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The mapping V-V’ is 1—1 since V' cannot be a subclass of
different homology classes V. Moreover each homology class V7’
is in some class ¥, so that the mapping is ,onto” the appropriate
group of Y.

Finally the mapping is a homomorphism; that is, if U and ¥
are rel. k-homology classes in X then

(11.4) UV =(U+TV).

To establish (11.4) it is sufficient to show that there is a chain
common to both members of (11.4). To that end let & and y be chains
in U’ and V' respectively. Then ¢y is in U'+V'. But -ty is
also in U4V and in ¥, and so in (U V). Thus (11.4) holds and
the lemma follows.
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Axiomatic and algebraic aspects of two theorems on
sums of cardinals.

By
Alfred Tarski (Berkeley, California, U.S.A).

Introduction.

We shall concern ourselves in this paper with two theorems
of the arithmetic of eardinal numbers which express, in tv?'o dlﬁ.'erent
ways, the fact that the sum of an infinite series of cardinals is the
least upper bound of the sequence of partial sums. The theorems
in question can be formulated as follews:

Gy Given any infinite sequence -of cardinals G,y s Gnyeee
and o cardinal b, if

b< ) G,
n<eo
then there is a natural number p such that
' b <) da-
n<lp

For the purpose of this discussion, the symbol < in the con-
clusion of G, could be changed to <.
T, Given amy infinite sequence of cardinals g, Qyyeees Onyee

and a cardinal b, if -

San<<h
n<p

for every matural number p, then

a, <. b.
3

Our discussion will aim to exhibit some essential dif.ferencgs
between G; and G, both from an axiomatic and an a]gebranc
point of view. While G; proves to be equivalent to th-e axiom of
choice in its most general form, G, turns out to be derivable from
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a rather special case of this axiom. Moreover, G, can be considerably
generalized and given a form in which it applies to a comprehensive
class of abstract algebraic systems, while in the case of G; no pos-
sibility of such a generalization is seen?).

§ 1. Axiomatic aspect of the problem.

For the basis of the discussion we may take the axiom system
of Zermelo from which the axiom of choice is supposed to be removed,
The part of the discussion referring to” &, requires, however, the
assumption that this axiom system has been supplemented by
the replacement axiom of Fraenkel — or, at least, by the following
weaker axiom:

For every set A there is a family of sels F which contains (as an
element) A and which, whenever it contains a set X, also ‘contains the
family of all subseis of X.

Since, on our axiomatic hasis, use of the notion of a cardinal
may give rise to some doubts, we are going to eliminate this notion
from G; and G,, and in fach to replace it by the relation ~ of set-
theoretical equivalence (equality of powers). Nevertheless, we shall
find it convenient to apply the notion of a eardinal and thab of
an ordinal in proofs; this will be done, however, with sufficient
care so as to remove any possible doubts of an axiomatic nature.

The reformulated propositions G, and G, will be referred to
as £, and P,; they can be given the following form:

2. Given amy infinite sequence of seis Ay Ay, A
@ set B, if there is a set D such that

B~DCJ A4,,

n<oo

B~ 2 -Any
n<oo
or else there are a natural number P and a set O for which

B~CC A,
n<p

and

nyees

then either

*) For notions and results from the domai i i
! v ain of set theory involved in the
fre;entl discussion consult _Fraenkel [1] and Sierpinski [1]; for those applying
B(;bﬁgo eai algebras see Birkhoff [1] (the figures in square brackets refer to the
graphy at the end of the paper). In these works, as well as in Schonflies [1],

historical referen i o .
also be found., ces regarding the origin of notions and results involved may
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Py. Given any infinite sequence of sets Ay Ayy...,An,... and
a set B, if, for every natural number p, there is a set C such that
2 4, ~CCB,
n<p
then there is a set D for which
2 A,~DCB.
noc’

Since in our further discussion we shall always refer to P,
and %, and not to G, and G, we can pass over the question of
precise logical relations between 2 and Gy, or P, and T, We
can meodify Propositions P, and @, by including in their hypotheses
the condition that the sets Ag,A4,,...,4,... are pairwise disjoint;
it is easily seen, however, that the propositions thus obtained are
equivalent to the original ones.

We are going to use the familiar set-theoretical symbolism
to denote the membership relation, the set of all elements satisfying
a given condition, the empty set, the set consisting of just one element,
or just two elements, the inclusion relation between sets, the set-
theoretical sum and product of two or more sets, the difference
of two sets, the inverse of a biunique function (i. e., of a function f
for which f(z) =f(y) always implies x =y), the composition of two
arbitrary functions, and the n% iteration of a function (the Ot
iteration being the identity function). Given a set 4 and a function f,
we denote by f(4) the set of all function values f(z) correlated with
those elements x of 4 for which f is defined, i. e., which belong
to the domain of f; in symbols,

f4) = Flze Al
R=x)

Thus, 7 is a new function, which is defined over arbitrary

sets. If _
fla)-B ‘
and the set 4 is included in the domain of f, we say that f maps 4
onto B. Thus, the formula
A~B

expresses the fact that there is a biunique function f which maps 4
onto B; this is clearly equivalent to saying that there is a biunique
function g whose domain is .4 and whose counter-domain (range)
is B. !

