284

This problem is unsolved. It is known only that

(v) If $2^{N_0} < 2^{N_1}$, every topological completely normal 11) space with the property (D) possesses also the property (I).

Suppose that a completely normal space contains an enumerable dense subset X_0 and a non-enumerable isolated subset Y_0 . For every set $Y \subset Y_0$ we have $\overline{Y} \cdot (Y_0 - Y) + Y \cdot (\overline{Y_0 - Y}) = 0$. Thus there exists an open set G_Y such that $Y \subset G_Y$ and $\overline{G}_Y \cdot (Y_0 - Y) = 0$. Let $X_Y = X_0 \cdot G_Y$. If $Y_1 \neq Y_2$, then $X_{Y_1} \neq X_{Y_2}$. The one-one mapping X_Y maps the class of all subsets of Y_0 in the class of all subsets of X_0 in contradiction with $2^{\aleph_0} < 2^{\aleph_1}$.

REMARKS ON A PROBLEM OF BANACH

BY

R. SIKORSKI (WARSAW)

S. Banach has posed the following problem 1):

When is it possible to define on a metric space X with a metric $\rho(x_1, x_2)$ another metric $\rho_1(x_1, x_3)$ such that

- (1) if $\lim_{n=\infty} \varrho(x_n, x) = 0$, then $\lim_{n=\infty} \varrho_1(x_n, x) = 0$;
- (2) the metric space X_1 which we obtain from X by admitting the function $\varrho_1(x_1, x_2)$ as the metric is compact?

It is easy to see that Banach's problem is equivalent to the question under what conditions a metric space X possesses the following property:

(B) There exists a one-one continuous mapping f of X onto a compact metric space Y.

It is clear that the geometrical image $\underset{xy}{F}[y=\varphi(x)]$ of an arbitrary real function $\varphi(x)$ $(0 \leqslant x \leqslant 1)$ possesses the property (B). The function f is then the projection on the x-axis.

W. Sierpiński has constructed a connected plain set S which is both F_{σ} and G_{δ} and which is the sum of an enumerable sequence $\{I_n\}$ of mutually disjoint simple arcs 2). The set S does not possess the property (B). In fact, suppose that there exists a one-one continuous mapping f such that f(S) is compact. Since S is connected, f(S) would be a continuum. Since f is one-one, the continuum f(S) would be the sum of the enumerable sequence $\{f(I_n)\}$ of mutually disjoint continuums, which is impossible 8).

¹¹⁾ A space \mathscr{Z} is called *completely normal* if for every two sets X_1 , X_2 such that $\overline{X_1} \cdot X_2 + X_1 \cdot \overline{X_2} = 0$ there exists an open set G such that $X_1 \subset G$ and $\overline{G} \cdot X_2 = 0$. A space \mathscr{Z} is completely normal if and only if every subspace $X \subset \mathscr{Z}$ is normal (see e. g. C. Kuratowski, op. cit., p. 130, Remarques).

³⁾ See this volume, p. 150, P26.

²⁾ W. Sierpiński, Sur quelques propriétés topologiques du plan, Fundamenta Mathematicae 4 (1923), p. 5. I_n is the sum of the segment x=1/n, $0 \le y \le 1$ and of the part of the circle $x^2+y^2=1/n^2$, where either $x \le 0$ or $y \le 0$.

³⁾ See W. Sierpiński, Tohoku Mathematical Journal 13 (1918), p. 300, and F. Hausdorff, Mengenlehre, Berlin-Leipzig 1927, p. 162.

The two above examples show the difficulty of the characterizing of spaces with the property (B) by other topological properties of these spaces: on the one hand, there exist very singular spaces with the property (B) (e. g. geometrical images of non-measurable functions etc.); on the other hand, there exist very simple spaces without the property (B) (e. g. Sierpiński's set S).

It follows from a well-known theorem on semi-continuous decompositions 4) that

(i) A separable metric space X possesses the property (B) if and only if there exists a compact metric space X_0 such that

1º X_0 contains a subset X_1 homeomorphic to X_2 ;

2º there exists a semi-continuous decomposition 5) F of the space X_0 such that for every $F \in F$ the set $X_1 F$ contains exactly one point.

Suppose that the conditions 1° and 2° are fulfilled and let h denote a homeomorphism of X onto X_1 . Since the decomposition F is semi-continuous, there exist a compact space Y and a continuous mapping g of X_0 onto Y such that $g^{-1}(y) \in F$ for every $y \in Y^4$). The continuous mapping f = gh is one-one on account of 2° and maps X onto Y. Thus the space X possesses the property (B).

Suppose now that the space X possesses the property (B), i. e. that there exist a compact space Y and a one-one continuous mapping f of X onto Y. We may suppose that X is a subset of the Hilbert cube H. Let $X_0 = H \times Y$, $X_1 = \sum_{xy} [y = f(x)]$, and let F be the collection of all sets $H \times (y)$ where $y \in Y$. F is a semi-continuous decomposition of the compact space X_0 . Since f is one-one

and f(X) = Y, the set $X_1(H \times (y))$ contains exactly one point for any $y \in Y$. f being continuous, the set $X_1 \subset X_0$ is a homeomorph of X. Thus the conditions 1^0 and 2^0 are satisfied and theorem (i) is proved.

