46 F. Rothberger.

Thus we have an increasing Q-sequence A, A,,...,4q,...,4
and we have to show that lim A,= (4.
a->8Q

wyone

Otherwise there would exist a set Ap+ C4 (and obviously £4)
such that A,<<dg for all a<®. But it is easily seen that for
every o there is a f such that

Bo—Ap=4

hence (for all a),

or B,+A,=0C4;

either H,—Adpo=d4 or B,+dg=04;

it would follow, by the lemma, that (5.1) is of measure 0, contrary
to the hypothesis, g. e. d.

Remark. Theorem 7° can be proved in exactly the same
way; all that’s necessary, is to replace ,,measure 0” by ,first category”,

and ,positive outer measure” by ,second. eategory” in the above
proof.
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A positive, lower semi-continuous, non-degenerate
function on a metric space.
By
Marston Morse (Princeton, N. J., U.S.A.).

§ 1. Introduction. Many terms in analysis such as the
order of a zero or pole of an analytic function, the multiplicity of
a branch point, a critical point, an extremal, the index of a critical
point or extremal, a non-degenerate critical point or extremal, etc.
admit useful topological definition. Seel!) Kuratowski (1), Sei-
fert and Threlfall (1), Morse (3), (6). These definitions are not
precisely equivalent to the definitions of analysis, but are equivalent
in certain well determined consequences. The topological definitions
give the principal relations in analysis in the large their proper
setting, and lead to the simplest proofs. Artificial distinetions such
ag those between a critical point of a function of » variables and
an extremal of an integral disappear.

It is, however, desirable that a topological theory which is to
unify many forms of analysis of historic importance shall choose
its definitions and axioms not so much in a subjective mood of
abstract generality, as from the viewpoint of ready availability and
interpretation in analysis. It is with these ideals in mind that the
definitions and axioms necessary for the theory of a positive, lower
semi-continuous, non-degenerate function F on a metric space S
are presented.

The principal term in analysis to be topologically characterized,
both in the small and in its global setting, is that of a non-dege-
nerate critical point or extremal. Historically a critical point of
a function f of class " of n variables (#,...,2,) is non-degenerate
if the Hessian of the function fails to vanish at the critical poinf.
An extremal g which satisfies the self-adjoint conditions of a boundary
problem in the large is termed non-degenerate in the sense of analysis

1) References are listed al the end of the paper. References to Morse are
indicated by the lefter M. '
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if the accessory i)roblem [M (2), p. 28] involving the Jacobi diffe-
rential equations and accessory linear boundary conditions has no
characteristic root which is null. A typical problem is that of finding

geodesics which join two fixed points 4 and B on a given compact, -

connected, coordinate m-manifold M. See § 9. A geodesio ¢ in such
a problem is non-degenerate in the above sense if and only if B
is not conjugate to A on g. See M (4).

A function all of whose critical points (including critical extre-
mals in & houndary problem) are non-degencrate, is itself called
non-degenerate. There iz a sense in which degenerate functions
have a measure zero among all admissible functions, and in this
sense non-degenerate functions represent the gencral case. For an
example see M (2), p. 233.

Three axioms on S and F are presented here for the first time.
The topological definition of a non-degenerate critical point under
the guise of Property € (§2) is new, and is shown in § 5 to be equi-
valent to an earlier definition of an hometopic critical point when
the function F satisfies our three axioms. The complete set of
relations between the numbers .M, of critical points of index %
and the Betti numbers R, of § is derived.

The singular homology theory of Bilenberg (1) is used. Its
adequacy is a consequence of the topological non-degeneracy of the
critical points. A Vietoris or related topology would be required
to obtain similar results, were the function degenerate.

It is shown that the three axioms can be verified in a typical
field of analysis. A purely topological application is made in
determining the Betti numbers of the space of paths joining two
fixed points on an m-sphere (m>2). When the function F is not
assumed to be topologically non-degenerate there are two other
levels upon which theories have been built. (See M (3) and (5)).
These levels are briefly contrasted.

8§ 2. Definitions. The space S shall be an abstract metrie
space with points p,q,... with distances pg=gp, pg>0 unless p=g¢,
pp=0 and pg<Lpr+rq. The function F is defined over § and is to
be numerically valued, positive and single-valued. We admit the
value --co. The subsets of points p of § for which F(p)<<¢ or F(p)<e,
¢ finite, will be denoted by S, and §,_ respectively. The points

of 8. are said to be below ¢, and the points p on the locus F(p)=r¢
at the F-level c.
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It Flp)=c<oo, an F-neighborhood of p is a neighborhood
of p relative to any set 8 for which b>¢. If p is in a subset 4 of §,
an e-neighborhood of p relative to A is the set of points ¢ in A for
which pg<te. The uge of an F-neighborhood instead of an ordinary
neighborhood will make no formal difference in the proofs. The
reason for the introduction of F-neighborhoods is that the principal
assumptions made concerning F and 8§ have been verified in very
difficult theories such as minimal surface theory, provided F-neigh-
borhoods are used.

Let 4 be a subset of 8. Let I represent an interval, 0<{i<1,
for a variable ¢ termed the time. A deformation D of 4 on § is
defined by a continuous mapping of 4 x I into §,

D:4A XIS,

in which the submapping of A into § defined by D when {=0, shall
be the identity. The image of a pair (z,%), @ € 4, { eI, under D,
is a point D(,?) in S. We say that D(z,t) replaces w at the time ¢.
Tor fixed » the path in § defined by D(z,t), 0<<I<1, is termed the
trajectory of @, and D(z,1) the final image #* of 2. Yor fixed t, D(x,1)
defines a continuous mapping

Dt: A—~S.

The initial mapping DO is the identical mapping of A onto 4;
D' is the terminal mapping of 4 into S.

Let D, be a deformation of 4 in which the final image of. A
under D, is AL Let D, be a deformation of a subset of 8 Whgh
containg A'. Then the product deformation Dg=D,D; of A is
defined by setting

%)

Dy(a,t)=Dy(,2t) <
<1),

0<t
Dy, t) =Dy(a,2t—1) <t

3

where & is in A, and #* is the final image of » under D;. A product
deformation

dpy=DnDpy... Dy=Du[ Dy ... Dil (@y=D4)
of A is inductively defined whenever the final image of A undf?,r A
(m =1,...,n—1) is in the subset of S over which Dt 18 defined.

4
Fundamenta Mathematicae. T, XXXV.
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We shall need a composite deformation D,-D, defined as
follows. Let D, be a deformation of 4 in which A?is the image of 4
at the time #; 0<{t < 1. Let D, be a deformation of the union of the
sets Af, 0<i<l, with Dy(w,1)=2 for sed. The composite
deformation Dy=D,-D; of A is defined by setiting

Dy(2,1) = D[ Dy (m,8), 1]~ (0<I<KL)  (w e A).

This definition does not involve D,(p,t) when {<1. However
in the application the assumption that D, is a proper F-deformation
will involve D,(p,t) when t<C1.

A continuous mapping T of 4 into § will be said to be defor-
mable into the identity if T is the terminal mapping D' of some
deformation D of A. If the union of the trajectories of points of 4
under D is a set B, T will be said to be deformable into the identity
in B.

An F-deformation of A. A continuous deformation of A
which replaces each point by a point #f at the time ¢ is called an
F-deformation of 4 if

R F(at) <F(x)
An F-deformation of 4 is termed proper if

' Flat)<F(x)
whenever af==go.

The i(}entity mapping of 4 onto 4 for each ¢ defines a special
F-deforgaatmn which is trivially proper. If F is defined in the (u,v)
plz?ne with F(u,v) =u?+12% the replacing of each point (w,v) by the
point [u(lf—t), B(1—t)] defines a proper F-deformation of the
(%,v)-plane into the origin, holding the origin fast.

N The ‘ess_entiayl topological properties of a non-degenerate
critical point or extremal motivate the next definition.

. Points o with Property C. A point o of S, F(o) finite, will be
said tohm')e Property C if there exists a proper B-deformation D, of
some F-neighborhood TU(o) of o such that

(C). Dy leaves o invariant and deforms U(c) into a topological
f-d@sc K(o) on 8 (r=0) which contains o as an interior 2) point and
is below F' (o) except for o when r >0, and which reduces to o when 7=0.