Fundamenta Mathematicae. T. XXXV, 6
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By the axiom of choice we, of course, understand the statement
that, for every family of non-empty pairwise disjoint sets, there
is a set 4 which has with each set X of this family just one element
in ecommon. If the family is agssumed to be denumerable, the cor-
responding statement will be referred to as the restricted awmiom of
choice. As is well known, the axiom of choice is equivalent to the
so-called principle of choice by whieh, for every family of non-empty
sets, there is a function f which correlates with every set X of this
family an element f(X) in X. Similarly, the restricted axiom of
choice is equivalent to the restrieted principle of choice. Two other
statements, which are also known to be equivalent to the (general)
axiom of choice, will be involved in our discussion: the well-ordering
principle by which every set can be well ordered, and the trichotomy
law by which, for any given sets A and B, either there is a set O

such that
A~CCB,

or else there is a set D such that
B~IDCA.

Theorem 1%). Proposition P, is equivalent to the axiom of
choice.

Proof: Tt is well known that 2, follows from the axiom of
choice. In fact, P, can easily be derived from 2, by means of the
trichotomy law and the Cantor-Bernstein eguivalence theorem;
and it will be seen from Theorem 2 below that P, ean be established
even without using the axiom of choice in its general form.

It remains to be shown that %, implies the axiom of choice.
For this purpose we consider an arbitrary set 4 and we put

(1) Ay=4 and A4,=3A4,+ FIXCY A, for p=1,2,...
a<lp X n<p

We proceed to construct a set B which, together with
Ay Agyeny Any..., Will satisty the hypothesis of P,.

By a (binary) relation R we understand an arbitrary set of
ordered couples; we assume that the notion of an ordered couple
(x,y? bas been defined in a familiar way by means of the formula

(2) (w,y) = {{m}’ {w!f‘/}}

%) Theorem 1 was stated without proof i i i :
in Lindenbomm.Tamsts 1o} . P (and in a slightly different form)
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Given a relation R, the set of all elements « such that, for
some ¥, (z,y) or (y,x) belongs to R is called the field of R, in symbols,
F(R). R is said to be a well-ordering relation if the formulas
(2,7) e R and (y,x) ¢ R always imply # =y, and if every non-empty -
subset X of F(R) contains an element « such that (x,y)e R for every
4 € X. Thus, an example of a well-ordering relation is provided
by the relation < (and not <) between natural numbers.

Two relations R and § are called similar if there is a biunique
function f which maps F(R) onto F(S) in such a way that the
formulas

(zy)e B and (fl2), f(y) e S

are equivalent for all elements 2 and y in F(R). By an ordinal (number)
relative to a given set X we understand a non-empty set consisting
of all those relations whose fields are included in X and which are
similar to a certain well-ordering relation R.

Let B, be the set of all ordinals relative to A4,; and, for
p=1,2,.., let B, be the set of all ordinals relative to 4, which
do not contain as an element any relation B with F(R)Cdp.
Finally, let

B =} B,.

n<oo

We first show that

(3) BC ) A,.
nlea

In fact, # and y being elements of a set 4,, n=0,1,2,..., we
see from (1) and (2) that (2,y) ¢ An4o; therefore every relation E
with F(R)CA, belongs to 4,.3, and every ordinal relative to A,
belongs to A, s Hence and from the definition of B formula (3)
follows at once. This formula clearly implies that the sets
Ag,AgyeeAn,... and B indeed satisfy the hypothesis of 2.

Suppose now that there are a set ¢ and a natural number p
guch that ‘
{4) B~CCY A,

n<p

By means of an argument analogous to that applied in the
Burali-Forti antinomy we can show that this supposition leads
to a contradiction. In fact, X and ¥ being any two ordinals in B,
we agree to say that X< ¥ if there are relations R X and SeX
such that RCS. Let T be the relation eonsisting of all couples (X, ¥)

6%
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with X ¢ B, ¥YeB, and X<Y; it Z is an arbitrary ordinal in B, -

the set 7(Z) of all couples (X,¥) with X eB, ¥ e B, and X<Y<Z
is called a segment of T. By applying familiar arguments from the
theory of well-ordered sets we can show that

(3) T is a well-ordering relation, and F(T)=B.

From (1), (4), and (3) we infer that there is a well-ordering
relation whose field is included in 4, and which is similar to T
Consequently, there is an ordinal Z in B consisting of relations similar
to T; and hence, as is well known, the segment T(Z) is itself a re-
lation similar to 7. Thus, the well-ordering relation 7' proves to
be similar to one of its segments; and this contradicts one of the
fundamental results of the theory of well-ordering.

Since the sets Aq,4q,...,4n,... and B satisfy the hypothesis
of P, and since, as we have just shown, there are no set ¢ and
natural number p for which (4) holds, we obtain by applying £,

B~ A,

n<co

Therefore, by (5), there exists a well-ordering relation R with
) = 2 An;
n<eo

and consequently, by (1), there is also a well-ordering relation S with
F(S) =A.

Thus, the set 4 being quite arbitrary, Proposition &, turns
out to imply the well-ordering principle. Hence, £, also implies
the axiom of choice; and the proof of Theorem 1 is complete.

Theorem 2. Proposition P, is derivable from the vestricted
axiom of choice.

Proof: To simplify the argument it proves convenient to apply
certain notions of the arithmetic of cardinal numbers. The notions
involved will be understood in a relative sense, depending on an
axbitrary set U; but this relativization will not reflect itself in the
terminology and symbolism.

