Duality theorems.
By

W. Mayer (Princeton N. J.).

§ 1. Introductory remarks and the Poincaré Duality
Theorem.

The duality theorems for a mamifold will be derived from the
corresponding ones for nets and co-nets of group systems (Mayer [1],
II, §4)1). Of the two types of duality theorems-— the Poinc'aré
and the Alexander duality theorems — the first could be obtained
more easily from the corresponding one for a group system and its
character system (Mayer [1], I, §5). But when applied to the Ale-
xander type this method fails. Also in using the net and co-net
theory for both types, the less complicated Poincaré theorem serves
as an introduction for the Alexander theorem. We shall state the
duality theorems in terms of singular homology groups.

Notations. [E)JLV} denotes a manifold of dimension N with 9y
2 simplicial subdivision of |Myl. (Thus |Myl = |My! for My, EDEB;,
simplicial subdivisions). X, indexcd by A={A}, is the symbol for
a finite open covering of |My| (with elements (open sets) li;, ,...,liz )
and also for the nerve of the covering. The stars of the vertices O% an ‘DI‘A
constibute such a covering with My itself as the nerve. We shall
call it the .siar covering IMy". We note the important fact that
the aggregate of the star coverings is co-final in {22} the set of all finite
open coverings of |Myl.

Let H compact and ¢ discrete he groups dually paired to K
the groups of reals modulo 12). Then the nerve X taken with H’

') The pumbers in brackets refer to the hibli
the T, hibliography at the end of
*} As an alternative let H and & be finite-dimensi i
- . h - onal vector spaces with
Imur‘ topology over the discrete field K and dually paired to K. (11)‘hen both
are discrete and linearly compact, Lefschetz [3] (11, (25.8), (27.7).)
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as coefficient group is compact and if P, i=1,...,%, are the p-sim-
plexes of I then go;7 with g ¢ ¢ may symbolize the (—p)-character
for which

(1.1)

gE;F:IzU_{:yhéij, heH, ghekH.

The general element of the chain group of dimension (—p)
of T (the E-character system of Xj) is a sum: X 9,077, g, G.

We are now prepared to use the result of Mayer [1], (I, § 2):
The inverse and direct limit-groups

(1.2) B(Z)=lm {B,(X)); =4},
(1.3) B_(X¥)=lim {B_(XF); 2t}

are dually paired to K (in intersection ¢~%sai=gq77=af)?).

Remark. B;( ) at right in (1.2), (1.3) denotes the ordinary
homology group of the nerve X and its K-character system by

_respectively, but at the left is symbolizes limil groups (i. e. Cech’s

homology groups) of those nerves.

The dual pairing of the preceding limit groups holds for the
net and co-nets connected with any space S, the nerves of its finite
open coverings taken with a compact coefficient group H. For &
a finite complex (as is well known) By{X) the Limit group (1.2) is
strictly isomorphic with the homology group of dimension ¢ of any
of its simplicial subdivisions (again with H as coefficient group).
Singular chain groups and hence singular homology groups are
defined with discrete topology. In the case of & finite complex taken
with a coefficient group of division-closure property (for instance
compact), the singular homology group coincides algebraically
with the corresponding homology group of any of its simplicial
subdivisions.- Let us agree to extend this algebraic isomorphism
to an isomorphism in the strict sense, thus topologizing the singular
homology groups of a complex accordingly. Then4) the limit group-
B:(ZX) and the singular homology group of dimension i of 2 complex
are strictly isomorphic.

3) The requirements ¥ (1,2.3) of Mayer [1}, II, § 2 ave satisfied.

4 In the alternative case of H and 6 finite-dimensional ve(-t_m' spaces
over the diserete field K, B;j{(3) (being of finite dimension) is automatically dis-
erete (Lefschetz IT (25.6)) and the isomarphism between B;i(Z) and the singular

homology group of dimension i thus is an isomorphism in the strict sense.
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This well known result may be derived also in the following
intuitive way: Let X and X' be simplicial subdivisions of the finite

conplex € with £ a refinement of X' (X>2%’), and f a simplicial
mapping
(1.4) fr 22

which satisfies the ,.star condition”, Mayer [2], (8.15). Under these
conditions any cycle Cf of X maps into a cycle fC' of X" such that

(1.5) fCt~sCf,  (~g=singularly homoelogous).