#) The point o is to be an interior poi i
b point of K (o) in the sense that tl
antecedent of ¢ on the defining euclidean r-dise & shall be an interiox poin?: of ;0‘3
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(C"). The terminal mapping D: of K(s)NU(0) defined by D, is
F-deformable in K (o) into the identity, holding o fast.

Whew o has the Property O, the integer r is termed its indesx.

When the index r=0, o affords a proper, relative minimum
to F. For the deformation of U(s) into o displaces every point p

-of U{c) not o, so that F(o)<F(p), since D, is proper.

Example 2.1. Suppose that § is the euclidean 2-plane with
rectangular coordinates (w,y). Set F(z,y)=2"—y* Then the origin ¢
has Property C. We take D, as the deformation which replaces
each point (z,y) by the point [#(1—1),y] at the time £, 0<<I<<1.
The terminal image of an ordinary neighborhood

4 P e {¢>0)

of ¢ is the 1-dise —e<y<Ce, £=0. On this 1-disc F(z,y)<F(0,0)
except at o. Condition (C'') is satistied in this case, since the terminal
mapping DY of the 1-disc is the identity.

The fact that D) is the identical mapping of K(o) onto itself
in the preceding example, exfends to any non-degenerate critical
point of a function f(z,...,2,) of class ¢'”, provided D, is properly
defined. See M (3), p.46. In more general cases it seems that
one must be content with a deformation of DL into the identity.
Topologically, however, a deformation into the identity has for our
purposes the essential properties of the identity.

The F-reducibility of § at infinity. We shall say that 8
is F-reducible at infinity, if corresponding to any compact subset A
of § there exists an F-deformation D4 of 4 into some subset S,
of §. The value of ¢ will depend upon A in general, and in general
there will exist no one F-deformation of S into a set S.. An agsumption
that § is reducible at infinity conditions all subsets of § on which F'
is unbounded, even if F' is never infinite on §.

Example 2.2. Let H be a closed set in the (z,%) plane which
in terms of y and the polar angle § has the form

37

T y<1.

<0<

=]

4%
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Let open circular discs with centers at the points 1—}-,
n

n=2,3,..., and with radii so small that the closed discs fail to
intersect, be removed from H to form 8. Let § have the metric of
the (z,y) plane. Let

1

T

(y=£1),
with If’z.oo when y=1. The space § is compact. Any continuous
deformation of § in § must leave the point (0,1) fixed. There i
accordingly no F-deformation of § into a set S, so that & is not
F-reducible at infinity.

Example 2.3. Let 8’ he the space § of Example 2.2 with
the point (0,1) removed. Let F be defined as in Example 2.2. Any
compact subset 4 of §' is bounded from (0,1), and admits an
F-deformation into a subset 87 of §, so that & is F-reducible at
infinity. There is no one F-deformation of 8’ into a subset 8.

‘ § 3. Th_e threg axioms on § and ¥. In the terms defined
in the preceding section the three axioms on § and F upon which
the theory will be built are as follows.

'Axiom I: .The meiric space S shall be arc-wise conmected, the
function F' positive, and the sets Sc compact for each finite e.
Axiom IL § shall be F-reducible at infinity.

Axiom IIL There shall ewistia set

o) o L .
the following properties: (o) of oints @ in S with

(1) Bach point o shall have the Property (.

(2) The number of points o bel ing
be finite. 0w any finite F-level ¢ shall

(8) Corresponding to any finite o
| : onstant ¢ there shall ewxist
? pro'per F-deformation Ac‘of 8. in which the points of (o) in S, are
;LEJEM(;‘;?;?:?;? otlhc-r points of S, are displaced, while the value of
he fina i ‘
gy at I wvmage B(x) of ¢ in 8¢y shall vary continuously

We shall now obtain the firgt

fel((ﬂfl('l etquallyiwel} be replfweed by a function which ig bounded
el instead of being positive. The addition of a constant to F
would change none of the properties to be deduced

consequences of these axioms.
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Axiom I implies that ¥ is lower semi-continuous.
In particular let [p.] be a sequence of points p, in S which
converge to a point p. In accordance with the definition of lower
semi-continuity we must show that
(3.1) lim inf F (p,) > P(p).

Let ¢=lim. inf. F(p,). If ¢=o0 (3.1) holds. If ¢ is finite let e be
any positive constant. There will exist a subsequence [gr] of [pa]
such that [¢,] is in Sppe. The set S.p. is clogsed in §, so that p is
in S,.. That is F(p)<e4-e. Since e is arbitrarily small F(p)<e,
and the proof of the theorem is complete. '

The deformation A% We shall make use of the n-fold
product of A, by itself, regarded as a deformation of §.. Let E(z)
be the final image of « in S, under 47. A point y which is given
as an image E"(z) of a point 2 of S, will be said to have a deformation
index n relative to A,.

A value of F at any one of the points o of the set (o) of
Axiom IIT will be termed eritical and any cther value ordinary.
We shall prove the fundamental theorem.

Theorem 3.1. Let a be a critical value of ' and (wy,...,ws) = (w)
the set of points of (o) at the F-level a. If ¢>a is any constant such
that there are no critical values of F on the interval a<F <ec, there
exists an F-deformation of S, into a subset of (w)US.—, holding each
point of (c) on S fast.

To prove this theorem three lemmas are required.

Lemma 3.1. If [b,c] is a closed interval containing no critical
values of F, then the difference
(3.2) 0(x)=F(x)—F[E(x)]
is. bounded from zero for x on S;—=Sp—.

If the lemma were false there would exist a sequence of points
[p] on S;—S8,— such that 6(p,) converges to 0 with 1/r. Without
loss of generality we can suppose that p, converges to a point p
in §,. There are two cases to be considercd.

Case L. F(p)<b. Since 4,is an F-deformation F[E(p)]<F(p)<b.
We have
(3.3) lim 6(p,)=b—lim FLE (p,)]=b—F(E(p)) >0
contrary to the choice of [p,]; in (3.3) we have made use of the
continuity of F(E(x)) in accordance with Axiom IIL

(B(z)=E"(2))
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Case IL F(p)>=b. With 6(x) lower semi-continuous for & in S,

lim inf 0(p,) > F (p)—F (E(p)).

Since F(p) is on the interval [b,¢], p is not a point of ¢, and
in acecordance with Axiom ITI, p is digplaced into a point B(p)=Fp.
Sinee 4, is a proper F-deformation the right member of (3.4) is then
positive, contrary to the choice of [p.]. We infer the truth of the
lemma.

The preceding lemma implies the existence of an integer n so
large that the final image of S, under 47 ig below the F-level b of
the lemma. If as in the theorem [a,c] is a closed interval in which
@ ig the only ecritical value, b can be taken arbitrarily on the
interval a<<b<<¢, and we can infer that
(8.5) lim [maxF[E" () l=a

n=oo

(3.4)

(@ in 8.

The limit in (3.5) cannot exceed & by virtue of the preceding
lemma, and it cannot be less than a because F[LE"(w,)]=a for
every a.

An F-ﬂe@ghboﬂwod of the set (w) of the theorem shall be any
neighborhood of (w) relative to 8, where b >a. Recall that F(w;)=a.

Lemma 8.2. Let [a,¢] be a closed interval in which a is the
only eritical value. Let (w) be the subset of points of (o) at the F-level a,
and let U(w) be an F-neighborhood of (w). If m is sufficiently large A7
deforms 8, into a subset of U(w)US,—.

If the lemma were false there would exist a sequence [p,] of
points p,, on 8, but not below a, with deformation indices n(r)>1
relative to 4., which become infinite with #, while pris never on U(w).
It follows from this choice of [p,] and from (3.5) that

(3.6) Lim F(p,)=a.