Thus, by the power 4 of a subset 4 of U we understand the
family of all sets X such that A~XC U; the power of the empty
seb 0 is denoted by the same symbol 0. The family q is called a car-
dinal mumber if there is a set ACU for which ¢ =4. The sum a+b
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of two cardinals a and b is the cardinal containing all the sets A+ B
with Aea, Beb, and A-B=0 (provided such sets exist). The

sum Y a,, or Y a, of a finite, or infinite, sequence of cardinals
n<p n<oo

@, Gy, --- 18 defined in an analogous way. Given two cardinals a and b
we say that a<(b if there is a cardinal ¢ such that a-4-c¢="5; or,
in other words, if there are sets A and B with 4 ea, Beb, and
ACB. Elementary laws of addition —e. g., the commutative and
associative laws, and the laws expressing fundamental properties of
the cardinal 0 — are assumed to be known. It should be noticed
that, in establishing these laws for sums of infinite sequences, we
have to apply the restricted axiom of choice.

We are now going to derive a few lemmas, A—9, which are
of a less obvious nature. In the proofs of these lemmas we shall
again make use of the restricted axiom of choice; Lemma ZA, however,
will be obtained without the help of this axiom. -

A?). If a, b, and ¢ are cardinals such that the sum a--c exists
and a-+c=b+ ¢, then there are cardinals o', b’y and d for which

a=a-+9 b=b'+Dd, and c=a'+c=b+c

In fact, the hypothesis of this lemma implies the existence
of four sets 4, B, 0, and C’ (included in a given set U) with the
following properties:

55 . Ad-q, B=p, 0=C=g
@) A+ C=B+ 0 and A.-C=B-¢' =0.

By (1), there is a biunique funection f whose domain is ¢ and
whose counter-domain is €’. We put:

(3) D,=Dy=A4 B,
(1) Dp=(C—C")-F (("—C) and Dy=(¢"—C)-JH(C—C") for n=1,2,3, ...,
(5) A'=A4—3Y D, and B'=B—} D,,
n<oo n<eo
(6) o' =a', b'=F, and b= D,.

3) Lemma S was stated without proof in' Lindenbaum-Tarski [1],
p. 301, Theorem 6. Several other results stated in the same work can easily be
derived from this lemma; e. g., Theorems 7-9, 12-20, and 38, ibid., pp. 302 ff.
See also W. Sierpinski, Fund. Math. 34 (1947), p. 116.
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By (3) and (4), each of the sebs Dy, =0,1,2,..., is included
in the domain of the biunique function f*, and we have
TH(Dy)= D
Hence .
(7) f» maps D, onto D, for n=0,1,2,...

AMoreover, the sets DgDyy.eey Dany.e are pairwise disjoint. In
fact, from (2)-(4) it follows directly thab

Dy-D,=0 for n>0.

Tf, on the other hand, 0<<m-<n, then by (4) the set f_"'(D,,)
is included in-the domain of f, i. e., in ¢, while fm(D,,) is disjoint
. with C; therefore,

(D) - (D) =0
and hence
Dy Dp=0.

N .For similar reasons the sets Dg,Di,..,D;,... are pairwise
disjoint. Consequently, and in view of (7), we can construct a biunique
funetion g which maps § D, onto ) D,; in fact, it suffices to pub

n<oo n<eo

glx) =fa(x) for weDp, n=0,1,2,..
Thus,
Z-Dn ~ Z.D;,,
n<e n<eo
and hence, by (6),
) =57
n<oo

By (2) and (4) we have

Y D.CB and 3 D,CA;
n<eo n<eo ’

consequently, by (1), (8), (6), and (8),
9) . a=a'+d and b=b'-+d.
Furthermore, we show by an easy induction that

o) 4 ey -
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holds for every natural number #. In fact, formulas (2), (3), and (B)
imply
(11) A'CA—D,=0C"—0C,

and hence (10) holds for n=0. Assume now that (10) holds for any
given #. Since

¢'=J(0) CH(C") 4 {C—C),

our inductive premise gives .
A’ CFF(0) + (6= ).

Therefore, by (4) and (11),

A’ CTF(C) + Do,y
and hence, by (5), _
. AT C(C);

i. e., (10) holds also for n+1. From (10) we see that 4’ is included

in the domain of F " for n=0,1,2,...; consequently, the set

A A= S A

n<oo n<oo

(12)
is included in the domain of FL. Sinee we obviously have

PN =20
we conclude that
Ji4) ~Z>:_=.‘°I""—‘(A’),

n<eo n

and therefore, in view of (11),
(18) 37 (AN +[0— 3 7 (AN] ~ A [C— ST AN)
n<oo n<oo n<oo n<oo
Since the domain of f is ¢, we have

sS4
n<oo i

Hence, with the help of (12), formula (13) can be simplified:
A4 C~C
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and, by (1), (6), and (11), we obtain

(14) o' fc=¢c

In an entirely analogous way we derive

(15) b +c=c

Thus, the existence of cardinals a’, b’, and d which satisfy (9),
(14), and (15) has been established; and the proof of Lemma A is
complete.

B. If agyayyeeeyGnyeer ad Do byy ooy by are two infinite sequences
of cardinals such that

ba=0,+bps for n=0,1,2,..,

then the sum > an ewists and

n<oo
D 0, <Dy
n<oo
In fact, the restricted axiom of choice implies the existence
of a sequence of sets By,By,...,Bp,... such that
(16) B,=b, for n=0,1,2,..
Furthermore, by the hypothesis of Lemma B and with the
help of the same axiom, we can correlate, with every natural num-

ber n, two sets 4, and By, as well as a biunique function f,i4
such that

*Bp=An+ Bny1, An-Brpi=0,

(17)

(18) E—;: L) Bn-{-l:bn—l-ly
and

(19) fatt MaDS Buyq oDt By,

Now let g, l.)e the identity function, and let g,y forn=0,1,2,...
be the composition of functions f,f,,...,faps (in this order), so that

g=fy, and grpy=gafaps for n=1,2,3,...

