ON FITE'S OSCILLATION THEOREMS
BY a
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The general solution of the differential equation
() yr4y=0

is n
2
Z a ™" sin By b,)

if n is even,

and
n—1i

2
ape™ g‘iave%xsin (Box+b) if nis odd,

where a,=cos%", f,=sin*" and a,,b, are arbitrary constants.
It is easy to see that n being even, any particular (non trivial)
solution y(x) of (1) oscillates, i. e. changes its sign an infinite
number of times as x—co. If n is odd, it is so except when
a=...=an—1=0; in the last case y(x) is everywhere different
7

from 0 and approaches 0 as x— oo,

This-property of solutions holds for the more general equation
@ Yy +-A(x)y=0
if convenient hypotheses are made on A(x).

Sturm showed in 1836 %) that if n=2, A(x) is continuous
and
(3) A(x)>m>0,
then every solution of (2) oscillates.

Kneser proved in 1893 %) that A(x) being a continuous v

function the condition (3) suffices that any solution of (2) oscil-

) £ Sturm, Journal de Mathématiques pures et appliquées 1 (1836),
p. 106-186,

% A. Kneser, Untersuchungen iiber die reellen Nullstellen der Integrale
linearer Differentialgleichungen, Mathematische Annalen 42 (1893), p. 409-4353,
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lates, in case n is even, and either oscillates or approaches 0 mo-
notonically if n is odd.

Now, Fite stated in 1918 % two more general theorems by
replacing the condition (3) by the following ones respectively:

@ A@®>0 and [A(x)dx=co (in his theorem V),

(5) A(x)>>x—"+* for some &>0 and great values of x (in his
theorem V).

We shall show that a more general theorem holds, both
Fite’s theorems being its immediate conclusions.

Theorem. Let A(x) be a continuous function for x> a.

If n is odd, and

©) AX)>0 and [t A(x)dx—oo,

then each solution of (2) either oscillates or approaches 0 mono-
tonically as x - co.

If n is even,” and
{7) A(x) >0 and [xrt—ed(x)dx=c0 (0<<e<<n—1),

then each solution of (2) oscillates as x —> oo.

The following example, given by Fite, shows that in the
second part.of the theorem & cannot be omitted. In fact, let
n=4 and 4(x)=15/16x*; then the equation (2) has a non-oscil-
lating solution y=x32

The proof of the theorem is essentially the same as in the case
of Fite’s theorem VI, but some difficulty lies in dealing with
iterated integrals. We first establish the following

Lemma. If 0<a<<i<<m, 4(x)>0 for x>a, and

fam—2re d(x)dx<<oo and [xm—!A4(x)dx=o0,

a

3) W. B. Fite, Concerning the zeros of the solutions of certain differential
equations, Transactions of the American Mathematical Society, 19 (1918),
p. 341-352,
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then given any positive x,>>a and K>0 there exists an x,>x,
such that

®) fat ﬂs- fm—2+a 4 (5)ds > K (x — )0

for x> x,.

Indeed, from I'@)I'(1—a)=u/sinan we easily get for
0<<a<<1 the general formula

f ft)dt =20 ﬁx-

xt *1

i
t)e—idt f (t—uw*fwdu (f continuous),

and the left member of (8) may be written

x

iil‘fﬁ f (3 — Be—1F () dt,

x1
where

1 oo
() F()=[(t—w=duf(s—u—2+4(s)ds >
¢ ¢ .
> [t—uweduf(s —uym—2+¢ 4 (s)ds =

f f t—-—u)— (s—uym—2+edy >

xi

t
. 1
}fA(s)dsf(s—-u)’"‘%u} ot f(s——xl)’""‘A(s)ds
£ x1 xy
. ¢ b
By hypothesis, the integral Js™—14(s)ds diverges as ¢ increa-

ses and it is easily seen that so does the last integral in (9),
because it is greater than

Xy

ft( ’“E)mﬂls'""‘f“s)ds for t>b>x.
b .

Thus for properly chosen xa>b we shall have F (t)>§1.§%,

and the left member of (8) will be greater, for x> x,, than

smnan f (et =T G K (e — xg) .
£

sin az
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If a=0, the left member of (8) is greater than

x x . g x .
de!(s—t) 24(s)ds=m_1xlf(s_x,) 1 A(s)ds

and becomes consequently greater than any given number K.
This completes the proof of the lemma.