Let g, be a point such that E(g,)=p,. Without loss of generality
Wedcan sxgppc%s‘f that p, and ¢, converge regpectively to points p
and ¢ in om (3.6) and the continuity of F(B

L B y (B()) for @ in S,

a=lim F(p;) = lim F[E(g,)|=F[B(g)].
Fromx the lower semi-continuity of F and from (3.5)

3.7 Flg) < lim inf F(g,) < Um sup F(g,) <a-
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Since F(¢)=F[E(g)l=a, (3.7) reduces to

(3.8) F(g)=lmF(g)=ea

From (3.8), (3.6) and the relation E(¢r) =pr,

(3.9) lim 6(q;) = lim F(g,) —lim F (p,)= a—a=0.

‘We shall find a contradietion to. (3.9). For that purpose we
shall show that ¢ is not a point w;. Otherwise g, would converge
to w; as 1/r tends to 0; then H(g,)=p, would likewise converge
to wy, since H(w;)=w;, and E(x) is continuous. [Axiom IIT]. Hence
F(p,)=F[E(q)] would converge to F[E(g)}=F (w;)=q. For v suf-
ficiently large the points p, would be in U(w) contrary to the choice
of [p,]. Hence g is not a point w;. )

Since g is not a point w; and F(g)=ga, ¢ is not a point of (o).
By virtue of the lower semi-continuity of 8(z) for z in S, and the
fact that A, displaces every point of S, not in (o), (such as g), we
infer that

lim inf 6(g,) > 0(q) >0

contrary to (3.9). This establishes the lemma.

Lemma 3.3. Let A be a subset of S and p a point of A. If D
is a (proper) F-deformation on 8 of the closure of an e-neigborhood N4
of p relative to A, thereemist a (proper) F-deformation D* of all of 4,
which deforms points initially in A and sufficiently near p, as does D,
and which reduces to the identity for poinis initially in A—NE

Let e; be a posmve constant <e. Under D* points initially
on the e;-neighorhood Nel of p relative to 4, shall be deformed
as under D, while points initially on A— N2 shall be held fast. Of
the remaining points of 4 let ¢ be a point such that e;<gp<e. The
point g shall have the same image ¢ under D* as under D until
the time ¢ reaches t(q), where 1—i(g) divides the interval [0,1] in
the ratio in which gp divides [e;,¢]. For t2>1(g), g7 shall remain fixed.
In particular when gp=e, #(¢)=1, and ¢ is deformed as under D.
When gp=e, #(g)=0, and ¢ is held fast for all time. The resulting
deformation D* is continuous by virtue of the continuity of
the mapping D of N2xI into 8. The deformation D* is clearly
a (proper) F-deformation since D is, and the proof of the lemma
is complete.
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Proof of Theorem 3.1. Since each point w; of the theorem
is a point o, with F(s)=a, and o has Property C, we can state the
following. If b is any constant for which b—a is posifive and suf-
ficiently small, and e is any sufficiently small positive constant,
there exists a proper F-deformation Dwi of the closure of an ¢-neigh-
borhood N (e,w;,b) of w; relative to §;, which holds w, fast, and
caries N(e,w;,b) into a subset of w;+8,—. We suppose ¢ g0 small
that the neighborhoods N(ew;,b), [1=1,...,k] arve digjoint and
contain no point of (o) other than the respective points w;. In accord-
ance with the preceding lemma there exists a proper F-deformation
Di, of 8, which deforms points initially in N (ey,wy,b), for some
positive e;, as does Dy, while points initially in §,—N(e,w;,b) ave
held fast. The set

U (w) = Union N(e,,w;,b) (¢2=1,...,k)

is an F-neighborhood of (w). By virtue of Lemma 3.2 the defor-
mation 4z, for n sufficiently large, will carry 8§, into a subset of
U(w)+8,—. For such an n the product deformation

D3, DY,... DY, A2

lUk
will carry 8, into a subset of (w)US,_, holding the points of (o)
in 8, fast.
This completes the proof of Theorem 3.1.

Theorem 3.2. Let a<<F<<b be an interval on which there are
no critical values F(o). Let [o], be the set of points in (o) at the F-level a.
The respective homology groups of Sy and of ¥=2=8,U[c]l. are
isomorphie, with each homology class V in Ss— corresponding to the
sub-class of V in Y.

This theorem follows from Lemma 11.2 once statements (a)
and (b) have been proved. . '

(2) Bach k-cycle » in Sy is homologous in S,— to k-cycle in Y.

(b) A E-cycle # in Y which is bf)'zmding in 8y is bounding in Y.
) ]E.’roof of (a). Let 4; be the deformation associated with Sy
in Axiom III. Then for z in Se—

3y = Myx—g (in 8p-)
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in accordance with (11.1). The value of F at the terminal image E(p)
under 4, of p in 8y, varies continuously with p, and hence on the
compaet carier of » is at most a constant e<b. We may suppose
that a< e¢<b. Set o' = A,x. Since 2’ is in Se, we may apply the defor-
mation D of S, affirmed to exist in Theorem 3.1; then D deforms S,
into Y. Using (11.1)

3Dz =Da'—a' (in S.).

Thus @ is homologous in §,— to Dz’ in Y. This establishes (a).

Proof of (b). By the hypothesis of (b), #=20w, where 2z is
a k-cycle in Y, and w a (%+-1)-chain in 8,—. As in the proof of (a),
the chains w'=J,w and &' =Az are in some set S, with a< o< b.
We have &'=0w’. On applying the deformation D of Theorem 3.1
which deforms §; into ¥, we have terminally

Dz'=03Dw' or Dz~0in Y.

But #in Y is deformed in ¥ under 4, into ¢', and 2’ is deformed
in ¥ under D into Dz, so that # hounds in ¥ with Dz. Thus (b)
holds and the theorem follows.

" § 4. Property C. It will be convenient to order the points (o)
of Axiom IIT in agreement with their F-values, ordering points
of ¢ with the same F-value arbitrarily. Let w be any point of the
set (o). Let (o), denote the finite subset of points of (o) whose order
is at most that of w. Let F(w)=a. Set

(4.1) X(w) = SU[0]p.

Indicating order among the points (¢) by the signs >, < in
the usual sense, we have a sequence (possibly finite) of points,
(4.2)

and a sequence of sets

03 <0< .uuy

X(o)CX(o)C...

We shall be concerned with rel. cycles in the respective sets
X(¢), taken mod. X(o)—o.

Lemma 4.1. Given e, any rel. k-cycle 2 in X (o) is rel. homologous
tn X(o) to a rel. cycle in an e-neighborhood of o.

Let B"2 be the n-th barycentric subdivision of z. By virtue
of (11.2)

dpp=PB'%—z—0d2 [in X(0)].


GUEST


58 M. Morse:

Since 3z is in X(0)—o, 0d% is likewise, s0 that 2~ B% rel. in X(o),
Hence B2~z rel. in X(o). Let B"z be written in the form,

(4.3) Bz=gimi=u-+v (i=1,..,m)

where ¢, is in @, 7; is & k-cell, and u is the sum of the terms g7 for
which 7 is in X(o)—o. Then it is trivial that B"z~v rel. in X(o).
If, however, » is sufficiently large, the norm of each cell 7; in (4.3)
will be Jess than e, and v (possibly null) will be in the e-neighborhood
of o. Since 2~B"z~v rel. in X(c), the lemma follows.

We shall refer to the topological r-disc K(o) associated with
the point o. Cf. Property €. For chaing in K(o) the modulus will
invariably be K(s)—o. The following lemma is proved exactly ag
was Lemma 4.1. )

Lemma £.2. Any rel. cycle in K(o) is rel. homologous in K(o)
to a cycle in an e-neighborhood of o.

The case where o has the index #=0. Both Lemma 4.1
and 4.2 are trivial when #=0; in this case K(0)=o0, and the modulus
is empty. A rel. cycle in K(o) is then a eycle in K(o). The k-dimen-
sional rel. homology group of K(¢) consists of a null element exeept
when %=0. When %k=0 there is one non-trivial homology class.

The following theorem is central.

Theoreny 4.1. The n-th homology group of X(o) mod. X(o)—o
is isomorphic with the n-th homology group of K(o) mod. K(o)—oa,
with each relative homology class V in X(o) corresponding to the
subclass of V in K(o). -

The proof of this theorem depends upon the validity of
statements (a) and (b).

(a) Each rel. homology class V of X(o) contains at least ome
rel. cycle in K(o).