Let now ('; be a singular c¢yele of @ representing a singular homo-
logy class. Then in each simplicial subdivision, say &, of © there
is a cyele Ch (of Gy) such that ¢F ~ Ch. By (1.5) these ('} € &, consti-

tute an element of hm{B S,) ; 7, 4} and thus of (1.2) (derived for G)

since {&,} is eofinal in {Z}. Thus (i (%, €} e B;(S), defines a cor-
respondence between the singular homology group of dimension ¢
and the limit group (1.2) which as easily seen algebraically is an
isomorphism. By topologizing singular homology groups as indicated
above, this isomorphism becomes one in the strict sense.

There is a similar identification of the singular homology
group of dimension (N—i) and the ILimit group (1.3) in the case
of a manifold |My|. Here in fact for z; z——i]JEN, a simplicial subdi-
vision, the K-character system . 2K of 3 » hag a .realization” in the
star system INF of My (\Ia ver [2], §<) , when taken with ¢ as
coefficient group. Since ¥ =ME and M are both discrete, th]b
is proved if we establish an algebraic isomorphism
(1.6) W= MYy
for a given subdivision My of |Vix].

Asg before let of, 1=1,...,4,, denote the set of p-simplexeg
of My. Then

(1.6.1) Z‘g o, P and 2_] g9%6?, g, 6, € G,

(ﬂ*aﬂ~cpﬁ*(’”) Mayer [2], (8.5)), are the
general (—p) and (N—
chains of MF and M respectxvd’v By ) ( )

(LT op) 0800 0577, elp+1)=(—1)¥ve(p), e(0)=1,
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we establish the isomorphism (1.6). Of course (1.7) is one-to-one
and that it preserves the boundary follows from

Ae(p)i*oP) =e(p)(—1)¥Pi*o0P == ¢(p -+ 1)§* 0P =
] =e(p+1) Y et 0] ﬁ*njfﬁl < Y [ol+ aPlo Pt =367
I J

. Now as in (1.4) let ¥ and X be simplicial subdivisions of

|My] with X>3'. The simplicial mapping (1.4) we now write
(Mayer [2], §3)
(1.8) 7153 —(X,9).
By f' we denote the induced mapping
(1.9.1) Fr (5K, 3) (2K, 3),

which in terms of co-homology is eqguivalent to
(1.9.2) Fo(X,0)—=(X,0).

Except for notation, the mappings (1.9) are identical and
defined by
(1.10.1) jA-roBr=4"PsfBp,
(1.10.2) fAP-Br=4"r-fBe,

The relationship (1.8) and (1.9) is valid for any pair of ner-
ves T and X’ subjected to X> X’ (and for f satisfying the star con-
dition). For X=My and X =My however, a third form for the
induced mapping f might be obtained. In

e(p)§* 4P > B =A< Br=A—2< By,

A e (ZED),
AP e(X;0),

Bre(X,9),
Bre(Z,9).

(A Ar=3gop. AP =3g577 4G

the intersection” §*4pc Ep of 9*4re My and Bre My Is intro-
duced. Then

(1.9.3) oy — Dix

with

(1.10.3) f9% AP0 Bp=0* A'Po [P

is equivalent to (1.10.1) (with A ¢ Dy replaced by e(p)i*' 47 ¢ M,
its map in (1.6)). Since ((1.10.2) and (1.11))

(1.12) 9 APs Bp=*" AP {BP,
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and considering that Be is an arbitrary chain of My
(1.13) FOMAP=y9%"4'r,

follows from (1.10.3) and (1.12). In Mayer [2], (3.22)
(1.14) ¥ AP~ 9% AP

for a cyele 9% 4'» of My has been proved. Thus we have
(1.15) FOXAP ~ 9% AP,

which relation (2 counterpart of (1.5)) now will serve to set up an
isomorphism between the Hmit group (1.3) and the singular homology
group of dimension (N—i) with & as coefficient group.