Now, suppose y(x) to be a non-oscillating solution of (2).
Then it is of constant sign for sufficiently great values of x,
and consequently monotonic, because of (2) and of the hypo-
thesis that 4(x)>>0. To prove the theorem it is sufficient to
show that the assumption

y(x)>k>0 for x>x,>a

leads to absurd.

In the following we shall reproduce the argument of Fite,
but modified by introducing convenient integral inequalities. The
parts in quotation marks are taken literally from his paper men-
tioned above.

“We take x, sufficiently great so that y(x)>k for x>=x,
and consider the consequences of the inequality”

(10) - Y (x) < —k A (x).
“From (10) we get”
Y0 (x) < y("“”(xl)—ka (tydt.

If fA(f)dt diverges for x-»oco, “y—1(x) would be negative

Xy
for sufficiently great values of x, and y would become negative.
We assume therefore that, if n>>1", the value of [A(fdt is fi-

nite and

Y9 (x) —k [A(#) dt >0

“Moreover, if the expression in the left member of this in-
equality should become negative as x, increases, we would ap-
ply the preceding argument for a properly chosen x,. There re-
mains then to be considered the case in which”

Yo (x)—k f Atydt >
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“From this inequality we get”
* o
Y= (x) >yt () -k [ dt tf Als)ds.
*1
“If n>2 and y"?(x) is to remain negative as x increases”,

PR
the integral [ clttf A(s)ds must converge for x->occ and we have
x1 )

oo oe ko~
yrfx) +k[dtfA(5ds <O, i e YA+ f (t—x)A(t)dt <0.
Hence

k(o (o
Y3 <yir— 1 [dt tf (s—1)A(s)ds.
x4

“Now if y does not change sign as x increases, no derivat-
ive of index n—2i—1 can become negative if all derivatives
with indices of the form n—2j, where j<i, remain negative.
There are therefore but two conceivable resulis of coniinuation
of this argument:

(a) The derivatives of y from the n-th to the first inclusive
are of alternate signs for x> x,.

In case n is odd this supposition leads to*the inequality”
Ot f(et —x)"2A(H)dt <0
YR =), <0

and further
y(x)<y(x1)—ﬁ-! fat f (s—1)"—2 A (5)ds.

From this we conclude by lemma (for =0 and m=n) and
hypothesis (6) that y must become negative.
If n is even, we have

(11) y’(x)>(7:'“_§ﬁ [t—sp=2atpt;

hence

y(x)>y(xl)+(7_%ﬁ [at fls—tr—2d(s)ds.
X1 H
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By lemma (for a=¢ and m=n—g¢) and hypothesis (7) we
have y(x) > (x —ax,)¢ for x> x,, and we can replace (10) by

Y () K (2 — x9)2 A (x).

“This in turn gives us® y(x)>> (x—xg)% for x> x; “and we
can accordingly replace (10) by”

™ (o) o — (o0 == a5) A ().
“A continuation of this process leads finally to the relation”
Y () < (xr—xp)Pe A (=),

where 1 —¢ < pe<<1. This in turn gives us

Y () <y (op) — (;:1_—3—)—‘ J'dtf(s— Hr=3+12 4 (s)ds,
*p t

and by lemma (for a=(p-+1)e—1 and m=n—y)
Y (%) <y (wp) — K(x — acp ) PH21,
where K may by supposed greater then y'(xp).

“But it is contrary to (11).

(b) The derivative of index n—2i is positive for sufficiently
great values of x, while all deripatives rith indices of the form
n—2j (0<j<<i) are negative for x> x, and all the derivatives
with indices of the form n—2j-++1 (1<j<i) are positive for
these values of x.

Since y®™—2)x) is positive and increasing, we should have”
yx)>(x—x)>% (k>0 “for sufficiently great values of x.
We could therefore replace (10) by”

Yo () < —k(x— x4 (x)‘.

“But a series of steps similar to those described under (a)
shows that this inequality requires that y®—2+%(x) be mnegative
for sufficiently great values of x”.
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