(b) Each rel. k-cycle o in K(c) which is rel. bounding in X(o)
is rel. bounding in K(o).

‘I:“Toof of (a). We refer to the F-neighborhood U(a).used in
deiscmbmg P}‘operty C. § 2. It follows from Lemma 4.1 that there
exists a chain z of the homology class V in U(o). On making use

of the deformation D, affirmed to existg when ¢ has Property C,
(11.1) yields the relation

af)ag =Ea‘z_‘ &— ﬁaaz.
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Here f)ué)f is in X(o)—o, since 3z is in this modulus; D,z is
in K(o), and De is in X (). Thus # is rel. homologous in X (o) to
Dy in K(o).

Proof of (b). Let ¥’ be.the rel. homology class in K(o) which
contains @. Let ¢ be positive and so small that points of K(o) within
a distance ¢ of o are in the F-neighborhood U(o). By hypothesis
in (b), dw=uw for some (%4-1)-chain w in X(s), where = indicates
equality up to some chain in the medulus X(c)—o. Let w and 2 be
subdivided barycentrically so many times (say r times) that the
norms of the resulting chaing are less than e. Since dw=g we have

(4.4) OB w=R"w=Br [meod. (X(s)—o0)].

From the chain B'w=gz let all (k41)-cells 7; in X(o)—o
be dropped, giving a (k+4-1)-chain w’. Let 2’ be similarly obtained
from B"x. Then

(4.5) o' =g’ [mod. (X(o)—0)].

It is clear (ef. proof of Lemma 4.1), that B’z and hence «’ is
in ¥'. Moreover w’ and &' are in U(o) by virtue of the choice of e,
so that in accordance with Property ¢ of ¢ one can apply D, to
both members of (4.5) with the result

(4.6) dDgw' = D, [mod. (X (o) >0)].
The terminal mapping D! of D, restricted to K(o)NU(o), is
F-deformable into the identity in (o), holding ¢ fast. Cf. Property

C. Hence
(£.7) D' ~ ' [rel. in K ()]
From (4.6) and (4.7) we infer that #'~0 rel. in K(o). With z*
each other chain in ¥’ is rel. bounding in K(o).
Statement (b) is accordingly true, and the theorem follows
from Lemma 11.2.

Corollary 4.1. If o is a point (c) of index r, the Betit numbers
Py of X(0) mod. X(o)—o are O :

By virtue of the preceding theorem the desired Betti numbers
are those of the r-dise K(o) mod. (K(o)—o0), and as is well-known
must then equal &%,
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§ 5. Homotopic eritical peoints. The question has been
left open as to whether the points of (o) are the only points of §
which satisty Property €. This question can be answered with the
aid of an earlier topological definition [M (3)] of a critical point
as follows. A point p of § at which F is finite will be called homoto-
pieally ordinary if some F-neighborhoed of p admits a proper F-de-
formation (0<{t<1) which ultimately displaces p. A point p at
which F is finite, and which is not homotopically ordinary, will

be termed a homotopic critical point. We begin with the following .

Iemma.

Lemma 5.1. A point p of S which has Porperty C is.a homo-
topic eritical point.

Suppose that F(p)=a¢ and set X=8,—+p. The proot of
Theorem 4.1 and its Corollary shows that the Betti number P,
of X, mod. X-—p, is 6f, where r is the index of p. There is accordingly
an r-cyele z in X, mod. X—p, which is rel. non-bounding. If the
lemma were false there would exist a proper F-deformation D of
some F-neighborhood of p which displaces p. By modifying D,
as in the proof of Lemma 3.3, one can obtain a proper F-deforma-
tion D, defined over all of X, and identical with D in its deformation
of points of X sufficiently near p. We have

3Dye=Dys—2—Dydz (in X).

Since the carrier of 2 is below a, except at most at p, and D,
displaces p, Dy2 is below a. The chain D, 32 is below o with dz. Thusz
is rel. bounding in X. From this contradiction we infer the truth
of the lemma.

The following theorem characterizes the set (o) in Axiom IIT.

Theorem 5.1. The set of homotopic eritical points of I, the
sei of points of 8 with Property C, and the set (o) are identical.

It follows from the preceding lemma that each point of (o)
is a homotopic critieal point.. Conversely every point p not in o,
with F{p) finite, is homotopically ordinary; for it F(p)<e, Axiom III
provides a proper F-deformation 4, which displaces p. On the other
hand & point p with Property ¢ is a homotopic eritical point
(Lemma 5.1); while a point p without Property ¢ is not a point

of (o) and, as has just been seen, is homotopically ordinary. This
completes the proof of the theorem, ‘
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We shall refer to the points of (o) as eritical points, dropping
the adjective homotopic. The reader Wﬂl,' of course, b.e aware that
a point (#°) may be a differential critical })01nt of a function f(zy, ‘..,::Un)
without being a homotopic critical point. For example, t.he 1.)0'1111:
=0 is o differential critical point of #*, bub not a hqmotople c-r1t1@1
point. However, it is easy to show that a griticajl point of a function
(1, o-ey ) OF clags ¢ at which the Hessian is not zero, has Propgr’g ¢,
and so is & homotopic critical point. See M (3), D. 46. The definition
of a homotopic critical point is one thab is applicable in any space
of any dimension, finite or infinite.

§$ 6. Critical points of linking or nonTlinking typgs.
We shall make a clagsification of the critical Il)o.mts of (o) which
depends in part on their ordering at any given cljltlcal level. Suppose
that o is & critical point with index r. According to Corollary 4.1
there is exactly one non-trivial r-dimensional homology class V
in X(o) mod. X{o)—o. . o

I} V contains an ,.absolute” r-cycle Ar; o will be said to be of linking
type, otherwise of non-linking type. In the latier case u, shall denote
any rel. cycle in V.

According as o is of linking or non-linking type, the f:ycle A
or the rel. cycle u, forms a rel. homology base for rel. 'r-cs.rcle‘s in X(o0).
The following lemma makes the origin of the term linking clear.

Lemma 6.1. A necessary and sufficient condition that a critical
point o be of linking type is that the boundary of every rek. k-cycle 2
in X(o) bound in X(o)—o.

The condition is.proved necessary as fo]low.s. pet r be th‘e
index of ¢. Suppose first that k=7. When o is of ].ulkmg type, A i8
a rel. homology base for r-cycles in X (o) so that a relation
(6.1) QW =2—gA—U [4 in X(o)—0}
holds with ¢ in @, and w an (v -+1)-chain in X(o). Relaﬁfmn. (6.11)
implies that d¢=23u so that d bounds in X(o)—o. If ?c:iz?, ils rih;
bounding in X(o). [Cf. Corolary 4.1], and 3z accordingly boun

in X{c)—o. [Cf. Lemma 11.1]. ) )
The condition is proved sufficient as follows. According to

Corollary 4.1 there exists a rel no11-1?ounding r-cycle & in .X(ai)s;
By hypothesis d bounds a chain % In X(o)—o. Hence z—u 5
an absolute cyele A, in the rel. homology class of = Hence # 18
linking type.
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Lemma 6.2. If the Betti numbers of X(o)—o are finite3) and
if o is a critical point of index v, then in Case I, (o of linking type)
a minimal r-homology base for X(o) can be obtained from ome for
X(o)—0c by the addition of the linking 7-cycle 2. associated with o,
while in Case II, (¢ of non-linking type) a minimal (r—1)-homology
base for X(a) can be obtained from o suitably chosen minimal (r—1)-
homology base for X(o)—o by removing a suitable (r—1)-cycle. When
kkr in Case I, or k==r—1 in Case II, any minimal k-homology base
for X(o)—oc is a minimal k-homology base for X(o).

Case L The proof in this case consists in showing that a minimal
k-homology base for X(o) is obtained by adding 624, to a minimal
k-homology base B, for X(¢)—o. To that end let

w=a (k41)-chain in X (o)
#=a k-cycle in X (o)
u=2 k-cycle in X(o)—o
g=an element in G.

Recall that 67, is & minimal k-homology base in X (o) mod.
X(0)—o. Hence, given 2, .