Let C¥—! be a singular cycle of [My|. In MY then there is
a representative of the singular class of ¥, say 9*A!; hence

(1.16) Ot~ R AT, 9% 4T e MY

The chain 9*4! by (1.6), (1.7) represents the K-character
(e(p)§* A<~ ) A~ of MK and thus defines the element of (1.3) whose
representative in ML the homology class of the character A is.

From (1.15) then follows the independence of the so defined
element of (1.3) of the subdivision My used in the process.

On the other hand the representatives of a given element of
B_i(£¥y=Hm {B_;( £E); n_f;} in star coverings X; =My are related
in the isomorphism (1.6) to cycles of the respective MY all of which
(by (1.15)) belong to a definite singular homology class of |My|. This
class for its part by (1.16) determines the given element of B_;(XX),
Hence to different classes in (1.16) different elements of B_i(=X) cor-
respond. Since each element of B. ,(X¥) has a representative in one
of the star coverings (these coverings being confinal in the set
of all finite open coverings), each element of B-,-(_Z‘K) 8 @ map-element
in the correspondence (1.16) (of a definite singular homology class).
Thus (all groups involved being diserete) the correspondence (1.16)
8 an isomorphism. We summarize the result in Poincaré’s Duality
Theorem:

The homology groups of |Dy| of dimension i with coefficient
group H and of dimension (N—i) with ecoefficient group G are dually
paired to the group of reals modulo 1, if H (compact) and G (discrete)
are 50 paired.
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§ 2. Alexander’s Dixa]ity Theorem.

Let [y be an N-sphere and I a subspace of |[My] be a to-
pological polyhedron. Then Alexander’s Duality Theorem asserts:
For i=0, N—1, the singular homology group of dimension i of I
(taken with the compact group H) and the singular homology group
of dimension (N—i—1) of the complement space [ Uy —2A (taken
with the diserete group G) are dually paired to the group of reals mo-
dulo 1, if H and G are so paired. The cases i =0 and i=N—1 will
be dealt with separately. We derive the Alexander Duality Theorem
for the sphere from Mayer [1], (II, § 4). For {X;; :ci-‘} of that paper
‘we take the net of the nerves Xz of [Diy| introduced in the preceding
paragraph; for {3,; =2}, the sub-net of {X; A%}, we define MW,C % -
as follows: A simplex (Uy...Uz) of X belongs to I, if the set-
closure of Wz OUz, N ..MU, meets I, i.e.

(2.1) (Uay .. 2p,) € Mpe— 1z 0. O, N M0,

All requirements of Mayer [1], (1L, §3) [i.e. X (a, b and ¢)
and M closed in X, (i.e. M, is a subcomplex of X, and L,(3,)
(the i-dimensional chain group of ;) is a closed subgroup of L;(X:))]
are satisfied and thus the rvesults of that paper may be applied.
Since |y is an N-sphere the groups By(M, %) for i=£0 and
B_ia((Z%, M), Z%) for N—i—1==0 of Mayex [1] coincide with

(2.2.1) B, M =lim {B(M,); =%},
and
(2.2:2) B_ (I%, M)=lm {B_,_ (5} I); «(}

respectively (a fact which follows from the two remarks on p. 19
of Mayer [1], the relation (1.6) and the sphere property of {IMxj).
Thus by the result of Mayer [1], (IL, § 4) the above groups
are dually paired to the group K of reals modulo 1. If therefore
we can prove: (a) the isomorphism of the limit group (2.2.1) with
the singular homology group of dimension i of 3 and (b) the iso-
morphism of the limit group (2.2.2) with the singular homology
group of dimension (N¥—i—1) of Wiy]—IH, then (for 140, ¥—1)
the Alexander Duality Theorem will be established.
13

Fundamenta Mathematicae. T. XXXV,
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As to the proof of (a), we notice that the definition (2.1) of 3,
slightly deviates from _that of the subcomplex of X; commonly
used to prove (a). If JI; denotes bhis subcomplex, then

Uz, Uz) € My W, N NOU,, N0
its definition, shows the inclusion M, C M.