Iom

Theorems on sums of cardinals 89

The functions go, ¢yy---3§as-.. are obviously biunique. From (17)
and (19) we infer by an easy induction that each of the sets A, is
included in the domain of g,, and that the sets

go(do)y gildr); ey GulAn)see

are mutually exclusive and are subsets of B,. Consequently, by (18),
Sa(An=Ya, and Y ga(4,)CB,
n<eo n<oo n<eo}

Hence and from (1’6)‘the conclusion of Lemma £ follows at
once.

C4. If agyayyeeeyQny... and b are cardinals such that

b=a,+b for n=0,1,2,..,
then the sum D a, exists and
n<eo
b=} a,+b.

n<oo

To prove this, we define a double sequence of cardinals a,p
and a sequence of cardinals b, by putting

(20) Qnp=0, and b,=b for m,p=0,1,2,..
By hypothesis we have

(21) ba=an+Dbppt for n=0,1,2,...

and

{22) bp=pp+bnp1 for u,p=0,1,2,...

By applying Lemma B, we conclude from (21) that the sum

3 a, exists. Similarly, for any given natural number p, (22) implies
n<loo
that the sum Y a,, exists and that

n<eo

(23) bu=2ﬂn,p—l— [
n< oo

4 Lemma C was proved in a different way by E. Zermelo; see Schoen-
flies [1], p. 40.
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for some cardinal ¢. From (20) and (23) we obtain (with the help
of the commutative and associative laws):

b=bg= 3 tonp+ ( 3 Qnt1,p+¢)= Z anm‘l‘ an,p +e),
n<leo n<oo

and consequently

bp= 3 anp+Bp+1 for p

n<{o0

=0,1,2,...

Hence, by applying Lemma B again, we infer that

2 Dy
p<ee n<loo

exists and that, for some cardinal b,

(24) bg— y yﬂn,p+b
poa

From (19) and (24) we obtain (again ‘with the help of the
commutative and the associative laws)

n<mp2an,p+b S’QO})_I—( Vu,.+1,,,+b 2 Ean,p+b
and finally
h— S‘ an*r D.
n<cc

The proof of Lemma € has thus been completed.

D. If ag,0y5.cy0nyeney and b are cardinals such that, for every
natural number p, the sum 3 a, exists and
n<p

D, Kb,
n<lp

v

then 3 a, also exists and
n<loo

In fact, by hypothesis and with the help of the rcstuctcd

axiom of chaice, we ¢btain a scquence of cardinals ¢, ¢
such that n

(25)

vey Cryoes

M_iaﬁ-cp:b for p=0,1,2,

iom
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Hence

cp—Jf_Z a,lz(fp+1+ ap)+2 Qn for P =0,1,2,...
n<p

n<p
We apply to the latter formula Lemma A with

= = =3
a=¢p, b=cpy1+0ap, and c -2, 0

and, by again using the restricted axiom of choice, we obtain threi
sequences of cardinals ap, bp, and b, such that, for every natural

number p,

(26) o=+, Cppa+0p=Dp+0p;
and 5

7 =a =0+ a,
(27) n%an ap +nz>;‘1n P 2

By (25) and (27) we have

b=+ (Y aat ) =B+ (X aa+6);
n<p n<p

therefore
=0,1,2,...

b=ap+b=0b,+b for p
and hence, by Lemma G, the smnsngfma;, and n%;?;, exist and
=Y, +b=3b,+b.
(28) b n<2ma -+ 2! +

(25) and (28) imply (by the commutative and associative laws)

Zan+ yr)n+p+cp>—r‘( au—r}?+2bn p )
n<p <
Thus, by putting
(29) 5p=2a;+gjb;&,,+cp for p=0,1,2,..,
- n<p n<oo

we obtain an infinite sequence of cardinals by,by...,bp... Which

are all <b. By (25), (28), and (29) we have
30 - : by=b.
From (26) and (29) we conclude:

=3 dht Ty + 0= 3 an+ 2 Blvtpa +5p D5

n<p n<oo
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hence
by= ¥ a4 3 brippt + o1 +ap,
a<p+l  n<oo

and therefore
(31) bp=a,+byp for p=0,1,2,..

By Lemma £, the conclusion of Lemma 9 follows immediately
from (30) and (31). .

Lemma 9D just established coincides essentially with Propo-
sition G, formulated in the introduction; and from this lemma
we can now easily derive Proposition £, In fact, consider any
sets Ay, 4y,...; 4y, ..., and B which satisfy the hypothesis of Ly; as

the universal set U (to which the notion of the cardinal is relativized)
we take, e. g.,

U= 4,+B.
We put e
(32) A;=Ap——§A,, and q,=A, for p=0,1,2,..
n<p
as well as '
(33) b=E.
Obviously, by (32),
(34) S4=34; tor p=0,1,2.00.
n<p n<lp

We also easily see that the sets Ao, Af,.., Ay,... are pairwise

disjoin Hence hy 2) a 4 and with he help of the restricted
axiom of ChOlCe),

(35) . 2 dy=Ja, for p=0,1,2,...c0.

nlp n<p
By the hypothesis of P,, formulas (33) and (35) imply

Jan<h for p=0,1,2,...,

nlp
and consequently, by Lemma D,
(36) Ja <.

The conclusion of @,

and (36); is a direct consequence of (33), (35),

and the proof of Theorem 2 is complete.
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By comparing the results obtained in Theorems 1 and 2, we
see that the implication P— P, can be established without the
help of the axiom of choice. If the same were true for the implication
in the opposite direction, PP, then the axiom of choice in its
general form would prove derivable from the restricted axiom of
choice; but this has recently been shown not to be the case3).