{6.1) w=e—gok A +u (r not summed)

for a suitable choice of w, g, and u. Relation (6.1) shows that 8k,
with By forms a k-homology base for X(o). It remaing to show that
this base is minimal.
There is no relation
(6.2) w=lptu
since 4, would then be rel, bounding in X(0). Nor is there a relation

{6.3) ow=uy [k=r; ud0 in X(o)—0o].

For (f3.3) .Wou]d. imply that w is & rel. cycle in X(¢) with dw
nonjbm‘.‘mdmg in X(¢)—o, so that by Lemma 6.1, o could not be
of linking type, contrary to fact. Thus neither (6.2) nor (6,3) can

hold so that 6f4, with By, forms a minir 3
for T, 5 £ mal k-homology base

?) This hypothesis is of an inducti

established. ve character and will presently be
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Case II. For kskr—1 let B, be a minimal %-homology base
for X(o)—o. When k=7r-—1 in Case II, du, is non-bounding in
X(o)—o by Lemma 6.1, so that there exist a minimal (r—1)-homology
base for X(o)—o, composed of du, and a set B,_; of (r—1)-cycles.
We shall show that B, is a k-homology base for X(¢) for all %.

Now & ur is 2 minimal k-homology base in X (o) mod. X(o)—o.
Hence given z,
(6.4)

for a suitable choice of w, g, and u. In (6.4) every chain except géf,u,
is a eycle. Since u, isnot a cycle, g6f=0. This shows that a k-homology
base for X(o)—o is a base for X(oc). Since 9y, bounds in X(o), B, is
a k-homology base for X(o), even when k=7r—1. It remains to prove
that B is minimal in X(o).

Suppose that a relation

dw=z— g+ u (r not summed)

(6.5) Jw=g;u;==0 (u; In By)

held. Then w would be a rel. non-bounding (% -+1)-cycle in X(o),
in accordance with Lemma 11.1. This is possible at most if & +1=r.
But if k4+1=r, w—gp, would be rel. bounding in X(¢) for some g
in @, by virtue of Corollary 4.1. Hence the absolute cycle

ow— ga;”rzgiu‘i— ga:ur

would be bounding in X(o)—o by Lemma 11.1, contrary to the
nature of B,y Thus no relation (6.5) holds and B, is minimal
in X(o).

The theorem follows.

The Betti number E(X,d) of the set X over G is the rank
of the homology group of k-cycles in X over G. The numbers R,
alone, shall refer to Rx(S,4).

Theorem 6.1. The Beiti numbers of the sets X(o) and Sy
are finite.

The sets X(o). Let the critical points in (o) be written in
order ¢;<Co,<... admitting the possibility that the number of such
critical points is finite. Set

B[ X (0a), G1=E}.

Observe that F(o;) is an absolute minimum of F and that

X(oy) =0y.
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Hence RL=4#. Proceeding inductively we assume that RF?
is finite, and seek to prove that By is finite. If F'(0y—1) = F(0,)

-X(Um) —O0m= -X(a'm——l)y

and the Betti numbers of X(o,)—o, are RZ‘”I, thus finite by
inductive hypothesis. In this case it follows from Lemma 6.2 thag
the numbers Ry are finite. In case F(onm—1)<< F(ow), if one sets
F(op) =5, then

X(om) —0m=Sp_.

In accordance with Theorem 3.2, with X(opq)=Y thevein,
By, &) = Ry,

and the Betti numbers RF™ of X(om)—on arve again finite by
induetive hypothesis. As before Lemma 6.2 implies that B is finite.

The sets §y,—. We discard the trivial cage in which b < Fay),
and let oy, be the last point in () for which F(on)<<b. It follows
from Theorem 3.2, with X(on)=Y therein, that Rj(S,_. , @) =Ej.
But R} has been proved finite, and the proof of the theorem is
conmplete.

Now that i_t is known that the numbers BT are finite, Lemma 6.2
with the aid of Theorem 3.2, gives the following theorem.

. ‘The_orem 6.2, Let o° and o be successive critical points im (o),
with o of index r. Then in Case I (o of linking type) a minimal r~homo-
logy b@e for X(o) can be obtained from ome for X (o°) by the addition
of a‘sz-mmble r-cycle in X (o), while in Case IT s (0 of non-linking type)
a mm-mal (r—1)-homology base for X (o) can be obtained by removing
a suitable (r—1)-cycle from a suitably chosen minimal (r—1)-homology
ba.se‘for X(o°). When k==r in Case I, or k=r—1 in Case II, any
minimal F-homology base jor X (c°) is ‘& minimal k-homology base
for X (o).

Corollary 6.1. If o, 4s o index m __ pm—1
cxcept ot f y (m>1) then RF=RY
RT — R:l‘l =1
i case o s of linking type, while
Rfl—1—-R;":._11=—1,

in case o, is of non-linking type.
The following lemma will be used in § 7.
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Lenuna 6.3. If for a given & there is a last eritical point on in
(o), among points of index k& and k-1, then the Beiti number Ry
of 8 is Ry.

This lemma will follow from Lemma 11.2 of the Appendix,
once statements (a) and (b) are proved.

(a) Any k-cycle z in S is homologous in S to a k-cycle in X (om).

(b) Any k-cycle z in X (0)n which is bounding in S is bounding
i X(op).

Proof of (a). It follows from Axiom I that x is homologous
on 8§ to a k-cycle 3’ in some set Sp—. We can suppose that b >F (o).
From the hypothesis of the lemma, from Theorem 3.2 and
Theorem 6.2, we can make the inference (c). A minimal k-homology
base B, for X(om) %8 @ minimal k-homology base for Sp—. It follows
from (c) that ' is homologous in S,— to a k-cycle in X (0,), 50 that
(a) is true. ‘

Proof of (b). It follows from Axiom IT that any k-cycle z
in X (o,) which is bounding in § is bounding in some set S with
b>F(om). If #,...,2, s a minimal %-homology base for X(o,) we
have z~g;2;in X (0,,). As stated in (e), 2y,...,2, is a minimal k—]i\omology
base for Sz as well as for X(o,); hence each g=0, since # is
bounding in S,—. Thus 2~0 in X(oy) and (b) is true.

The lemma follows as stated. .

§ 7. Relations between the type numbers M, 1/,,...
when each M, and R, is finite.

and the numbers Ry, Byy...

We set .
Ry = the k-dimensional Betti number of S over G.

My = the number of critieal points of index %.

az = the number of critical points of index % of linking type.

by = the number of critical points of index % of non-linking
type. When each M, and R, is finite

k=0,1,...
by =0,

(7.1)
(7.1)"

My=ap- by
Ry=ap—bpt1
where (7.1)”” follows with the aid of Lemma 6.3. Points of index
k=0 are isolated relative minima of linking type, so that b,=0.
From (7.1) we obtain the basic relations

(7.2) My— Ry=Dbp+ by >0 (k=0,1,...). .

Fundamenta Mathematicae. T. XXXV. 5
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Given the numbers R with R,=1, it is possible to construct
an §, and define an F on &, such that My=R), for each k, so that
no more than R, critical points of index % are necessary in all cases.

Let § be a compact, connected coordinate m-manifold 3 of
class """ (C£. § 9) with a Riemanian metric. On I let f be a function
of class ("' of non-degenerate type (i. e. with a non-vanishing Hes-
sian at each critical point). Then it can be shown [M (3) § 10] that
each critical point has Property €, and so is a homotopic critical

point. Deformation along the trajectories orthogonal to the level '

manifolds f=constant suffice to establish the existence of the defor-
mations 4, of Axiom IIL, so that all three Axioms are satisfied.
It is of interest to note that f has no homotopic critical points of
index 7>m, since there exists no topological r-dise on M for
which 7> m.

There exist m-manifolds M such that for no non-degenerate
function f on M is Mp=R; for all k. In fact this is easily seen to
be the case for a 3-dimensional manifold which hag the Betti numbers
of the 8-sphere but is not homeomorphic to the 3-sphere.

Theorem 1. When the numbers Ry and My, are finite and
each oritical point is of linking type, then Ry=My, k=0,1,...