(2.

But notwithstanding

3) lim {B,(3L,); =4} =1im {B,(1T,); 7%}

“ ! -«
holds. In fact, let {Z;} denote the subset of {Z,} (the aggregate
of all the nerves) defined by

(2.8.1) Xy e { T} — My=11;.

As will be shown at the end of this parvagrapl, {I;} is cofinal
in {3} Sinee (2.3) is true for limit groups restricted to representa-
tives in {X3} it thus is troe without this restriction. Now as it is
well known that the right member in (2.3) coincides with the Cech
homology group of dimension ¢ of M and since M is a polyhedron,
it thus coincides with the singular homology group of M of this
dimension (with the compact group H as coefficient group and
topologized as in § 1). Thus (a) is proved.

Before starting with the proof of (b) some introductory remarks
will be necessary. If Z;=My is the nerve of a star covering, we
shall symbolize the above subcomplex M, by M,= M |Myd-

A simplex o¥==(P,, Py,...,Pryq) of the simplicial subdivision My
belongs to {M|My> if

St Py01 .08t Pyyy O M==0;
but 8t PyO)...OV8t Poyy =St (P
(2.4)

o0---Put1). Hence 5)
a¥e <M[*.UEN><——>;£ oy NI =0,

An equivalent definition is: o” e {MIMy> if 0¥ is the face of
a simpler o#, p>v, such that there is some point of M which is an
nner oi~a boundary point of ot.

8) 8t {Pg...Pppq) is the set of all simplexes of MWy with (Py... Pyogr) ax
4 face (including (Py...P,41)). The point set of any ﬂmplet is the set of its inner
Ppoints. St g th'l‘lb is an open set.
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Since {M[My> contains the faces of any of its simplexes, it
is a subcomplex of Py (sometimes called ..closed” subeomplex).
Moreover as a point set

(2.1.1) UCLHIMy>

since the carrier simplex of any point of 37 is in <M My>.

As before, let X; =Dy be a star covering. Then SF=IE= Mz
Dby (1.6). Let N¥ denote the subcomplex of M conespondmg to
the subsystem (IF,3;) (the annihilator of Iz=< M) of X
in this isomorphism. By (1.11)

9*67 o af =e(p)ot o of =e(p)os ;

‘thus ? {(in this product) maps any simplex but of into zero.
Hen(e
(2.5) 9*67 € Ny o € My— M| Ma>.

By (2.4) this may also be written

2.5.1) 9*af € Pex St POV =0,

Since  (ZF , M) is a subsystem of ¥, M% is a subcomplex
of My (i. e. containing its boundary with any cell) and thus N
is a closed subspace of M%. We now prove the pointset inclusion

{2.6) <MDy CME—NF.

In fact a simplex 2 e{M|My> and a cell #%6% < NY have
an empty intersection: This intersection by Mayer [2], §9, is
2N %2 and empty unless  has o7 as a face. But ? e M| My
and thus any face of 77 is in (M|Myp. On the other hand %67 ¢ NF
by (2.5) contradicts ¢¢ e (M {My>. This proves (2.6). We now have
all the materials to prove (b).

Let Cm be a singular cyele of |My]—M, (™ e |Mu]l—M, 3C"=0.
Then for o subdivision My of a mesh sufficiently small, C will lie
in N (as a point set of course). In fact (7 and If are closed and
thus (in Euclidean realization of |Ma]) have a non-zero distance e.
Tf then mesh My is sufficiently small, My—NF will lie in the e-neigh-
borhood of I and thus (7 e Nk ).