The derivation of 2, is essentially non-effective in its character.
The proof of 2P, is not effective either; it can easily, however, be
made effective by introducing in the hypothesis of £, an infinite
sequence of biunique functions f, which are assumed to map the
sets 2 A, (p=90,1,2,...) onto subsets of B. In fact, by transfor-

L ISE . - . .
ming &, in the way just mentioned, we obtain the following pro-
position:
Ps. Qiven an infinite sequence of sets Ay, A,,...,Apn,..., @ set B,
and an infinite sequence of biunigue functions fo,fiy ey fay..., if, for every

natural number p, the function f, maps the set D A, onto a subset
n<p

of B, then there is a biunique function f which maps the set Z’ A, onto
a subset -of B. -

Now, by analyzing and slightly modifying the proof of The-
orem 2, we arrive at

Theorem 3. Proposition P, can be established without the
help of the axiom of choice.

Moreover, the proof of Py is effective; for the funetion f whose
existence is claimed in the conclusion of Py is effectively definable
in terms of sets and functions involved in the hypothesis. Hence
we can say that the proof of the original proposition @, is ,almost”
effective in its character.

§ 2. Algebraic aspect of the problem.

The essential differences between Propositions £; and 2,
diseussed in the preceding section by no means reduce to questions
of an axiomatic or methodological nature. The algebraic part of
our discussion will throw more light on this.subject ).

5} See Mostowski [1]. )

) The discussion in § 2 will have a much more sketchy character than that
in'§ 1. Most of the material contained in § 2 is discussed in greater detail in Tar-
ski [1], especially in Sections 15-17; in particular, Theorems 4 and 5 of the present
article are corollaries of more general results established in Section 2 of that work.
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The sets involved in £, and P, can be regarded as elements
of the Boolean algebra formed by all subsets of a certain set U,
with set-theoretical addition and multiplication ag the fundamental
operations. Hence we can try to generalize £, and &, by considering,
instead of the sets involved, elements of an abstract Boolean algebra
formed by a set B of arbitrary elements ¢, b, ¢,... and by the funda-
mental operations + and . assumed to satisfy certain well-known
postulates; the relation ~ of set-theoretical equivalence is replaced
by a binary relation R between elements of 8. In terms of the funda-
mental operations of our algebra we define, in a familiar way, the
elements 0 and 1, the inclusion relation < between elements of %,
the sum (the least upper bound)izl’ a; and the product (the greatest

€
lower bound) of an arbitrary system of elements a;; the operations %
and [T are not supposed to be always performable. Propositions 2P,
and £, assume now the following abstract form:

Q. Let agy@yy..sGnyn. and b be elements of a Boolean algebra B
such that the sum 3 an ewisis; and let R be a binary relation between

n<oo
elements of B. If there is an element d in B such that

bRd and Q< Y ap,

n<eo
then either bR 3 an, or else there exist a natural number p and an ele-
ment ¢ in B r}g;c which
bRe and o< 3 an.
nlp
Qs. Let ag,yy...,@ny...y b, and R have the same meaning as in Q.
If, for every matural number P, there is an element ¢ in B such that
D anRe amd < b,
n<p
then there is an element d in B for which
KZ a,Bd and d<b.

) It is obvious that Propositions Q, and @, do not apply to
arbitrary Boolean algebras and arbitrary relations between elements
of thes.e algebras. Hence the question arises under what assumptions
rfagardmg the algebra 8 and the relation R these propositions hold;
since we are aiming at a generalization of the original propositions .‘B’
a'nd g’z, we are interested only in thoge assumptions which are smisf
fied in case we take for B the algebra of all subsets of a given set
and for R the relation of set-theoretical equivalence.
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The study of this question with regard to (, does not bring
any interesting results. By analyzing the proof of P, we are led to
impose conditions on B and R enabling us to construct an iso-
morphism which maps the algebra B onto the algebra of all subsets
of a set, and the relation B onto the relation of set-theoretical equi-
valence. The sfstems (B, R) thus obtained are certainly not the
only ones for which @, holds; the attempts, however, of extending @,
to other, interesting and ,naturally defined”, classes of such systgms
prove unsuccessful. On the contrary, we shall see that @, has a wide
range of applications.

A Boolean algebra B is called countably complete if the sum é‘] 0n
n<oo

exists for any infinite sequence of elements a, in B. By an equi-
valence relation in B we understand a relation R which is reflexive
in 8 (¢ Ra for every a in B), symmetrie, and transitive. The
velation R is called countably additive, or (finitely) refining, if it
satisties the following condition (i), or (ii), respectively:

(i) If Gpylyyeey@my.-e ANA Doy byyecsybn, .. are elements in B8°
such that
Q- 0p=0="Dbp-b, for n<p<oo, and a,Rb, for n<co,
then
2R Y by
n<oo n<eo

(provided the sums in question exist).

(i) It a,a a, and b are elements in B guch that

a=a,+ay a,-0,=0, and akRb,
then there are elements b, and b, for which
b=b;+by, by-by=0, oRb, and axRb,

Using this terminology, we can now formulate and establish
the following A

Theorem 4. Proposition @, applies to every countably conzplet.e
Boolean algebra B and to every countably additive and refining equi-
valcnee relation R in this algebra.

A detailed proof of Theorem 4 will not be given here; it can
be obtained by & close analysis of that of Theorem 2. As can easily

be guessed, instead of cardinals we use the equivalence clas.ses
under R, i.e., the subsets of B consisting of all elements which
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are in the relation B to some element in 8. The proofs of Lemmas F
and B require a rather essential modification; since we cannot
operate with functions mapping some sets onto others, we have
to make an extensive use of the refining property of R.