It follows from this proof that the condition 1° of (i) can be replaced by the condition: X_0 contains a subset X_1 which is a one-one and continuous image of X.

(ii) Let $\{F_n\}$ be a sequence of mutually disjoint closed subsets of a compact metric space Z. If for every integer m and for every subsequence $\{F_{m_n}\}$

(*)
$$F_m \underset{n=\infty}{\text{Li}} F_{m_n} \neq 0 \quad implies \quad \underset{n=\infty}{\text{Ls}} F_{m_n} \subset F_m \stackrel{5}{\longrightarrow},$$

then the space $X = Z - \sum_{n=1}^{\infty} F_n$ possesses the property (B).

If X is finite, theorem (ii) is obviously true. Suppose that X is infinite. Let $X_0 = \overline{X}$. Since X is dense in X_0 , for every n there exists a point $x_n \in X$ such that 6) $\varrho(x_n, X_0 F_n) < 1/n$, $x_i + x_j$ for $i \neq j$. On account of (*) the collection F of all sets $X_0 F_n + (x_n)$ and of all one-point sets (x) where $x \in X - \sum_{n=1}^{\infty} (x_n)$, is a semi-continuous decomposition of X_0 . The sets X, X_0 and $X_1 = X$, and the decomposition F satisfying the conditions 1^0 and 2^0 , the space X possesses the property (B), q. e. d.

(iii) If $\{F_n\}$ is a sequence of mutually disjoint closed subsets of a compact metric space Z such that T $\delta(F_n) \to 0$, the space $X = Z - \sum_{n=1}^{\infty} F_n$ possesses the property (B).

In fact, the sequence $\{F_n\}$ satisfies the condition (*) of theorem (ii).

(iv) Every locally compact separable space X possesses the property (B).

^{&#}x27;) See G. T. Whyburn, Analytic Topology, New York 1942, p. 126, theorem (3.4).

⁵⁾ A semi-continuous decomposition of X_0 is a collection F of mutually disjoint closed subsets of X_0 such that:

^{1.} Xo is the sum of all sets FeF;

^{2.} for every FeF and for every sequence F_n eF, if $F \cdot \text{Li} F_n \neq 0$, then Ls $F_n \subset F$.

Lif_n and Ls F_n denote respectively the topological limes inferior and the topological limes superior of the sequence $\{F_n\}$. See C. Kuratowski, Topologic I (new edition), Monografie Matematyczne, Warszawa-Wrocław 1948, p. 241 and 245.

[&]quot;) $\varrho(x,A)$ denotes the lower bound of distances between x and any point of A. If A=0, then $\varrho(x,A)=0$.

⁷⁾ $\delta(F)$ denotes the diameter of F, i. e. the upper bound of distances between any two points of F. If F=0, then $\delta(F)=0$.

Theorem (iv) can be deduced directly from (i). Namely, it is sufficient to pose $X_0 = \overline{X}$ and $X_1 = X$ in (i), and to denote by F the collection containing the set $\overline{X} - X + (x_0)$, where x_0 is a point of X, and all one-point sets (x), where $x \in X - (x_0)$.

By (iv) every open subset of a Euclidean space (or of the Hilbert cube) possesses the property (B).

LINEAR FUNCTIONALS ON DENJOY-INTEGRABLE FUNCTIONS

BY

A. ALEXIEWICZ (POZNAŃ)

1. All the functions appearing throughout this paper are defined on an arbitrary but fixed closed interval $\langle a, b \rangle$.

Denote by (D) the linear space composed of the Denjoy-integrable functions x=x(t), with the usual definition of addition and multiplication by real numbers. In this space we introduce a norm by the formula

$$||x||^* = \max_{a \leqslant s \leqslant b} |(D) \int_s^s x(t) dt|.$$

We consider two arts of convergence in (D). A sequence $\{x_n\}$ of elements of (D) will be called to be (*)-convergent to x_0 if $||x_n-x_0||^*\to 0$ 1); a sequence $\{x_n\}$ of elements of (D) will be called η -convergent to x_0 if the sequence $(D)\int_0^z x_n(t)dt$ is

10 uniformly bounded,

 2^{0} asymptotically convergent to $(D)\int_{a}^{s}x_{0}(t)dt$,

3° convergent to
$$(D) \int_{a}^{b} x_0(t) dt$$
 for $s = b$.

A functional F(x) defined in (D) is called additive if $F(\lambda x_1 + \mu x_2) = \lambda F(x_1) + \mu F(x_2)$, where λ and μ are arbitrary numbers. An additive functional will be called (*)-linear or η -linear respectively if, given any sequence $\{x_n\}$ (*)-convergent or η -convergent to x_0 respectively, we have

$$\lim_{n\to\infty}F(x_n)=F(x_0).$$

The purpose of this paper is to characterize the (*)-linear and η -linear functionals in the space (D).

¹⁾ The space (D) normed by this formula is not complete.