5} The above fact is true for any closed M: no other property of i hence-

Forth will matter. So the proof of statement (b) holds for any closed subspace M

of | My
13*
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With (e |Yiy]—A given, we restrict ourselves to subdivi-
sions My sueh that C7e Nk. Let =My be such subdivision.
Then in NF there is a cycle #*44—= guech that
(2.7) (o AN
J*4A¥-n hy (1.6), (1.7) defines the K-character

ANt (N—n)9*AN—) in (TE, M)
(for T, =My and M;={MH|Myp), the subsystem of by corTespon-
ding to 92N in (1.6). Thus #*4¥—=r defines the
hm {Ba-n( Z; . M2); } whose representative in B,,*N(S’,z,jl[,z) (cor-
1851)011(11!10' to the chosen X,=%ty) the homology class of Ar—V i,

Thus is defined a mapping of the smgular homology class of
dimension # of ]JJIN[-II[ into hm {Bun—n{23 ,Jl[,z M} if only the

in NF.

independence of the result of the chosen subdivision is proved.
To establish independence we shall prove that for 9* 4P e N3,
where My is a refinement of My, relation (1.15) is replaced hy

(2.8) FOAP ~ 94 in [ MMy| —IL.
By (2.5.1)
(2.9) YA € M <5t AN =0,

with St 4’7 = %‘).—S—t o?, oPeA'. From the local properties of
Whitney’s cap products 9’4’ =4'0VCN and I¥ 4 =4'0V*CN,
(2.10) G'A, 9 A St A

It 0" and N™ are . principal” products (Mayer [2], §5), then

#*'4" is deformable into 9’4’ in St A, such that (St 4’ « My — I,
by (2.9)) .

(2.11) WA~ 0’4" in M| —
Moreover
(2.12) A" e Ry—> 914" « NE.

Indeed, St o' D8t f'o’, for any simplex o’ of Ny by the star
condition of the mapping f:My— My. Thus

(2.13) St 4 CS6 A7,

and (2.12) follows from (2.9) and (2.13). As (2.11)
from (2.9)

(2.14)

is derived

94"~ 94" in | My — 2

element of -
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follows from #*f'd’ ¢ Ny, Replacing Brte in Mayer [2] (7.16) by
the basie N-cycle of the (oriented) My, we have
(2.15) oA —

94 = 3(‘{1 A C}\«) ~s0 in :\JJE‘V‘ — M,

since A"ACY as 9’ 4'=4"0V("Y and hence j9f'A’ all ave in St 4.

Each point of 9f'4" is in 8t f°4’ (2.10) and thus in St A", (2.13).
The carrier simplex in My of a point of 47’4’ thus belongs to St4".
In the deformation j:9My— M5y which carries Jf’ 4" into fof'A’

“each point stays in its carrier simplex and hence in St 4’. Since

St 4’03 =0,

(2.16) Gf A"~ ff' 4" in Wyl —I
follows. By (2.11), (2.15), (2.16), (2.14) and (1.13) then (2.8) is proved.
Let 4" ~; 07 in NF. Then (2.8) and (2.12), 7974’ e N¥
and ~; (7 in [My|—I. Sinee ((n—f9*4") is in N and ~,0 in
|Mx}— M, this cycle is ~,0 in N (Pontrjagin [4], Satz IV). Thus
FOHA =9*f 4’ ~; Cn in NF follows.
This proves the independence of our mapping (of the singular
classes of |My] —3I of dimension #n into lim {B,,_N(Sf;]ll;) aky

ul
of the choice of My used for the mapping 7). By an argument similar
to that at the close of § 1, the above mapping is seen to be an iso-
morphism. So our statement (b) and thus the Alexander Dualily
Theorem for i==0, N-—1, is verified.

Remark. If ("~,0 in {My] then its .approximation) #*4
ig likewise ~,0 in [My], since 9*A~, Crin NF. Thus 9*4~,0 in MF.
The map element of class {C"} in the above mapping thus be-
longs to B, _y((X%,3), £¥) of Mayer [1], (II, §4). The converse
of this fact is likewise true.