The proof of Theorem 4 is based upon the axiom of choice.
The particular case of this axiom which is-involved in the proot
can be referred to as the principle of an infinite sequenee of successive
(dependent) choices, and can be formulated as follows:

Ij 4 is a non-empty set and 8 a relation such that, for every
element @ ¢ A there is am element y e A with @ Sy, then there ewists

an infinite sequence of elements Ly, @y, ..., @ny ... in A such that x, Tnpy

for n=0,1,2,...

It would be interesting to clear up the problem of the logical
relations between this principle (which is often applied in mathe-
matical arguments) and the axiom of choice. Tt can. easily be shown
that our principle implies the restricted axiom of choice; we see,

“however, no way of establishing the implication in the opposite
direction. On the other hand, it has recently been shown that the
principle in question does not imply the general axiom of choice 5).

2, and P, can be regarded .as representatives of two very
different kinds of theorems concerning addition of set-theoretically
equivalent sets (or addition of cardinals). The two kinds of theorems
exhibit the axiomatic and methodological differences which were
discussed in § 1; the proofs of the theorems of the first kind essen-
tially involve the general axiom of choice and are of an essentially
non-effective character, while the proofs of those of the second
kind require at most an application of the restricted axiom of choice
and are ,almost” effective (in the sense described at the end of the
preceding section). What is perhaps more important, the theorems
of the first kind do not seem to Dbe susceptible of any interesting
generalizations in the direction of abstract algebra, while those of

the second kind can be extended to g wide class of algebraic
systems 7).

?) The difference between the two kinds of theorems was pointed out in
earlier papers of the author; ef. Lindenbaum-Tarski [1] and Tarski [3].
However, the idea of extending the results of the second kind in the direction
of abstract algebra has been fully realized and developed only in Tarski [1].
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As examples of theorems of the first kind we may mention,
in addition to £, the trichotomy law (see §1) or the theorem by
which the sum of any two infinite sets has the same power ay one
of these sets. The theorems of the second kind are usually of a more
special nature; we find, however, among them a number of inte-
resting statements, as is seen from the following examples:

2, (Equivalence Theorem). If 4, B, and C are any seis such that

ACBCO and 4~C,

then
A~B~(.

P, (Mean-value Theorem). If 4, B, (, Ay and O a2 any
sets such that

4CBCO, A'CC’, A~4" and CO~C(',
then there is a set B’ for which
A'CB'CC’" and B~B'.

P; (Subtraction Theorem). If 4, A', A", B, and € a2 any
sets such that

A4+BCA 44" 1.,

then there is a set B’ for which

A4-B=0, and Ad~4'~4",
B~B'CA'4-C.

L5 (Division Theovem). If Aoy AgyeyApy and By, By...., By
(p>0), are any two finite sequences of pairwise disjoint sets suh that

and D d,~ 3 Bn,

nlp n<lp

dg~4,
then

and  By~B, for n=0,1,..p—1,

Ay~ B,

P, (Interpolution Theorem). Given any two sequences of sets A,
and By, and a double sequence of sets Cpp, if

An~CrpCB, for n,p=0,1,2,..,
then there are sets D, Ay, and B, such that

dp~A4,CD and D~B,CB, for n,p=0,1,2,..

Fundamenta Mathematicae. T. XXXV. 7
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The content of some of these statements would be clearer

if they were formulated in terms of cardinals.

Propositions P,—2 can be derived from axioms of get theory
without the help of the axiom of choice. The same applies to Pro-
position P, restricted to finite sequences; in the general case the
proof of P, requires an application of the restricted axiom of
choice 8).

From P;—P,; we now can obtain the abstract formulations
@—@, in exactly the same way in which (3, has been obtained
from %P,; and by analyzing the proofs of P—P, we arrive at

Theorem 5. Propositions Qy—Q, apply to every countably
complete Boolean algebra B and to every countadbly additive and
refining equivalence relation R in ihis algebra.

The proof of this theorem rests again on the principle of an
infinite sequence of successive choices.

‘We can thus develop a whole theory of countably additive
and refining equivalence relations in countably complete Boolean
algebras. To complete this paper, we want to give various examples
of systems to which this theory applies.

In constructing and discussing these examples we shall use
some further notions from the theory of Boolean algebras — such
as the notions of an ideal I in a Boolean algebra B, the congruence
of two elements modulo I, the quotient algebra 8/I, and the principal
ideal I(a) generated by an element q. All these notions are familiar
from the literature,

The simplest instances of countably complete Boolean algebras
are found among fields of sets. A family of subsets of a set U is
here referred to as a field of sets if it contains the set U as an element
and is closed under finite set-theoretical addition and subtraction;
a field of sets is called countably complete if it is closed under adz
dition of infinite sequences.

o %) %5 is of course the famous Cantor-Bernstein theorem. Regarding the
origin of P,— P, compare remarks and notes in Li-ndenbaum-'%arsk? [1}
PD. 3{»2-305.l 27 is a new result, The direct proofs of all these theorems — a.m{
of other. related results — can be obtained by analyzing the proofs of corresponding
zflfebraxc {heorems in Tarski [1], Section 2; ef. remarks in Section 17 of th:
same work.
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Every field of sets is obviously a Boolean algebra (under
set-theoretical addition and multiplication), and every countably
complete field is a countably complete Boolean algebra. Conversely,
every Boolean algebra is, as is well known, isomorphic with a field
of sets. There are, however, countably complete Boolean algebras
which are not isomorphic with any countably complete field of
sets. For instance, consider the Boolean algebra B constituted by
all subsets of a set U with U=2", and the ideal I in B consisting
of all at most denumerable subsets of U. Since both B and I are
countably complete, the Boolean algebra $B/I is also countably
complete. However, B/I lacks another property which is common
to all algebras isomorphic with countably complete fields of sets.
In fact, B/ is not countably distributive, i. e., it does not satisfy
the following condition:

(i) For every double sequence of elements a,, in B,

[ Ya,=23 H“n,qn
nco ploo geQ nlco
where Q is the set of all infinite sequences ¢ =1{(q, @1 s qns---) OF
natural numbers.