This theorem is available to determine the numbers K, in
cases where other methods fail. It has been used on the space of
paths joining two points on an m-sphere (Cf. § 9), on the space
of closed curves, and on various other spaces such as the symmetric
square of an m-sphere. (Cf. M (2), p. 191). *

The excess numbers By=M—Ry. From (7.2) we find that

(7.3) By—By + oo (S E = (—1)mb (m=0,1,...)
and 50 obtain the relations

>0

E,>E,
(7.4) B> 5 —E,

E3>E2“E1+EO

- Givfen integers R;>0 and M,>0 satisfying (7.4) with Ry=1,
it is possible to construct a space § and function F with the given Ry

%;1 My, so that no relations beyond (7.4) ewist between these numbers
. alone.
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The conditions (7.4) are derived from (7.1). Conversely condi-
tions (7.4) imply that M, and R, (k=0,1,...) satisfy relations of
the form (7.1). In fact if one defines b,4s by (7.3) then (7.2) is

. satisfied; if (7.1)'" is then used to define a; (7.1)’ is satisfied.

A particular consequence of (7.2) is that
.Ek-1 +Ek+1>Ek (70“—‘:1,2,.,.)

§ 8. The case of infinite M,. In simple variational
problems in which § is the space of paths joining two fixed points 4
and B on a manifold M, and F is the integral of length on M, some M,
can be infinite, while every R, is finite (see M (1), § 17).

‘When some of the M, are finite, the following remarks can be
made. If for a given %, M, and My, are finite, then for this k,
(7.1) holds, using Lemma 6.3 as previously, so that M,>Rx. If M,
is finite for k=0,1,...,m 41, the first m 1 inequalities in (7.4)
still hold. If M, ¢, M, M,yy, M.y, are finite, then as before
(8.1) Eru+ B =E,,
even if all other M, are infinite.

To prepare for the general theorem let

Mp(o) =the number of critical points of index k in X(o).

ay(c) = the number of critical points of index % in X (o) of
linking type.

by(o) = the number of critical points of index % in X{(o) of
non-linking type.

Ey(o) =the k-th Betti number.of X (o).

The following relations are immediate:

(8.2) M (o) = ar(o) + bu(o)
(8.2)" Ry (0) = az(0) —bpya(0)

The algebraic consequences of (8.2) are formally the same

as those of (7.1). We shall need two lemmas.

Lemma 8.1, Given k, with Ry finite, then for any eritical point o
of sufficiently high order in (o) there ewists a minimal k-homology
base By for 8 in X(o). For any such o, and for the given k,

(83) R,=R,(0)—g,,
where ¢,>0, and there exists a minimal k-homology base for X (o)
composed of By and of g, cycles, z, (i=1,...,q,) such that each z; is
bounding in X ('), provided o' >o is a critical point of sufficiently
high order in (o).

5*
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Sinee Ry is assumed finite the existence of a base By for § in
some X{(o) follows from Axiom IT and Theorem 3.2. Relation (8.3)
then holds. As a consequence there will exist a minimal k-homology
pase for X (o), composed of By and k-cycles u; (i=1,...,4,). Since B,
is also a Dase for 8, there will exist a k-cycle v;, linearly dependent
(over @) on the cycles of By, and such that the k-cyele ;= u;—w;
is bounding in §. It follows from Axiom II that for some critical
point o' > o of sufficiently high order in (o), each # will bound
in X(¢’). It is clear that B; and the g, cycles #; again form & minimal
k-homology hase for X (o).

Note: The eritical points ¢ and ¢’ in the Lemma depend upon
% and the ordering of (o), and their order may become infinite as
k does.

Lemma 8.2. Under the conditions of Lemma 8.1 there ewist g,
ceritical points o' of indew k+1 such that

<<t <. . <L

The k-cycles # of Lemma 8.1 suffer no proper homology
in X(o), but are bounding in X(¢’). If ¢,>0 there is accordingly
a critical point o' of least order, with o< o'<{¢’, such that some
proper sum gizf=y, is bounding in X(c¢). With change of notation
if necessary, we can suppose that gt ==0. If ¢° is the immediate pre-
decessor of ¢ in (o) then the cycles 'yl,za,...,z,,k (¢ 28 in Lemma 8.1)
are part of a minimal k-homology base in X(o?), while ¥, is bounding
in X(¢"). It follows from Theorem 6.2 that ¢! is of index %41, and
that the cyecles Byy ey B, ATE part of a minimal k-homology base
in X(d%).

If ¢'=0" then ¢, =1 and the lemma is proved. If g, > 1 then
¢'<o’y and one can similarly infer the existence of a critical point o2
of least order in (o) with o'< o< o', such that some proper sum
Yo=g'¥, i=2,..,q, is bounding in X(o%). One sees that o2 is of
index k4-1. Continuing one arrives at the existence of the g, eritical
points ¢f of the lemma.

The L-th type number of a set of eritical points is defined as the
number of critical points of index % in the set.
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Theorem 8.1. Suppose that the first r-1 Betti numbers of S,

Rﬂi ‘R17 bt RI"
are finite. Let H be an arbitrary finite subset of the critical points
of F with indices at most 7. There exists a finite subset KD H of the
critical points of F with indices at most r, and with type numbers
} Mgy My y oory Wip
such that if ey=my—Ry, k=0,..,7, then
[ €o=0
€28
(8.4) €= 6—6

€r 2> €1 —ér +e (_l)r—‘ie()'

It is clear that Lemmas 8.1 and 8.2 can be satisfied for
k=0,1,...,r by a common critical point o of arbitrarily high order
in (o), together with a critical point ¢’>0o. We take o so advanced
in (o) that X(s) contains each point in H. In accordance with Lemmas
8.1 and 8.2
(85) Ry(0)=R,+q,
with ¢,>0, and there exists a set Hzyy of g, critical points o* of
index k-1 with o<o*<{o’. Let H' be the subset of those critical
points of F in X(o) whose indices do not exceed . We shall satisfy
the theorem by setting

KE=HUHU..UH,.

If my is the k-th type number of A
(8.6) m,=M, (o) ¢, ,

where ¢_;=0. On setting e, = m,—R; it follows from (8.5) and (8'.6)
that

(k=0,...,7)

(=0, ...,7)

e, =M, (0)— R, (6)+q_ + 4, (k=0,1,...,7)
and then from (8.2) that
(87) €k=bk(0‘)+bk+1(0')+gk_1+qk.
The equalities (8.7) imply that for k=0,...,r
eo— € 4. (—L)ke, = (—1)*[b, ., (0) + 4],
and (8.4) follows immediately.

(8.8)
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Corollary 8.1, If the Beiti numbers By are finite My> R,.
From (8.7) we have e_1+ep=>e fof k=1,2,...,r—1, If
all numbers R, are finite the integer 7 in the theorem can be taken
arbitrarily large, and the subset of critical points can be taken to
include arbitrarily many of the M, points of index %. Hence the
corollary.

Corollary 8.2. If the numbers Ry, are finite then regardless of
the finiteness of the numbers My_y, My, and Mppq

'EFV+EH4>Ek (k=1,2,..)

That is, if M, is infinite at least one of the numbers M,_,
or My must be infinite. We depart now from the assumption
that R, is finite, and prove the theorem.

Theorem 8.2. If for a given &, Ry is infinite, My 4s infinite.

If Ry ig infinite it follows from Axiom II that Ry(om) must
become infinite with m; for each non-bounding %-cycle in S has
a homologous k-eycle on some X(o,). But we have

My My(om) > Re(om)
on using (8.2), so that M, must be infinite.

§ 9. Spaees S of paths. The application of the results of
the preceding sections to spaces of paths is a by-product of varia-
tional theory in the large. To make this application it is merely
Decessary 0 verify Axjoms I, II, IIT for the space of paths S and
the length funetion J which replaces F. Complete details of this
verification will be given at length in another place. In this paper
we shall be content with defining. the required deformations and
giving references where the necessary preliminary analysis is found.