TWe make use of this remark in discussing the cases 1=0 and
i=N—1.

a) 1=0.Then Mayer[1](IL,§ 4), By(HM, X)and B_(( £¥, M),XX)
are dually paired to the group of reals modulo 1. Let M be con-
nected. Then By(M, X) is the zero group since all By(M;, X;) for
subdivisions X “tle zero groups ({M|{My> is connected). Thus

7) Established above for My > My,. But for any pair 9Ny and MWy there
is a common refinement My
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B_,((Z%, M), TF) is a zero group. But by the above remark thisx
gronp is isomorphic to the (¥-—1)-homology group of [Men | —2L,
since any (N—1)-cycle in an N-spheve bounds. Thus for =0 and
I connected, the above dual pairing reduces to the fact that the singular
homology group of |My|—M of dimension (N—1) vanishes.

h) i=N—1. Now By(M,Z) and B_y((X¥, M), Z¥) are
dually paired. But By—y(M, X)=DBxy—1(M). Moreover, by the pre-
ceding remark B_y((ZX, M), Z¥) is isomorphic to the subgroup

of those (singular) zero classes of [Miy]—M whose elements bound

in |Myl. Thus this subgroup of the zero-homology group of | D] — L
and By_1(M), the (N—1)-homology group of M (the first with &
the latter with H as coefficient group) are dually paired (to the group
of reals mod. 1).

We finish this paper with the proof that {X;} defined by (2.3.1)
is cofinal in {2;}. This we do in showing that any finite open covering
I={U3}, i=1,...,0, is shrinkable to a covering X'={U7} of {I,},
which then refines X. )

Let AN .. O N M==0. Then some point P of M is in Uy,..., 20,
and thus bas a non-zero distance from the boundaries of 1,..., U,
respectively. Let ¢ >0 be smaller than any of these distances.

For each (Uy,..., W) with W N...OWLN M0 we choose such
a point and such an & and then denote by £>0 a number smaller
than all these ¢'. Since |My| is normal we may shrink {1} into
a covering {U;} such that W;CU; and at the same time we can
achieye that each point of U; of a distance >¢ from its houndary
shall be a point of Uj. Then the chosen point P of (y,...,10,) with
WN.LLOUN M0 which belongs to this intersection, will also be-
long to WiN..OUNM. Thus

(2.17) LN OWNOME=0>WN . OWN M =E0.

Obvionsly a simplex (3;...2,) of the property

(2.18) UWNLOWNHE=0 but WO OUAOM =0
is shrunk into (U;...10;) with

(2.18.15

N . OWO U =0,
Now
(2.19) WO OGN =00, NGO =0,

iom
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But the right member in (2.19) implies either N .. O W, N =0
and then (2.17) WiN..OWNI =0 or U, N..NOWLNIM=0 and
then (by (2.18)) (2.13.1), but this contradicts the left meniber
(2.19). Therefore
(2.20)

and {13} e {3}

0G0 AN I W0 L OWN =0

Appendix: A generalized Alexander Duality Theorem:.

Using linking products for singular cveles G —1c9! (whose
(pointset) intersection EN——1NJ js empty) and taking account of
the retract property of the polyhedron 37 imbedded in {My] an
N-manifold (and not necessarily a sphere), we shall present a second
proof of Alexander’s Duality Theorem which, with some modifi-
cations, will run along the lines of Alexandroff-Hopf [5], Chap. XI.
So with MC|[My], a topological polyhedron, we denote as before
by <{M|My> the subcomplex of iy containing all N-simplexes
of My (and their faces) which have points of I as inner or boundary
points.

W M) =WMF—NF shall denote the open subcomplex of MF
containing all cells 9*c7 of MF with ' e (U |Wx>. In (2.6) we have
already proved that M |My>CU*(M). We choose mesh My so
small that the open set U*(M) is a retract neighborhood of 1;
this means the exisiemce of a mapping g: UXNM)— U, leaving points
of M fired.