Hence, B/I is not isomorphic with any countably complete
field of sets. The same remarks apply if B is, e. g., the family of
all sets of real numbers which are measurable in the sense of Le-
besgue, and I is the ideal of all sets of measure 0. An even more
interesting example is provided by the Boolean algebra B’ of all
subsets of a set U’ with the power 2#% and by the ideal I' of all
those subsets of U whose power is at most 2%. In this case B'/I’
proves to be both countably complete and countably distributive,
but nevertheless it is not isomorphic with any countably complete
field of sets. For it can be shown that no prime ideal in B'/I" is
countably ecomplete; while for a countably complete Boolean algebra
to be isomorphic with a countably complete field of sets, it is ne-
cessary and sufficient that every element different from 1 of such
an algebra belongs to a countably complete prime ideal?). The

9) While the proof of the necessity of this condition is rather obvious, the
proof of the sufficiency is analogous to that of the representation theorem for
Boolean algebras in Stone [1], Chapter IV. For the proof that the algebra %'/
has no countably complete prime ideals see Tarski [2], p. 58. The remaining
properties of the algebras /I and /I’ mentioned above can be established
without difficulties.

7*
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countably complete fields of sets constitute a rather special class
of countably complete Boolean algebras— though undoubtedly
a class which is especially important from the point of view of appli-
cations.

As the first example of countably additive and refining equi-
valence relations in countably complete Boolean algebras we may
take the relation of homogeneity, two elements ¢ and b of an al-
gebra B being called homogeneous if the principal ideals I(a) and I(5)
are isomorphic; in case B is the field of all subsets of a set U, the
relation of homogeneity coincides with that of set-theoretical equi-
valence. Theorems 4 and 5 (and other analogous results) can now
be applied to the relation of homogeneity. We obtain in this way
a series of results which are interesting for the reason that they
imply as immediate corollavies various conclusions concerning
direct products of countably complete Boolean algebras and of
isomorphism types of such algebras. (The notions of the isomorphism
type § of an algebra B and of the direct product a X f of two iso-
morphism types are defined by abstraction in terms of the isomor-
phism relation). Thus, for instance, from the fact that @, and @3
apply te the relation of homogeneity we immediately derive the
following conclusions:

If a, B, and y are isomorphism types of countably complete Boolean
algebras, then

(i) the formula a X fxy=y tmplies a Xy=Fxy=y,

(i) the formula ax a=px § implies a=4p.

It would Dbe interesting to show by means of examples thab
neither of these conclusions can be extended to isomorphism types
of arbitrary Boolean algebras. :

The relation of homogeneity is a particular instance of a com-
prehensive class of relations which can be described in the following
way. By & partial automorphism in a Boolean algebra B we under-
stand every function f whose domain is a principal ideal I{a) in B
and which maps I(a) isomorphically onto another prineipal ideal, I(b).
A set @ of partial automorphisms in B is called 2 quasi-group or
simply a group if it contains the identity function over B and is
leosed under the operations of composition and inversion (taking
nverses). & is said to be eountably additive if it satisfies the following
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condition:1et f, /iy .. fns ... e any functions in G and let @, agy ay, ..., Gny..
and b,bg,by.-3bny-.. be any elements in B such that

@) azEam 'b=_5,’bm
nloo nloa

(i) @n-a,=0=0b,-b, for n<p<oo, and fua.)=b, for n<oo;

finally, let f be a partial automorphism whose domain is I(a) and
which agrees with f, on I(a,) for #=0,1,2,...; then f belongs to G.
Two elements & and b in B are called congruent under @ if f(a)=25
for some fe@, in symbols, ay b; they are called equivalent by in-
finite decomposition under @G if there exist a sequence of functions f,
in G and two sequences of elements a, and b, in B which satisfy
formulas (i) and (ii) just given. As is easily seen, for every group &
of partial automorphisms in a countably complete Boolean algebra,
we can construct a countably additive group H of partial auto-
morphisms such that equivalence by infinite decomposition under &
coincides with congruence under H; in fact, H is the smallest coun-
tably additive group including G. Thus the study of equivalence
by infinite decomposition under arbitrary groups reduces to that
of congruence under ecountably additive groups. Now, & being
a countably additive group of partial automorphisms in a countably
complete Boolean algebra B, the relation @ is easily seen to be a
countably additive and refining equivalence relation in 8. Hence,
propositions like Q,— @, apply to every relation of this sort (and,
moreover, a direct proof of @,—@, for the relations & requires
at most the restricted axiom of choice and has an ,.almost” effective
character) 1°). If we take for G the (countably additive) group of all
partial automorphisms in 9B, congruence under G clearly coincides
with homogeneity.