Leit M be a compact connected Hausdortf space which ig
a coordinate manifold in the following sense. There shall exist a sub-
set of the open sets of M termed »coordinate regions” which cover
M and are topological images of regions in a Buclidean M-SPAce
of eo9rdmates (), (y), ete.; if coordinate regions N, and N, with
coordinates (z) and (y) respectively interseet in N, then‘on IiN the
transformations from coordinates (z) to (y) sha]l’be non-gingular

and of -class O®. It is no additional restrieti
of C estriction ]
metricized consistent with its topology.  smmese
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The space 8. Let 4 and B be two fixed points on M and
let 8 be a component of the space of paths (in general singular)
joining 4 to Bin M, with the distance pg between two paths p and ¢
defined as by Fréchet. A basic problem is to defermine the topolo-
gical characteristics of the space S, in particular its Betti numbers.
These characteristics are independent of the choice of A and B
on M; for there is a homeomorphic mapping of M onto M in which
{4, B) goes into any preseribed pair (4',B’) of distinet points of M.

On M let J be a curve integral

J=fﬂm@ﬁ

be defined in terms of the respective local coordinates (z) of M. We
suppose that f(z,2) satisfies the usual conditions of being positive,
positively homogeneous in the contravariant vectors (2)==(0), and
positively regular, and of elass ¢/’ in (z,#2) in each local coordinate
system. The value of J can be defined for each path p of §,
whether p is locally rectifiable or not. Thus J(p) may equal. 4 oo.
An extremal joining 4 to B is called non-degenerate if B is not
conjugate to A on g. It ean be shown (M (2), p. 233) that for ,almost
all” pairs 4, B on M, no degenerate extremal joins 4 to B, although
there will in general be infinitely many extremals joining 4 to B;
such pairs 4, B are called non-degenerate and the function J termed
non-degenerate. It can be shown that there exists a positive con-
stant ¢ with the following properties. Any two points P and ¢ on M
whose distance on M is less than g can be joined by a unique extremal
arc E(P,Q) of absolute minumum type, which varies continuously
in the sense of Fréchet with (P,Q). We term E(P,Q) an elementary
extremal.

The deformation 6(r). In M (3), p. 59, a proper J-defor-
mation of any compact subset H of paths of § is defined. The para-
meters (r) are a set of positive numbers (ry,...,7,) whose sum is 1.
Paths p of § are referred to s, a parameter proportional to ,reduced
p-length®, with 0<{s<{1, and the interval for s divided into n succes-
sive intervals of euclidean length 7y,...,7,. If » is sufficiently large
and each r; sufficiently small, the n subares of p, represented by
the respective subintervals of 0<Cs<1 of lengths 7;, will have
diameters .on M less than g, and will admit proper J-deformations
into the elementary arcs joining their end points. In this way a proper
J-deformation 6(r) of H will be defined. There may be paths in H
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which are not displaced under 6(r); but (given H) if the set (r) be
replaced by a new seb (#1,...,77) in which #—7; (¢ =1,..,n—1) ig
positive and sufficiently small, the product deformation 6(r') 6(r)
will displace each path of H which is not an extremal. The sets §,
on which J< ¢ are eagily proved compact, and if H=2_8, the product
deformation

(9.1) , A,=0(r") 0(r)

will satisfy Axiom ITY, provided the points (o) of Axiom III are
taken as the extremals joining A to B. The hypothesis of non-degen-
eracy insures that there are at most a finite number of these
points (¢) on §,.

Axiom IT, that S is J-reducible at infinity, is readily verified.
Given a compact subset H of 8, a deformation 6(r) can be defined
over H for a proper choice of (r), and will deform H into some set §,.

Verification of Property C. Let o be an extremal joining
4 to B on M, and suppose that J(o)<<e¢. Let () be chosen so
that the deformation 9(r) is well defined over S,. The final image ol
of o under 6(r) is identical with o as a path, but it may also be regarded
as a broken extremal with vertices at the points

A,Py,..,P,4,B

of ¢ determined by the set (r). We cut ,transversally” across o ab
the point P; (i=1,...,2—1) with a (m—1)-manifold M, regular
and of class €. A broken extremal joining 4 to B composed of #
elementary extremal ares with vertices on the successive manifolds
M; will be called canonical. The existing variational theory4) in
the large permits the definition of a proper J-deformation W, of
any set of broken extremals of § whose vertices (n—1 in number)
are.suﬂiciently near the respective vertices of ¢, into a topological
k»dls.c K (g) m 8 of canonical extremals, holding K (o) fast, with o
2;13 ﬁ?fer point of K(c), and with K(s)—oc below J(o). The defor-
(9.2) Dy=W,0(r)

will meet the requirements of Property (.

N X
Verﬁce; ’é[;hgecil:ﬁlr;nif:tf of I\;I, 01(3*),{;IL 70, deforms broken extremals with

i L ose o into canonieal broken extremals. To obtain
Wo it remains to deform these canonical extremals into a topological k-dise of

canonical extremals, and this i i i i
and $16 of 3t (o S 18 readily established on using the theorems of §10
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It remains to show that the terminal mapping D; defined
by D, when =1, restricted to a sufficiently small neighborhood
N(o) of o, relative to K(o), admits a J -deformation into the identity
in K(o), holding o fast. The required deformation is obtained by
restricting the composite deformation We- Dy, defined in §2, to
2 sufficiently small neighborhood N(c) of o relative to K(o).

It follows from M (4) and M (3) § 10 thai the index & of the
extremal o equals the number of conjugaie points of A on o prior to B.

We can now prove the following theorem.

Theorem 9.1. The Betli numbers of the space S of paths joining
two points A and B on an m-sphere M with m>2 are

(k=0 mod. m—1)
(k==0 mod. m—1).

(9.3)' Ry=1
(9.3)" Ry=0

Let the points 4 and B on M be taken as any two distincts
points not the extremities of a diameter of M. Given any integer
i>0 there is a geodesic g, leading from A to B which passes through
the point A’ opposite to A exactly ¢ times. The point 4’ appears
as o conjugate point of 4 of multiplicity m—1, so that there are
in effect i(m—1) conjugate points of 4 on ¢ prior to B. Thus the
index of g is 4(m—1). Moreover these geodesics g, are the only
geodesics which join 4 to B on M. With the function ¥ on § defined
by the length integral, we have

(9.4’ My=1 (k=0 mod. m—1)
(9.4)" Mp=0 (%k==0 mod. m—1).

The Betti numbers of § are finite by virtue of Lemma 6.3,
and the relations
(9.5)" My=a;+bz (k=0,1,...)
(9.5)"" Ry=ar—batp1
hold. Tf ome substitutes the values of M given by (9.4) in (9.5),
and makes use of the fact that Ry=1, by="0; and that all symbols
in (9.5) represent non-negative integers it is found, for m>2, that
(9.3) gives the only solution for the numbers Eg. ]

We have established the theorem for a special choice of 4

and B. But it is easy to show [Cf. M (3), p- B1] that thej Zc'-homolog.y
group of a space of paths S(4,B) joining A to B on M is isomorphic
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with the corresponding group of §(4’,B’), where (4,B’) is any
pair of points on M, distinct or coincident. Thus the theorem holds
regardless of the choice of 4 and B.

The case m=2. The theorem remains true even when m=2,
In this case Rp=1 for every k. The above method of proof fails
because the substitution in (9.5) of the values M given by (9.4)
when m=2 does not determine the numbers R; uniquely. A general
proof of the theorem, including the case m=2, is given in M (2),
p. 247,

The Betti numbers of the spaces of paths have been determined
in many other cases. The determination of the Betti numbers for
the space of closed curves associated with the restricted problem
of three bodies would greatly advance celestial mechanics.

§ 10. The three levels of the theory. The theory should
be developed at three levels.

Level 1. The theory of non-degenerate functions.
This theory is illustrated by the present lectures. There is a sense
in which such a theory is general. It is that the non-degenerate
functions econstitute ,almost all” admissible functions, provided
an appropriate and natural definition of measure is introduced.

Level 2. The second type of theory is illustrated by M (3).
The space § is again a connected metric space with # >0 thereon.
The theory is based on two hypotheses, the F-accessibility of §
a_m? the upper-reducibility of F. Under the hypothesis of F-acces-
sibility any non-bounding Vietoris k-cycle which is homologous to
zero mod. 8., for each positive e, is homologous to a %k-cycle in §,.
The upper;redue-ibﬂity of F' i3 probably the best substitute for the
upper semi-continuity of F which can be established for the clagsical

integrals of variational theory. The fundamental theorem is as
follows.

