive in the set §=%—N
and therefore S is separable (by Lemma 2).

By Theorem II, the space X has the property (4) and conse-
quently there exists a class G of open sets such that the power
of G is of measure zero,

alG=0 for Ge@G, and X(G)=N.

By Theorem I, u(N)=0, which establishes the proposition (i).

Now, let U be a non-void subset of ¥—N, open in ¥—N;
then U=G—N, where G is open in ¥. By definition of N, and
by (i), we have u(G)>0 and x{GN)=0. Hence u(l)=pu(G)=>0,
which establishes proposition (ii).

The two following theorems are converses of Theorem III.

Theorem IV. If for every finite Borel measure pu in a me-
tric space % there exists a decomposition (1), then the separability
character of ¥ has measure zero. :

Proof. Let G be an arbitrary class of disjoint open subsets
of ¥ and let us choose one point from every set belonging to G.
We denote by I the set of all chosen points. Let us consider any
finite measure » defined for all subsets of I and vanishing for all
one-point sets.

The formula u(X)=2»(XI) defines a finite Borel measure x in %,
By hypothesis, there exists a decomposition ¥= N--S, where
#(N)=0, and where § is separable.

The set IS, as an isolated subset of the separable space S,
is at most enumerable; therefore u(IS)=»(IS)=0.

Consequently,
(D)= u®) = p(N)=4-u(S)=p(§ — D)+ u(IS) =+[I(S — D)] =»(0) =0,
On account of the arbitrariness of », the power of I has
measure zero. Since I and G have the same power, the space %

has the property (o) and, by Theorem II, the separability cha-
racter of £ has measure zero.
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Theorem V. If for every space % of porer m and for every
_ finite Borel measure u in ¥ there exists a decomposition (1), then
the cardinal number m has measure zero.
Proof. Let ¥ be a set of power m. Consider ¥ as a space
with the trivial metric:
o(x, x)=0 and po(x,x)=1 for x Fax

and let u be an arbitrary finite measure defined for all subsets

of ¥ and vanishing for all one-point seis. The measure y being
a Borel measure in ¥, there exists a decomposition (1),

Since every separable subset of ¥ is at most enumerable,
w(E)=pu(S)=0. Thus, the power of ¥ has measure zero.

5. Two-valued measures. A measure yu is called {mo-valued
if it assumes at most two values: 0 and 1. By definition, a car-
dinal number m has tmwo-valued measure zero if every two-valued
measure, defined for all subsets of a set of power m and vanishing
for all one-point sets, vanishes identically.

Obviously, if m has measure zero, it has also two-valued
measure zero. As Tarski and Ulam have proved, if a cardinal
m has two-valued measure zero, 2" has the same property !4).
Every cardinal less than the firts aleph inaccessible in the strict
sense ®) has two-valued measure zero. In particular the power
of the continuum has two-valued measure zero.

- It is easy to verify that ‘all the definitions, the theorems
and the proofs of paragraphs 2, 3 and 4 run the same way, if we
replace everywhere the term ,measure” by the term ,two-valued
measure”,

Besides, here the consideration of the separability character
appears superfluous, since the separability character of a metric
space ¥ has two-valued sneasure zero if and only if the power
of % has the same property. In fact, if m is the separability cha-
racter of an infinite space %, then the power of ¥ is < mRo . 2,
and therefore, if m has two-valued maesure zero, the power of ¥
is of two-valued measure too. The converse is evident.

) Ulam [12], p. 146. For the applications of powers of two-valued measure
zero, see Mazur [7] and two papers of Sikorski to appear in Fundamenta
Mathematicae 35.

%) A cardinal number p>>X, is called inaccessible in the strict sense if it is
inaccessible in the weak sense and if, moreower, mt<p for every m<Cp and
n<{p. See Tarski [10], p. 69.
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Obviously, if a two-valued Borel measure u in ¥ is every-
where positive on a set E, then.E consists of a cingle point. The
stwo-valued” Theorem IIT and the proposition (ii) take, then, the
following form:

Theorem VI If the porver of a metric space ¥ has two-valued
measure zero, then every troo-valued Borel measure u in ¥ ig trivial,
i. e. either p(X¥)=0 or there is a point x,eX mith p[(x)]=1 (and
therefore u[%— (x,)]==0).

In particular, any two-valued Borel measure in a metric
space of the power of the continuum is trivial.
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