Let now 91~ 0 in (Mx) be a singular cyele of M but L, 0 in 3 :

(1.1) S PT=AK R My,

(L.2) 940 in L

The ahove chain &! we approximate in the smallest K71
containing subcomplex of My; let K1 e My be this approximation.
In this approximation-process ¢'=2R=! is approxvimated by
Di=3K*! Dut this in the smallest # containing a subcomplex
of My (Seifert-Threlfall {6], § 72). Thus (1.1)

2.1) Di=3RH, K e My,

2.2 Dl ¢t in <A MyCUHM),
22) i


GUEST


200 W. Mayer:

since the smallest 9f containing a subcomplex of iy is contained
in <51 My> and thus in M| Myp. We shall prove that the above appro-
simation D e Wty does not bound in W*( ). Otherwise, Di=3DH1,
DHICU*(AL), in the mapping ¢: WHM)— I leads to g(D') =g (DH1),
that is to g(Di) ~;0in 3f. On the other hand g(.D%) ~sg(¥) =9 in M
(by (2.2) and 9! e M). Combining, we should have 9!~ ,0 in M which
contradicts (1.2). 8o Df e (M| My> bounds in My but not in | Ma>
(which is in W*(H)).

Hence by Mayer [1] (I, § 5) in D&—U*(HM) theve is a cyele
E¥—i-t=9* 4" hounding in |My| and linking DY ie.

EV-i-1o Di=k 0,
and thus linking # which is homologous Df in W*(M) §).

Remark., -1 does not bound in |My]—IM. Otherwise
EV—i-1 = 2@, @1 ¢|My|—I. By definition G¥—i—To g =E¥~1o 9,
and since @ le|Myl—H and ¥'CAH this linking product would
be zero, but it is not zero.

We now state as our first result: To any eycle ¥ of M bounding
| My| but mot in I there cxists o cyele G2 of [My|—I bounding
in |My| but not in | Wiy —M which links 4'°).

On the other hand let G—=1C|My| —IL be a cycle bounding
in | My] but not in Myl — M:

PO
I
2 2

(3.1) EV-1= 2@, @V1C| W,
(3.2) V=1 0 in [yl — .

Since the set intersection of GN—1 and M is empty, (Viy),
the mesh of Py, can be chosen so small that the closure of the
above W*(J) lies in some subcomplex P of Mty whose intersection
with V-1 iz likewise empty:

) THAM)CP, G—+1OP=0.

%) In using Mayer [1], loc. cit., (M|My> and ME—UF(I) replace the
complexes 3 and (3K, 3) vespectively of this paper.

%) Instead of coefficient groups H and G we use finile-dimensional vector

spaces over the diserete field K (as in footnote 2). The respective singular hiomology
vector spaces are taken with diserete topology sucl that the above linking product
{of the singular homology classes) is (trivially) bicontinuous.
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This W*(M) moreover can be taken to he a .Euclidean closure”
(Alexandroff-Hopf, p. 346) of M with respect to P. Then (by
A-H., ibid., Satz IV) to any cycle 3 of W*(M) a cycle 3° of M exists
such that 3' ~s3 in P. With such a choice of #(Diy) we approximate
@Vt by a cycle 9*AHT of {EUMP, where EIIMP
is the subcomplex of M} containing all N-cells of MF (and their
faces) which have points of &1 as inner or boundary points.
Thus (Seifert-Threlfall [6], § 72)

(5) PEAGHT Gl\r—i——l = QRA'—I’ ’L()*_Ai';'l, RI\'—I'C{GN—i—] I :‘gl’{,\/,

Since MF has a mesh <2u(My) (where p(Diy)=mesh My).
LEN-i-1 Iy s in a 2u(Mx)-neighborhood of €1 Hence for
(M) sufficiently small (such that (4) Usymp () N P=0)
we have
{5.1) ' FFAFINP =0, {K¥INP=0.