- TIheoren% 10.1. Let V be a homology class of Vietoris k-cycles
Zn ; . If there is o {c-oycle of V in some set 8,, there is a least value
f bsz]cfh th'at there is o %;-aycle of V in 8y. If ¢ is this minimum value
of b there is a homotopic critical point of F at the level c.
N erptfi:vclal 3. In th‘e most general theory critical points are replaced
ﬂ;l' ¢ itical sets, which are of relatively unlimited complexity, and
(kfieb (intlcal sets are classified in terms of associated group,s G
=0,1,...) of relative k-cycles (.caps”). The preceding rela.tions’
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between the numbers My, Rz, oz, bs, Dats, etc., are replaced by
isomorphisms between special groups of (k+1)-caps and ftheir
boundaries. The theory can be brought to a finitary basis by the
introduction of the motion of rank and span of a relative k-cycle.
See M (5). Here every cycle is ignored whose essential characteristics
(as defined) can be specified using a range (span) of values of I less
than a fixed constant e in magnitude.

§ 11, Appendix om singular homology theory. If X
is a topological space, singular chaing in X over a discrete group &
will be taken in the sense of Eilenberg (1). We shall impose the
condition that @ be afield, and this requires an additional agsumption.
Let a; and b; be elements in @, and 2 a singular k-chain, (F=1, .. 1y).
Understanding that repeated indices of any gort are to be summed
we require that

a(bizs) = (abi)z: (i=1,...,7).

Singular eycles, both relative and absolute, are defined as by

Eilenberg. The group of singular k-chains in X over @ is denoted by

c*(X, @) (k=0,1,...).

Tet X and Y be two topological spaces. Let a collection of
homomorphisms, one for each dimension &
: O (X, Q) —C* (T, 6)

be given, where a k-chain 2z in X has the k-chain 7z as its image

in Y. If 3 denotes the boundary operator and dz=12, then = is called

a chain transformation. (See Eilenberg op. ¢it.).

Departing momentarily from Rilenberg, we define the carrier

of a chain and the morm of a singular cell. With Hilenberg a. .

singular cell 7 in X is a continuous mapping

z:8—>X

of a non-degenerate euclidean gimplex s with ordered vertices,
into X. An appropriate definition of sequivalent” mappings is
given. The geometric simplex upon which ¢ is based, without any
ordering of vertices is denoted by |s|. The carrier of v is the image
of |s| in X. I z=g,, (I=1,...,n) 18 & k-chain in which the /s are
distinet cells and no g,=0, the carrier of # shall be the union of the
carriers of the 7;. The norm of v, in case X is a metric space, shall
be the diameter of its carrier. The norm of the above chain 2=¢,v;
ghall be the maximum of the norms of the ;.
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Corresponding to any continuous mappi.ng'
p: X>Y
there is induced a chain transformation

7:0*(X,6)~C"(Y,6) (k=0,1,...).

Besides the property dp=g?d the essential characteristic of g
for us is that the carrier of gz is in the image under ¢ of the carrier
of z. Eilenberg uses the symbol ¢ both for the mapping and for
the chain transformation.

Let D, 0 <1< 1, be a continuous deformation on & of a subset X
of 8. The chain transformation induced by the terminal mapping

D X8

WLH be deno?ed by 'l—), dropping the superscript 1. Recall that the
initial _mavpp'mg Do is the identity. Corresponding to D there can
be defined, in a variety of ways, & homomorphism

b:0"x,6)~ 0" (X,6)

such that for any %-chain 2 in X

(F=0,1,...)

(11.1) 3De=De—z—Das,

:vit_h zhe verg es;;ential property that the carrier of Dz is in the
rajectory under D of the carrie D inal %
o) undgr 1). e carrier of 2. We term Dz the final vmage

The baryecentrie subdivision B i
: 2 of a ch A
one has & special chain-transformation mn e Here
B:(YX,6)~>C*(X, Q). (£=0,1,...)

Wflﬂl t;n"ee essential properties: (1) the carrier of Bs is in the carrier
gh azj;;d) ihe ;b-th iterate lEf“zzB"_l (Bz) has anorm which for a given
2 tends to zero with 1/n; (3) there is an associated homo-

morphism

CH(X k1
such that ¢: 01X, @)~ 0"(X, 6) (k=0,1,...)
(11.2) 392=BZ~z-gaz,

where & . sk .
e the carrier of gz is in the carrier of 2. The notation Bz is ours
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Tet A be a subset of X. A k-chain w in X whose boundary dw
isin A is called a k-cycle mod. A. If u is a (k—1)-chain in X one
writes #~0 mod. 4 in X if there exists a k-chain w in X such that

(11.3) dw=u—7u (with v in A).

Since 0=00w=23u—3, w is a (k—1)-cycle- mod. A. We state
a Jemma of frequent use.

Lemma 11.1. If u is a (k—1)-chain~0 nod. A4, then ou bounds
in A.

- This follows at once from (11.3), since v is a k-chain whose
boundary equals du, and v is in 4. -

Tf A is @ subset of X invariably associated with X as a modulus,
an n-cycle in X mod. A will be termed a rel. (relative) n-cycle in X,
omitting reference to the constant modulus 4. Similarly ., bounding
in X mod. A” is termed ,rel. bounding in X”. A eycle -homologous
to zero in X mod. A” is termed ,rel. homologous to zero”. I ¥
is a subset of X it will be convenient to associate ANY with ¥ as
a modulus, so that a rel. cycle in ¥ is & rel. cycle in X, but in
general not conversely. .

The following lemma is of a character common in topology.
The conditions (a) and (b) are those most easily verified. The
formulation is ours.

Lemma 11.2. Tet X be a topological space with an invariable
modulus ACX, and Y a subspace of X with an invariable modulus
ANY. Let V be an arbitrary rel. homology class of k-cycles in X, and V'
the subdlass of chains of V in ¥. If e

(a) each rel. cycle in X is vel. homologous in X to a rel. cycle
n Y and .

(b) each rel. cycle in Y which is rel. bounding m X is rel.
bounding in Y

then V' is a rel. homology class of ¥, and the mapping V-V’ defines
an isomorphism between the respective rel. homology groups of X
and of ¥.

Given ¥, V' is & rel. homology class in ¥. For chains # and ¥
in V' are in V, hence rel. homologous in X, and so by (b) rel. homo-
logousin Y. If # is in V! and z.is in the same rel. homology class
in ¥, then 2 is in ¥ with &, and so in V.
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The mapping V-V’ is 1—1 since V' cannot be a subclass of
different homology classes V. Moreover each homology class V7’
is in some class ¥, so that the mapping is ,onto” the appropriate
group of Y.

Finally the mapping is a homomorphism; that is, if U and ¥
are rel. k-homology classes in X then

(11.4) UV =(U+TV).

To establish (11.4) it is sufficient to show that there is a chain
common to both members of (11.4). To that end let & and y be chains
in U’ and V' respectively. Then ¢y is in U'+V'. But -ty is
also in U4V and in ¥, and so in (U V). Thus (11.4) holds and
the lemma follows.
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Axiomatic and algebraic aspects of two theorems on
sums of cardinals.

By
Alfred Tarski (Berkeley, California, U.S.A).

Introduction.

We shall concern ourselves in this paper with two theorems
of the arithmetic of eardinal numbers which express, in tv?'o dlﬁ.'erent
ways, the fact that the sum of an infinite series of cardinals is the
least upper bound of the sequence of partial sums. The theorems
in question can be formulated as follews:

Gy Given any infinite sequence -of cardinals G,y s Gnyeee
and o cardinal b, if

b< ) G,
n<eo
then there is a natural number p such that
' b <) da-
n<lp

For the purpose of this discussion, the symbol < in the con-
clusion of G, could be changed to <.
T, Given amy infinite sequence of cardinals g, Qyyeees Onyee

and a cardinal b, if -

San<<h
n<p

for every matural number p, then

a, <. b.
3

Our discussion will aim to exhibit some essential dif.ferencgs
between G; and G, both from an axiomatic and an a]gebranc
point of view. While G; proves to be equivalent to th-e axiom of
choice in its most general form, G, turns out to be derivable from
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