Various interesting instances of relations G can be found in
Boolean algebras constituted by countably complete fields of sets.
B being an algebra of this type, let f be a function with the following
properties: f is biunique and its domain is a set in B; if f maps
a set X onto a set ¥ and one of these sets is in 8B, then the other
is also in $B. Consider now the correlated function f defined as at
the beginning of § 1, but with the domain restricted to those sets

1) Propositions @; and @, apply to an even wider class of relations, in
fact, to congruences under finitely additive groups of partial automorphisms.
(The definition of a finitely additive group is entirely analogous to that of a coun-
tably additive group). See Tarski [1], Sections 11 and 15.
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which belong to B and which ave included in the domain of f; 7 is
clearly a partial automorphism in . From every set @ of functions f
with the properties specified above we obtain in this way the set G
of correlated partial automorphisms ; and, under appropriate con-
ditions imposed on &, the set @ proves to be a group or even a coun-
tably additive group. For instance, let B be the algebra of all sets in
a metric space §; and let G be the set of all isometric functions
(distance-preserving transformations) whose domain and counter-
domain are sets in B. Then & is a group of partial antomorphisms
in B; and the relation of equivalence by infinite decompesition
under & — or, what amounts to the same, the relation of congruence
under the smallest countably additive group over G —is a countably
additive and refining equivalence relation in 8 which plays a certain
role in the discussion of the problem of measure ), Or, let B be the
algebra of all Borel sets in a topological space T'; and let & be the
family of all hiunique Baire funections whose domain and counter-
domain are sets in B. Then & proves to be a countably additive
group of partial automorphisms in B; congruence under @ coincides
with what is called the relation of generalized homeomorphism **);
and by applying Theorems 4 and 5 we obtain a series of theorems
on generalized ‘homeomorphisms in arbitrary topological spaces.
I, for instance, 4, B, and C are Borel sets with 4CBCC, and f
is & biunique Baire function which maps 4 onto €, then there are
two bimnique Baire funetions g and % such that g maps 4 onto B,
and b maps B onto (; moreover, in consequence of the effective
nature of the proof of this statement, we can determine the Baire
classes of g and % if we know the Borel classes of 4, B, and ¢, and
the Baire class of f.

Besides congruence relations under groups of partial auto-
morphisms, other examples of countably additive and refining
equivalence relations in Boolean algebras are also known. For in-
stance, every relation of congruence modulo a countably complete
ideal I in a countably complete Boolean algebra B is of this type.
However, the results obtained by applying Theorems 4 and 5 to
sneh. a eongruence relation are rather trivial ahd can easily be
obtamed.m a direct way, as elementary consequences of the fact that
the quotient algebra B/I is a countably complete Boolean algebra.

1) See Banach-Tarski {1, § 3.
) See Kuratowski [1].
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Finally, we can point oub a more comprehensive class of

'c-ount&bly additive and refining equivalence relations, which includes

both classes previously discussed. & being & set of partial auto-
morphisms in a Boolean algebra B, and I being an ideal in B, we
call two elements @ and b of B congruent under ¢ modulo I if there
are elements a,, ., by, and b, such that

a=a,+ay,, b=b +by,, ayyb, arel, and byel.

If I consists of the unique element 0, the relation just defined
coincides with congruence under & if, on the other hand, G consists
only of the identity function, this relation reduces to congruence
modulo I. In case the algebra B and the ideal I are countably
complete, and the set @ is a countably additive group, congrueuce
under ¢ modulo I proves to be a countably additive and refining
equivalence relation in B. To give an example, consider the algelna B
of all subsets of an n-dimensional cube (in n-dimensional Euclidean
space) which are measurable in the sense of Lebesgue. Let & he
the set of all isometric functions whose domain and counter-domain
are in B; let H be the smallest countahly additive group over @
of partial automorphisms in %B; and let I be the ideal of all sets
in B of measure 0. The relation of congruence under H modulo I
has been discussed in the literature; it has been shown that this
relation holds between two sets if, and only if, they have the same
measure 11). ‘ )

These examples give us an idea of the wvariety of systems to
which Theorems 4 and 5 — and other results analogously obtained —
can be applied.
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Iom

Sur la continuité et la classification de Baire des

fonctions abstraites ).
Par

A. Alexiewicz et W, Orlicz (Poznan).

0. Nous désignons par F {w(u)} 'ensemble des éléments u
u

qui satisfont & la condition ww(u).

X désigne un espace de Banach, e. &4 d. un espace vectoriel
normé et complet (Banach [1]2), p. 52);

|| — la norme de I’élément x ¢ X

& — Despace conjugué & X, c.i d. Pensemble linéaire des
fonctionnelles linéaires &(x) définies dans X (la norme dans & étant
définie par la formule [& = sup &(r), l'espace 5 est un espace de
Banach). i

&, — 'ensemble fondamental ) de fonctionnelles linéaires dans X
c. & d. un sous-ensemble de = satisfaisant & la condition suivante:
pour tout £>0 et xeX, il existe une combinaigon linéaire
E=u &+ apbo+ ... F anfn A’éléments £,&,,...,5, de 5 telle que
(0.1) [Ei<1 et Ea) = lef—e;

E¢ — l'ensemble des combinaisons linéaires d’éléments de =,
qui satisfont & la condition (0.1).

1) Les résultats de cette Note ont été présentés & la séance du 14 décembre
1946 au IV Congrés Polonais de Mathématique & Wroctaw.

2) Les nombres entre les crochets renvoient aux ouvrages cités & la fin
de cette Note.

3) La notion d’un ensemble fondamental de fonctionnelles linéaires ne
coincide pas avee celle de I'ensemble fondamental d’éléments de I'espace con-
jugné, due & Banach ([1], p. 58).
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