Thus #*471 and ]¥ are in

[ My —PC{ M} — WM ) = MEF— U(H).

But %A1 awhich bounds in [y} ((3.1) and (5)) does not bound

n PE—UH(M). Otherwise G¥—=1 by (5) would bound in | My —M

contradicting (3.2). Hence by Mayer [1] (I, § 5) in (M| Myy there
is a cyele D! bounding in |My] and linking F*AH1: §*4H e DI==0.
Since Di e (M |DypC U*( M), there exists in M a cyele 9 such that
Di~ 9 in P. But then

(6.1) g*4iH o Di=g* 4+ o gi
since §*AH1C{ My} —P. Likewise

(6.2) §* A o gi={gN—i~1 3 Pi

' gince $ICUCP and §*45H ~, 1 in |My]— P ((5), (5.1)). Thus

E¥i—lo gi=0 and our second result: To any cyele €' of
M| —M bounding in |My| but not in | Win|—M there exists a cyele 9°
of M bounding in |My, (and not in I) which links Ey—-1. The
linking product obriously pairs the classes of i-cycles of M bounding
in |My and those of (N—i—1)-cvcles of [Myl—M bounding in
1My| and by the foregoing two statewents this pairing is orthogonal.
Of these two discrete vector spaces (footnote 9) that belonging
to I, a finite complex, is of a finite dimension and thus linearly
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compact (Lefschetz II, (27.7)). Thus we have Defore us the situ-
ation of Lefschetz IT (20.6) (i. e. its counterpart for vector Spu“(‘e‘s)
which leads to the main result: The subspace of the singular 7LOHlOZOél]
vector space of M of classes of i-cycles bounding in |Din| and the sub-
space of the singular homology vector space of |My|l—M of classes of
gl\'—~i~1)»cg/cles bounding in |My| are dually paired to the field K
in the linking product when taken with finite-dimensional coefficient
vector - spaces (over K) H and @ respectively, with H and G dually
paired to K. .
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Sur un paradoxe de M. J. von Neumann.
Par

Waclaw Sierpifiski (Warszawa).

E et H étant deux ensembles situés dans un espace métrique U,
dans lequel la distance entre deux points est désignée par o, nous
dirons que Pensemble H est plus petit au sens de I J. von
Neumann que lensemble E, ou, plus brievement, que H est plus
petit (N) que E, s'il existe une fonction f(p) définie pour p ¢ B qui
transforme d’une facon biunivogue E en H et telle que

of@),(@)< alp,q) Dpowr peB, ge B, pFql).
Nous dirons que Pensemble H est plus petit (N) par décompo-
sition finie que l'ensemble F, &'l existe des décompositions des
ensembles E et H en le méme nombre fini d'ensembles disjoints:

E=FE,+Fyt...+En ¢t H=H+Hy+...4+Hn,

telles que, pour k=1,2,...,n, Pensemble H, est plus petit (¥) que
Pensemble F2).

M. J. von Neumann a démontré (en utilisant Paxiome du
c¢hoix) que tout segment d’une droite est plus petit (¥) par décom-
position finie que tout autre segment de cette droite 3). La démon-
stration de cette proposition est assez longue. .

Or, MM. Banach et Tarski ont démontré 4) que deux en-
sembles de points, situés sur la surface de la méme spheére et qui
ne sont pas ensembles frontidres (par rapport a cette sphére) sont
équivalents par décomposition finie (c.-2-d. se décomposent en le
méme nombre fini Q’ensembles disjoints respectivement congruents).

1) Voir J. v. Neumann, Fund. Math. 13, p. 85. Cf. aussi D. Kirszbraun
Fund. Math. 12, p. 77 et autres citations au renvoi®) L. e.; aussi W. Sierpinski.
Mathematica 11, p. 222.

2) M. J.v. Neumann dit dans ce cas (1. ¢.) que Pensemble H est par rapport
a E ,zerlegungskleiner®.

3) 1. e., p. 115,

4) Fund. Math. 6, p. 267, Théoréme 31.
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